Introduction to the Standard Model Problem sheet 4

Deadline: Monday 11 May 2015 (12 am) at Dr. Giudice's office (KP 301) and Dr. Piemonte's office (KP 412)

Topics covered: Generators, global and local symmetries

1. The quark triplet $q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$ transforms under flavour SU(3) as $q \to q' = Uq$, $U \in SU(3)$.

Let \bar{q} be another triplet transforming as $\bar{q} \to \bar{q}' = U^* \bar{q}$.

- a) (2 P) Define the generators \overline{T}_a by $U^* = \exp{(-\mathrm{i}\,\alpha_a\overline{T}_a)}$, where $U = \exp{(-\mathrm{i}\,\alpha_aT_a)}$. Show that $\overline{T}_a = -T_a^*$ and check that the \overline{T}_a fulfil the SU(3) Lie algebra.
- b) (1 P) Show that \bar{q} represents antiquarks, i.e. that their quantum numbers are opposite to those of the quarks.
- c) (2 P) In the case of SU(2), the representation with generators T_a , a=1,2,3, and the one with generators $\overline{T}_a=-T_a^*$ are equivalent, i.e. there exists a unitary matrix S, such that $\overline{T}_a=ST_aS^{-1}$. Find S.
- 2. The SU(3) d-coefficients are defined by $[T_a, T_b]_+ = \frac{1}{3}\delta_{ab}\mathbb{1} + d_{abc}T_c$.
 - a) (2 P) Calculate d_{123} , d_{146} , d_{366} and d_{888} .
 - b) (1 P) Show that $d_{abc} = 2 \text{ Tr} ([T_a, T_b]_+ T_c)$.
 - c) (2 P) Show that the d_{abc} are completely symmetric.
- 3. Scalar QED:
 - a) (1 P) For a free complex scalar field $\phi(x)$ there is a global U(1) symmetry given by

$$\phi(x) \longrightarrow \phi' = e^{-iq\alpha}\phi(x).$$

Calculate the corresponding Noether current.

- b) (2 P) Write down the Lagrangian \mathcal{L} for $\phi(x)$ interacting with the Maxwell field $A_{\mu}(x)$. Derive the field equation for $\phi(x)$. Write the field equation by using the covariant derivative D_{μ} .
- c) (2 P) Calculate the Noether current corresponding to the global U(1) symmetry of \mathscr{L} , and calculate its divergence $\partial_{\mu}j^{\mu}$ using the field equations.
- d) (1 P) Check whether the interaction term in (b) is proportional to $j^{\mu}(x)A_{\mu}(x)$, where j^{μ} is the Noether current from (c).
- e) (2 P) Draw the interaction vertices belonging to \mathscr{L} . Use lines with arrows to distinguish ϕ from ϕ^* .