Introduction to the Standard Model Problem sheet 8

Deadline: Monday 15 June 2015 (12 am) at Dr. Giudice's office (KP 301) and Dr. Piemonte's office (KP 412)

Topics covered: β -function, static potential

- 1. The β -function of QED is of the form $\beta(e) = \beta_0 e^3 + \mathcal{O}(e^5)$, where $\beta_0 = 1/(12\pi^2)$, and e is the electric charge.
 - a) (2 P) Show that

$$e_R^2(Q) = \frac{e_R^2(\mu)}{1 - \beta_0 e_R^2(\mu) \ln(Q^2/\mu^2)},$$

if the β -function is approximated by its lowest order term

- b) (1 P) Estimate the value of Q, where $e_R^2(Q)$ would diverge in this approximation, if μ is taken to be the electron mass m_e , and $e_R^2(m_e)/4\pi \approx 1/137,036$.
- 2. β -function fixed point

Consider a theory with β -function $\beta(g) = a_1 g - a_2 g^3$, with $a_1, a_2 > 0$.

- a) (2 P) Draw a sketch of $\beta(g)$. On the graph of $\beta(g)$ indicate the flow of g for increasing momentum scale Q.
- b) (3 P) Find the limiting value g_c of g for $Q \to \infty$. Show that

$$g_R(Q) - g_c \propto \left(\frac{Q^2}{\mu^2}\right)^{-\gamma}$$
 as $Q \to \infty$,

and calculate the exponent γ .

- 3. (1 P) The static quark-antiquark potential rises linearly at large distances, $V(r) \sim k r$, where the string tension has the value $k \approx 160\,000$ N. Estimate the string breaking distance r_B by assuming $V(r_B) \approx 2m_\pi$.
- 4. The Fourier transform of the quark-antiquark potential, $\tilde{V}(\vec{k}) = \int d^3x \, e^{-i\vec{k}\cdot\vec{r}} V(\vec{r})$, is in leading order of perturbation theory given by

$$\tilde{V}^{(0)}(\vec{k}\,) = -\frac{4}{3}g^2\,\frac{1}{\vec{k}^{\,2}}\,.$$

- a) (1 P) Write down $V^{(0)}(\vec{r})$. (No calculation required.)
- b) (3 P) In the one-loop approximation the most important part of $\tilde{V}(\vec{k})$ is obtained from its leading order expression by replacing g^2 by

$$g^2 \left(1 - \beta_0 g^2 \ln(\vec{k}^2/\mu^2) \right).$$

Show that the corresponding potential is given by

$$V(\vec{r}) = V^{(0)}(\vec{r}) (1 + \beta_0 g^2 \ln(a\mu^2 r^2)),$$

where a is some constant.

Hint: Use the following integral.

c) (2 P) Show by dimensional analysis that

$$\int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{r}} (\vec{k}^2)^{-(1+\alpha)} = \frac{C(\alpha)}{4\pi} r^{-1+2\alpha} \qquad (\alpha \ge 0), \quad \text{with} \quad C(0) = 1.$$

d) (6 bonus points) This is only for the really ambitious students: show that in the previous integral

$$C(\alpha) = (\cos(\pi\alpha) \Gamma(1 + 2\alpha))^{-1}.$$