Introduction to the Standard Model Problem sheet 7

Deadline: Monday 8 June 2015 (12 am) at Dr. Giudice's office (KP 301) and Dr. Piemonte's office (KP 412)

Topics covered: spontaneously broken chiral symmetry, β -function

1. Spontaneous symmetry breaking

If a symmetry is unbroken, then vacuum expectation values $\langle 0|\mathcal{O}|0\rangle$ of observables are invariant under the symmetry transformations.

Consider QCD with $N_f = 2$ quark flavours and equal quark masses $m_u = m_d$. Assume that the quark condensates $\langle 0|\bar{u}u|0\rangle$ and $\langle 0|\bar{d}d|0\rangle$ are non-zero.

- a) (2 P) Explain why this implies a spontaneous breaking of chiral $SU(2)_L \otimes SU(2)_R$ symmetry in the case of vanishing quark masses $m_u = m_d = 0$.
- b) (2 P) Show that $\langle 0|\bar{u}u|0\rangle = \langle 0|\bar{d}d|0\rangle$, if flavour SU(2) is unbroken.
- 2. Let $\beta(g) = -\beta_0 g^3 \beta_1 g^5 \beta_2 g^7 + \dots$ be the renormalisation group β -function of QCD in a particular scheme.
 - a) (3 P) From

$$Q \frac{\mathrm{d}}{\mathrm{d}Q} g_R(Q) = \beta(g_R(Q))$$
 (see lecture),

show that

$$g_R^2(Q) = \frac{g_R^2(\mu)}{1 + \beta_0 g_R^2(\mu) \ln(Q^2/\mu^2)},$$

if the β -function is approximated by its lowest order term.

b) (3 P) Taking into account higher orders, show that

$$\ln(Q^2/\mu^2) = F(g_R(Q)) - F(g_R(\mu)),$$

where

$$F(g) = \frac{1}{\beta_0 g^2} + \frac{2\beta_1}{\beta_0^2} \ln g + \mathcal{O}(g^2).$$

c) (4 P) Let \tilde{g} be a different renormalised coupling, defined in another scheme, such that

$$\tilde{g} = g + cg^3 + \mathcal{O}(g^5).$$

The corresponding β -function, given by

$$Q\frac{\mathrm{d}}{\mathrm{d}Q}\,\tilde{g}(Q) = \tilde{\beta}(\tilde{g}(Q))$$

is of the form

$$\tilde{\beta}(\tilde{g}) = -\tilde{\beta}_0 \, \tilde{g}^3 - \tilde{\beta}_1 \, \tilde{g}^5 - \tilde{\beta}_2 \, \tilde{g}^7 + \dots$$

Show that

$$\tilde{\beta}_0 = \beta_0, \quad \tilde{\beta}_1 = \beta_1,$$

and that $\tilde{\beta}_2 \neq \beta_2$ in general.