SM Exercises 2

To be handed in on 29.04.14

- 1. (10%) Let $U(\theta)$ be a unitary transformation within the group SU(2), $U(\theta)=e^{-\frac{i}{2}\theta\cdot\sigma}$. Show that $\det U=1$.
- 2. (20%) Within the SU(2) group the transformation for particles are $\chi' = U\chi$ whereas for anti-particles $\chi^{*'} = U^*\chi^*$. Show that if χ belongs to the fundamental representation of SU(2)

$$U^* = (i\sigma_2) \cdot U \cdot (-i\sigma_2). \tag{1}$$

Show that the doublet $-i\sigma_2\chi^*$ transforms in the same way as χ . In particular, if $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$ transforms as the doublet representation of SU(2), $\psi = \begin{pmatrix} -d \\ u \end{pmatrix}$ also does.

3. (35%) Show that under a gauge transformation the covariant derivative

$$D^{\mu}q^{j}(x) = \left[\delta_{jk}\partial^{\mu} - ig\sum_{a} T_{jk}^{a} A_{a}^{\mu}(x)\right] q^{k}(x)$$

has the same transformation law as the field on which it acts.

4. (35%) Show that under a gauge transformation the QCD field strength tensor, $F_a^{\mu\nu} = \partial^{\mu}A_a^{\nu} - \partial^{\nu}A_a^{\mu} + gf_{abc}A_b^{\mu}A_c^{\nu}$, transforms in a homogeneous way:

$$F_a^{\mu\nu} \to F_a^{\mu\nu} + g f_{abc} \theta_b F_c^{\mu\nu}$$
.