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3 INFN, Sezione di Roma 2, Universitá di Roma “Tor Vergata”, 00133 Rome, Italy

The DESY-Münster-Roma Collaboration performed the first large-scale simulation of super-
symmetric Yang-Mills (SYM) theory. Theoretical expectations about the behaviour of non-
perturbative dynamics near the supersymmetric limit at zero gaugino mass have been confronted
with numerical results.

1 Introduction

In recent decades research on the structure of matter has revealed that all known matter is
composed of a small number of fundamental constituents, the so-called quarks and leptons.
Moreover, the physics of these particles is governed by four types of forces: gravitation,
electro-magnetic forces, the weak and the strong interactions. In subatomic physics only
the latter three play a role. The particles and their interactions are theoretically summarized
in the so-called Standard Model. Almost all known experimental data in the presently
available energy range can be described by the Standard Model.

In spite of this, many theorists are convinced that by the increase of the energy of par-
ticle accelerators within the next ten years new phenomena will emerge which go “beyond
the Standard Model”. In particular, the large number of free parameters in the Standard
Model is not entirely satisfactory. There are also experimental facts which point towards
some extension of the Standard Model: the recently established non-zero mass of neu-
trinos and the observed baryon matter excess in the Universe which cannot be explained
in the minimal Standard Model. In addition, the present theoretical framework has to be
extended, if gravitation is to be described in a manner consistent with quantum theory.

Many of the possible extensions of the Standard Model beyond the presently known
energy range are based on supersymmetry. Supersymmetry is a concept beyond the usual
notion of symmetry. It connects bosons, particles with integral spin, to fermions, which
have half-integral spin1. In case of perfect supersymmetry the bosons and fermions are
grouped in supermultiplets, in which the members have equal masses. Since such mass
degeneracies are not observed in the present experiments one has to assume that super-
symmetry is broken. An important consequence of supersymmetry breaking is the heavy
mass of the supersymmetric partners of the presently known elementary particles. This
would explain why they are not observed up to now.

Although supersymmetry does not seem to immediately solve the problem of prolifera-
tion of free parameters, the only known frameworkwhich has the potential of incorporating
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the quantum theory of gravity is based on supersymmetric string theories. It is generally
assumed that the scale where supersymmetry becomes manifest is near to the presently
explored electroweak scale and that the supersymmetry is spontaneously broken.

The Standard Model of elementary particles is based on gauge field theories. Super-
symmetric extensions involve supersymmetric gauge theories. A commonmethod to inves-
tigate field theories is perturbation theory, which amounts to an expansion of the quantities
of interest in powers of a small parameter. However, many interesting features are of a non-
perturbative nature. An attractive possibility for spontaneous supersymmetry breaking is to
exploit non-perturbative mechanisms in supersymmetric gauge theories. This is the basis
of a strong theoretical interest for investigating supersymmetry non-perturbatively.

The motivation for a study of non-perturbative features of supersymmetric gauge the-
ories partly also comes from the desire to understand relativistic quantum field theories
better in general: the supersymmetric points in the parameter space of all quantum field
theories are very special since they correspond to situations of a high degree of symmetry.
The seminal work of Seiberg and Witten2 and others showed that there is a possibility to
approach non-perturbative questions in four dimensional quantum field theories by starting
from exact solutions in some highly symmetric points and treat the symmetry breaking as
a small perturbation. Beyond this, the knowledge of non-perturbative dynamics in super-
symmetric quantum field theories can also be helpful in understanding the greatest puzzle
of the Standard Model, with or without supersymmetric extensions, namely the existence
of a large number of seemingly free parameters. As we know from Quantum Chromody-
namics, the theory of the strong interactions of quarks, strong interactions in non-abelian
gauge theories are capable of reproducing a large number of dynamically generated param-
eters for quantities characterizing bound states from a small number of input parameters.
This is a possible solution also for the parameters of the Standard Model if new strong
interactions are active beyond the electroweak symmetry breaking scale.

The simplest supersymmetric gauge theory is the supersymmetric extension of Yang-
Mills theory, SYM. It describes the carriers of gauge interactions, the gauge particles, to-
gether with their supersymmetric partners, the gauginos. Gauginos are massless Majorana
fermions, which are in the adjoint representation of the gauge group. The DESY-Münster-
Roma Collaboration has mainly investigated the simplest non-abelian SYM theory with
gauge group SU(2)3–5. (Some first results have also been obtained with SU(3) gauge
group6.) A non-trivial problem to be solved was to perform the numerical simulations
with sufficiently light (Majorana) fermions. A suitable simulation algorithm has been de-
veloped7 which is applicable for light dynamical gauginos and, more generally, also for
a broad class of fermionic quantum field theories including Quantum Chromodynamics
(QCD)8.

Our investigations have revealed the basic non-perturbative features of supersymmetric
Yang-Mills theory, which will be described below.

2 SYM Theory on the Lattice

The numerical simulation of SYM theory is performed on a hypercubic lattice in four
dimensional Euclidean space-time. The fourth coordinate, besides the three space coordi-
nates, is the imaginary time. In the path integral formulation we need the Euclidean action
which gives the weight of lattice field configurations in the path integral. For a Majorana
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fermion in the adjoint representation the fermionic part of the Wilson lattice action is

Sf ≡ 1
2λQλ

≡ 1
2

∑
x{λa

xλ
a
x − K

∑4
µ=1

[
λ

a
x+µ̂Vab,xµ(1 + γµ)λb

x + λ
r
xV T

ab,xµ(1 − γµ)λb
x+µ̂

]
} .

(1)
HereK is the hopping parameter which determines the gaugino mass, γµ denotes a Dirac
matrix and Vxµ is the gauge field variable in the adjoint representation of the gauge group.
The gaugino field λ satisfies the Majorana condition

λx = λxC , (2)

with the charge conjugation Dirac matrix C.
The full lattice action is the sum of the pure gauge part and fermionic part:

S = Sg + Sf . (3)

The standard Wilson action for the gauge field Sg is a sum over the plaquettes

Sg = β
∑

pl

(
1 −

1

Nc
Re TrUpl

)
, (4)

with the gauge coupling given by β ≡ 2Nc/g2.
The path integral over the fermion field λ can be carried out and the result is a Pfaffian:

∫
[dλ]e−

1
2λQλ =

∫
[dλ]e−

1
2λMλ = Pf(M) , (5)

whereM is the antisymmetric matrix defined as

M ≡ CQ = −MT . (6)

The square of the Pfaffian Pf(M) is equal to the determinant of the fermion matrixQ:

det(Q) = det(M) = [Pf(M)]2 . (7)

In order to performMonte Carlo simulations of SYM theory one needs a positive mea-
sure on the gauge field which allows for importance sampling of the path integral. There-
fore the sign of the Pfaffian has to be taken into account separately. Since the absolute
value of the Pfaffian is the non-negative square root of the determinant the effective gauge
field action is9:

SCV = β
∑

pl

(
1 −

1

Nc
Re TrUpl

)
−

1

2
log detQ[U ] . (8)

The factor 1
2 in front of log detQ shows that we effectively have a flavour number Nf =

1
2 of adjoint fermions. The omitted sign of the Pfaffian can be taken into account by
reweighting the expectation values according to

⟨A⟩ =
⟨A signPf(M)⟩CV

⟨signPf(M)⟩CV
, (9)

where ⟨. . .⟩CV denotes expectation values with respect to the effective gauge action SCV .
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The sign of the Pfaffian may lead in principle to a sign problem if the contributions with
opposite sign in the reweighting formula (9) cancel each other. This cancellation may lead
to an intolarable increase of the statistical error. We have shown3–5 that the monitoring of
the sign of the Pfaffian can be done with reasonable numerical effort and for positive gaug-
ino masses practically no sign problem occurs because the positive contributions dominate.

3 Low Energy Dynamics in SYM Theory

On the basis of its similarity to QCD one can assume that the basic features of SYM
dynamics are simular to QCD: confinement of the coloured degrees of freedom and spon-
taneous chiral symmetry breaking. As in QCD, a central feature of low-energy dynamics
is the realization of the global chiral symmetry. There is only a single Majorana adjoint
“flavour” therefore the global chiral symmetry of SYM is an abelian symmetry U(1)λ.
This is, however, only a symmetry of the classical Lagrangian and it is not fully realized in
the quantum field theory. Therefore it is an anomalous symmetry. The remnant symmetry
in the quantum theory is Z2Nc for a gauge group SU(Nc).

Figure 1. Expected phase structure of Yang-Mills theory with a Majorana fermion in adjoint representation in
the (β, K)-plane. The dashed-dotted line K = Kcr(β) is a first order phase transition (or cross-over) at zero
gaugino mass.

Similarly to QCD the discrete chiral symmetry Z2Nc is expected to be spontaneously
broken to Z2 by the non-zero gaugino condensate ⟨λλ⟩ ≠ 0. The consequence of this
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spontaneous chiral symmetry breaking pattern is the existence of a first order phase tran-
sition at zero gaugino mass mg̃ = 0 (see figure 1). For instance, in case of Nc = 2
at mg̃ = 0 there exist two degenerate ground states with opposite signs of the gaugino
condensate. The symmetry breaking is linear in mg̃, therefore the two ground states are
exchanged at mg̃ = 0 and there is a first order phase transition. In fact, the Z2Nc chiral
symmetry is only expected to be exact in the continuum limit β → ∞ (at zero lattice spac-
ing). It is possible that for finite β there is a cross-over which becomes a genuine first order
phase transition only at β = ∞.

The DESY-Münster Collaboration performed a first lattice investigation of gaugino
condensation in SYM theory with the SU(2) gauge group3. The distribution of ⟨λλ⟩ has
been studied for fixed gauge coupling β = 2.3 as a function of the hopping parameterK ,
which determines the bare gaugino mass, on a 63 · 12 lattice.

A first order phase transition (or cross-over) shows up on small to moderately large lat-
tices as a metastability expressed by a two-peak structure in the distribution of the gaugino
condensate. By tuning K one should be able to achieve that the two peaks are equal (in
height or area). This is a possible definition of the phase transition point in finite volumes.
By increasing the volume the tunneling between the two ground states becomes less and
less probable and at some point practically impossible.

The observed distributions are shown in figure 2. One can see that the distributions
cannot always be described by a single Gaussian which would correspond to a single phase.
The volume dependence of this signal has not been studied up to now. It is left for further
studies which could distinguish between a phase transition and a cross-over.

Confinement of the fundamental colour charge is shown by the linear increase of the
potential between static colour sources. This fundamental static potential has been ex-
tracted, as usual, from Wilson loops and shows indeed a linear rise in agreement with
expectations3.

The consequence of confinement is that the low energy spectrum in SYM theory con-
sists of colourless hadronic bound states as in QCD. In the supersymmetric limit the states
have to belong to supermultiplets with degenerate mass. For non-zero gaugino mass the
supersymmetry is softly broken and the supermultiplets are split up in mass. In analogy
with the effective chiral Lagrangian of QCD it is possible to derive low energy effective
Lagrangians also in SYM theory which reflects the symmetries and is based on an as-
sumption about the nature of the lowest mass states. The simplest assumption gives the
Veneziano-Yankielowicz effective Lagrangian10 but generalizations with more involved
supermultiplet structure are possible11.

The spectrum of SYM theory with SU(2) gauge group has been studied in numerical
simulations by the DESY-Münster Collaboration4. A summary of the results on the masses
of light bound states is shown in figure 3. The results at the smallest gaugino mass are
consistent with two light supermultiplets split up in mass11 but further investigations in a
larger lattice volume are necessary for a more definite statement.

4 Realization of Supersymmetry

An important feature of lattice regularization is that some symmetries are broken for non-
zero lattice spacing and are expected to be recovered in the continuum limit. The details
of the lattice formulation, which also influence the degree of symmetry breaking, are not
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Figure 2. The probability distributions of the gaugino condensate ρ ≡ ⟨λλ⟩ for different hopping parameters at
β = 2.3 on a 63 · 12 lattice. The dashed lines show the Gaussian components.

relevant in the continuum limit because of the universality of critical points. A basic set
of symmetries broken by the lattice and restored in the continuum limit is the (Euclidean)
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Figure 3. The lightest bound state masses in lattice units as function of the bare gaugino mass parameter 1/K
for fixed β = 2.3. The shaded area at K = 0.1955(5) is where zero gaugino mass and supersymmetry are
expected.

Lorentz symmetry including rotations and translations. It is clear that on any regular lat-
tice these symmetries are always broken. Internal symmetries as, for instance, global chiral
symmetry are sometimes broken and sometimes conserved on the lattice, depending on the
actual formulation. From the point of view of symmetry realization supersymmetry is ex-
pected to work similarly to the Lorentz symmetry: at finite lattice spacing it is broken but
it becomes restored in the continuum limit. This similarity is quite natural since there is an
intimate relation of supersymmetry to the Lorentz symmetries of space-time, shown, for
instance, by the fact that the anticommutators of the supersymmetry charges give transla-
tions.

In the framework of quantum field theory the symmetries can be exploited by the corre-
spondingWard-Takahashi (WT) identities. In the case of SYM theory this way of realizing
supersymmetry was first considered by Curci and Veneziano9. At zero gaugino mass both
supersymmetry and anomalous chiral symmetry has to be manifest in the corresponding
WT identities. Generally speaking one expects the existence of a renormalized supercur-
rent operator SRµ satisfying the Ward-Takahashi-type identity

∂µSRµ = 2mRχR . (10)

HeremR is the renormalized gaugino mass and χR is a suitably defined spinorial density.
At zero gaugino mass mR = 0 the supercurrent is conserved and the supersymmetry is
exact.

The DESY-Münster-RomaCollaboration studied the SUSYWT-identities in numerical
simulations5. Omitting O(a) terms which vanish in the continuum limit a → 0 the lattice
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version of the SUSY WT-identity can be written as12

⟨∇µSµ(x)O(y)⟩ +
ZT

ZS
⟨∇µTµ(x)O(y)⟩ =

mS

ZS
⟨χ(x)O(y)⟩ . (11)

Sµ(x) is a suitably defined supercurrent and Tµ(x) is an admixture with the same quantum
numbers as Sµ(x). Eq. (11) has to be valid for every gauge invariant functionO(y) which
is defined in a point y in such a way that there are no common points with the functions
defined at x. Considering (11) with differentO(y) a system of linear equations is obtained
for the two unknowns

zTS ≡
ZT

ZS
, zMS ≡

mS

ZS
. (12)

(Note that zMS is proportional to the renormalized gaugino mass mR ≡ mS/Zm.) Since
there are many different possible O(y)’s, the expectation that (12) has, in the continuum
limit, a unique solution pair (zTS , zMS) is highly non-trivial. Its numerical investigation
can strongly support (or possibly contradict) our expectations about the realization of su-
persymmetry in SYM theory.
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Figure 4. The variable zMS as a function of the bare gaugino mass. An extrapolation to zero defines the point
where supersymmetry is realized in the continuum limit.

The numerical data of the DESY-Münster-Roma Collaboration (see for instance in fig-
ure 4) demonstrate the feasibility of implementing lattice SUSY WT identities in order to
verify supersymmetry restoration in a non-perturbative framework.
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5 Conclusions

In the context of our investigations of supersymmetric Yang-Mills theories on a lattice
we have developed an efficient algorithm for simulating dynamical Majorana fermions,
corresponding toNf = 1/2 fermion flavours, on massively parallel supercomputers. Basic
features of the model have been studied on lattices of different sizes. This includes the
phase structure, gaugino condensate, sign of the Pfaffian, confinement potential, spectrum
of low-lying bound states, and supersymmetric Ward-Takahashi identities.

Most of the numerical calculations presented in this report have been performed on the
Cray T3E of the NIC, Jülich. The total CPU time since 1997 was about 2 · 106 hours.
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