SM Exercises 6

Please note that this set of exercises is due on an unusual date: 03.06.14.

1. (30%) Fill in the table below (only where appropriate):

Particle	Spin (0,L,R,1)	Mass	Color	Weak Isospin	Electric Charge	Hyper- Charge(Y)
	(0,L,K,1)		(1,3,8)	(0,1/2,1)	Charge	Charge(1)
$ u_{eL} $						
e_L^-						
$\begin{array}{c c} e_L^- \\ \hline e_R^- \end{array}$						
u_L						
d_L						
u_R						
d_R						
W^{\pm}						
Z^0						
γ						
g						
W^0						
B^0						
H						

2. (10%) Show that for each fermion generation in the Standard Model the following equations are satisfied:

$$\sum_{all} (-1)^n Y = 0, \qquad \sum_{all} (-1)^n Y^3 = 0, \tag{1}$$

$$\sum_{all} (-1)^n Y = 0, \qquad \sum_{all} (-1)^n Y^3 = 0, \qquad (1)$$

$$\sum_{q} (-1)^n Y_q = 0, \qquad \sum_{f_L} (-1)^n Y_{f_L} = 0, \qquad (2)$$

where Y is the hypercharge, n = 1 (n = 0) for left-handed (right-handed) fermions, and the sum is to be done over the indicated fermion multiplets.

- 3. (10%) Use dimensional analysis to determine how a generic weak interaction cross section, e.g. $\sigma(\nu\bar{\nu}\to e^+e^-)$, depends on the center of mass energy (E), both at low energies, $E \ll M_W$, and at high energies, $E \gg M_W$.
- 4. (25%) Draw all the tree-level diagrams that contribute to the following processes in the Standard Model:

a.
$$\bar{\nu}_e + e^- \to \bar{\nu}_e + e^-$$

b.
$$\bar{\nu}_{\mu} + e^{-} \rightarrow \bar{\nu}_{\mu} + e^{-}$$

c.
$$\bar{\nu}_e + \nu_e \rightarrow \bar{\nu}_e + \nu_e$$

d.
$$e^+ + e^- \to e^+ + e^-$$

e.
$$q + q \rightarrow q + q$$

f.
$$\tau^- \to 3$$
 leptons

g.
$$\mu^- \to e^- + e^+ + e^-$$

5. (25%) Find the term in the Standard Model Lagrangian which is responsible for the coupling ZZH and write it in terms of M_Z , e and θ_W . Find also the coupling W^+W^-H and write it in terms of M_W , e and θ_W .