Introduction to the Standard Model Problem sheet 6

Deadline: Monday 1 June 2015 (12 am) at Dr. Giudice's office (KP 301) and Dr. Piemonte's office (KP 412)

Topics covered: currents, chirality

- 1. (6 P) Let $q(x) = (q_{\alpha,i,f}(x))$ be the quark field, where $\alpha \in \{1,\ldots,4\}$ is the Dirac index, $i \in \{1,2,3\}$ the colour index, and $f \in \{1,\ldots,N_f\}$ the flavour index. Write the following expressions explicitly in the index notation, including all indices:
 - a) Uq(x), where U is an element of colour SU(3),
 - b) $\Omega q(x)$, where Ω is an element of flavour $SU(N_f)$,
 - c) $\gamma^{\mu}\partial_{\mu}q(x)$,
 - d) $\bar{q}(x)q(x)$,
 - e) $\bar{q}(x)\gamma^{\mu}q(x)$,
 - f) $\bar{q}(x)\gamma^{\mu}T_aq(x)$, where T_a is a generator of flavour $SU(N_f)$.
- 2. Calculate the Noether currents associated with the following transformations of the quark field in QCD:
 - a) (2 P) flavour transformations $q' = \Omega q$, $\Omega \in SU(N_f)$,
 - b) (1 P) phase transformation $q' = e^{-i\alpha}q$.
 - c) (4 P) Calculate the divergences $\partial_{\mu}j_{a}^{\mu}$ of the flavour currents

$$j_a^{\mu}(x) = \sum_{f,f'} \bar{q}_f(x) \gamma^{\mu}(T_a)_{ff'} q_{f'}(x),$$

for free quarks with quark masses m_f , using the field equations. Hint: if all quark masses are equal, the expression should be zero.

- 3. Let $P_L = \frac{1}{2}(\mathbb{1} \gamma_5)$ and $P_R = \frac{1}{2}(\mathbb{1} + \gamma_5)$.
 - a) (2 P) Show that P_L and P_R are complementary projectors, i. e. $P_L^+ = P_L$, $P_R^+ = P_R$, $P_L^2 = P_L$, $P_R^2 = P_R$, $P_L + P_R = 1$, $P_L P_R = P_R P_L = 0$.
 - b) (3 P) For a Dirac field $\psi(x)$ define $\psi_L(x) = P_L \psi(x)$ and $\psi_R(x) = P_R \psi(x)$. Calculate $\overline{\psi}_L$ and $\overline{\psi}_R$. Express $\overline{\psi}\psi$ and $\overline{\psi}\gamma_5\psi$ in terms of ψ_L and ψ_R .
 - c) (3 P) Show that

$$e^{-i\alpha\gamma_5} = \cos(\alpha) \mathbb{1} - i\sin(\alpha)\gamma_5 = e^{-i\alpha}P_R + e^{i\alpha}P_L.$$

d) (2 P) Show that for the quark field q(x)

$$\exp\left(-\mathrm{i}\,\omega^a T_a \gamma_5\right) q(x) = \mathrm{e}^{-\mathrm{i}\omega^a T_a} q_R(x) + \mathrm{e}^{\mathrm{i}\omega^a T_a} q_L(x),$$

where T_a are flavour symmetry generators.

- e) (2 P) Let $q'(x) = \exp(-i\omega^a T_a \gamma_5) q(x)$ as in (d). Does $\bar{q}'(x)q'(x) = \bar{q}(x)q(x)$ hold?
- f) (2 P) Calculate the Noether current associated with the transformation in (e).