QFT Exercises 1

Due on 30.10.14

Topics covered: Klein-Gordon and Dirac equations. As always, we use natural units: $\hbar = c = 1$.

1. (20%) Show that

$$j_{\mu} = -\frac{i}{2} \left(\phi \partial_{\mu} \phi^* - \phi^* \partial_{\mu} \phi \right) - q A_{\mu} \phi^* \phi \tag{1}$$

satisfies the continuity equation when ϕ is a solution to the Klein-Gordon equation in an external electromagnetic potential A_{μ} .

- 2. (30%) Evaluate the commutator of the Dirac Hamiltonian, $H_D = \boldsymbol{\alpha} \cdot \mathbf{p} + \beta m$, with the following operators:
 - a) $\mathbf{p} = -i\nabla$
 - b) $\mathbf{L} = \mathbf{r} \times \mathbf{p}$
 - c) **L**²
 - d) $\mathbf{S} = \frac{1}{2}\mathbf{\Sigma}$, where $\mathbf{\Sigma} = \frac{i}{2}\boldsymbol{\gamma} \times \boldsymbol{\gamma}$ and $\boldsymbol{\gamma} = \beta \boldsymbol{\alpha}$
 - e) $\mathbf{J} = \mathbf{L} + \mathbf{S}$
 - f) **J**²
 - g) $\Sigma \cdot \frac{\mathbf{p}}{|\mathbf{p}|}$
 - h) $\Sigma \cdot \mathbf{n}$, where \mathbf{n} is a unit vector
- 3. (20%) Show that if $\psi(x)$ is a solution of the Dirac equation in an electromagnetic field, then it satisfies

$$\left[\left(\partial_{\mu} - ieA_{\mu} \right) \left(\partial^{\mu} - ieA^{\mu} \right) - \frac{e}{2} \sigma_{\mu\nu} F^{\mu\nu} + m^2 \right] \psi(x) = 0, \tag{2}$$

which is a generalized form of the Klein-Gordon equation. In this equation $\sigma_{\mu\nu} = \frac{i}{2} \left[\gamma_{\mu}, \gamma_{\nu} \right]$ and $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$.

4. (30%) Find, up to a normalization constant, the explicit expressions for the basic Dirac spinors $u^{(r)}(\vec{p})$ and $v^{(r)}(\vec{p})$ with r=1,2.