next up previous
Next: About this document ... Up: Inverse Time-Dependent Quantum Mechanics Previous: Inverse Time-Dependent Quantum Mechanics

Bibliography

1
K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer Verlag, New York, 1989).

2
R. G. Newton, Inverse Schrödinger Scattering in Three Dimensions (Springer Verlag, Berlin, 1989).

3
J. M. Bernado and A. F. Smith, Bayesian Theory (Wiley, New York, 1994).

4
J. C. Lemm, J. Uhlig, and A. Weiguny, Technical Report No. MS-TP1-99-6, Univ. of Münster, arXiv:cond-mat/9907013 (accepted for publication by Phys. Rev. Lett.

5
J. C. Lemm and J. Uhlig, Technical Report No. MS-TP1-99-10, Univ. of Münster, arXiv:nucl-th/9908056.

6
G. Wahba, Spline Models for Observational Data (SIAM, Philadelphia, 1990).

7
C. K. I. Williams and C. E. Rasmussen, in NIPS 8, edited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (The MIT Press, Cambridge, MA, 1996), pp. 514-520.

8
C. K. I. Williams and D. Barber, IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 1342 (1998).

9
J. C. Lemm, Technical Report No. MS-TP1-99-1, Univ. of Münster, arXiv:physics/9912005.

10
D. J. C. MacKay, in Maximum Entropy and Bayesian Methods, Santa Barbara 1993., edited by G. Heidbreder (Kluwer, Dordrecht, 1994).

11
B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

Figure 1: Time evolution of an unobserved particle with mass $m$ = 1 started at time $t_0$ = 0 from $x_0$ = 0 in the potential (16). Shown is the transition probability $p(x\vert\Delta t = t,x_0=1,v_{\rm true})$.
\begin{figure}\begin{center}
\epsfig{file=figure1.eps, width= 86mm}\end{center}\end{figure}

Figure 2: Time evolution of an observed particle with mass $m$ = 1 in the potential (16). The figure shows for each data point $i$ the probability $p(x\vert\Delta_i=5,x_{i-1},v_{\rm true})$, starting from $x_0$ = 0. (Hence, the probability at $i$ =1 corresponds to that shown in Fig. 1 at $t$ = 5.) The actual data points $x_i$ have been sampled from that probabilities and form the observed path shown on top as a thick line.
\begin{figure}\begin{center}
\epsfig{file=figure2.eps, width= 86mm}\end{center}\end{figure}









Figure 3: Numerical reconstruction of a potential from 50 coordinate measurements (see Fig. 2). Shown are the true potential $v_{\rm true}$ (thin line), the best parametric approximation used as reference potential $v_0$ (dashed line), and the reconstructed potential $v_{\rm ITDQ}$ (thick line). Parameters: $m$ = 1, $\Delta _i$ = 5, $v_{\rm true}$ of Eq. (16), $v_0$ of the form (18), Gaussian prior with ${\bf K}_0$ as in (17) with $\lambda $ = 0.1 and $\sigma _{0}$ = 3, $p_E$ (6) with $\mu $ = 10 and $\kappa $ = $E_0(v_{\rm true})$, periodic boundary conditions for $\psi _\alpha $, fixed boundary values $v(-10)$ = $v(10)$ = $10^5$ for $v_{\rm ITDQ}$, $v_0$ and $v_{\rm true}$, calculated on a lattice with 21 points. Errors: $\epsilon_D(v_{\rm ITDQ})$ = 99.1, $\epsilon_D(v_{\rm true})$ = 104.4, $\epsilon_g(v_{\rm ITDQ})$ = 1.891, $\epsilon_g(v_{\rm true})$ = 1.818.
\begin{figure}\begin{center}
\epsfig{file=figure3.eps, width= 65mm}\end{center}\end{figure}

Figure 4: Sum of empirical transition probabilities $p_{\rm emp}$ (bars), the corresponding true $p_{\rm true}$ (thick line) for $v_{\rm true}$, and the reconstructed $p_{\rm ITDQ}$ (thin line).
\begin{figure}\begin{center}
\epsfig{file=figure4.eps, width= 65mm}\end{center}\end{figure}

Figure 5: Same functions as in Fig. 4, but restricted to measurements of a particle which has been at position $x_{i-1}$ = 1 at the time of the previous measurement.
\begin{figure}\begin{center}
\epsfig{file=figure5.eps, width= 65mm}\end{center}\end{figure}


next up previous
Next: About this document ... Up: Inverse Time-Dependent Quantum Mechanics Previous: Inverse Time-Dependent Quantum Mechanics
Joerg_Lemm 2000-02-02