QFT Exercises 7

 $\underline{\text{Attention:}}$ For this week only the exercises are due one day earlier than usual, on Wednesday 10.12.14

Topics: symmetries, Noether theorem

- 1. (25%) Find the energy-momentum tensor of the massive vector field $(\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu})$. Check whether it is symmetric.
- 2. (25%) Consider a field $\phi(x)$ with Lagrangian density $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ such that \mathcal{L}_0 has a certain symmetry but \mathcal{L}_1 does not. That is, in the absence of \mathcal{L}_1 the system would have a conserved Noether current. Show that, in the presence of \mathcal{L}_1 , the divergence of the would-be Noether current is $\delta \mathcal{L}_1$.
- 3. (25%) Consider the Lagrangian

$$\mathscr{L} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi \tag{1}$$

where $\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$ is an SU(2) doublet. Show that this Lagrangian has SU(2) symmetry and find the corresponding Noether currents and charges.

4. (25%) The Lagrangian of a real scalar field is given by

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi^{T} \partial^{\mu} \phi - \frac{m^{2}}{2} \phi^{T} \phi, \tag{2}$$

where $\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$. Prove that this Lagrangian is SO(3) invariant and find the Noether charges.