SU(3)

$$[T_{a}, T_{b}] = i f_{abc} T_{c}$$
 $a, b, c = \{1, ...8\}$

Casimir operators:
$$C_F=2 (N^2-1)/(2N)=4/3$$

$$C_A = N = 3$$

Gell-Mann matrices

$$T_k = \frac{\lambda_k}{2} \qquad Tr(\lambda_a \ \lambda_b) = 2 \ \delta_{ab}$$

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

SU(3) contains three SU(2) subgroups corresponding to symmetries between

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 Isospin
$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 V-spin
$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & i & 0 \end{pmatrix}$$
 U-spin
$$\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

For each subgroup, raising and lowering operators can be defined, cf. J_{\pm} for SU(2)

$$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$$

$$V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5)$$

$$U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$$

SU(2): 1 diagonal matrix σ_3 -> rank-1 group

SU(3): 2 diagonal matrices λ_3 , λ_8 -> rank-2 group

$$[T_3, T_8] = 0$$

Define I_3 $Y=2/\sqrt{3} T_8$ isospin hypercharge

-> states in SU(3) irreducible repr. can be labelled by eigenvalues of I_3 and Y

Graphical representation of the multiplets

SU(2)

$$j = \frac{1}{2}$$

$$-\frac{1}{2}$$

$$X$$

$$j = 1$$

$$-1$$

$$X$$

$$-\frac{1}{2}$$

$$X$$

$$-\frac{1}{2}$$

$$X$$

$$-\frac{1}{2}$$

$$X$$

$$-\frac{1}{2}$$

$$X$$

$$\frac{1}{2}$$

$$X$$

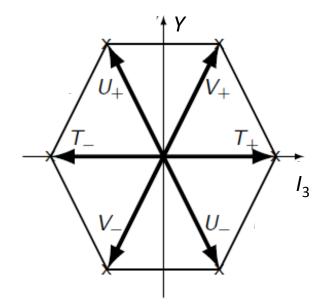
$$\frac{3}{2}$$

$$X$$

$$X$$

One diagonal generator $J_{3,}$ J_{\pm} moves a state to the right or left <-> shifts between states labelled by eigenvalues of J_{3}

SU(3)



Two diagonal generators: T_3 , T_8 I_{\pm} , V_{\pm} , U_{\pm} move a state on the plane <-> shifts between eigenvalues of I_3 and Y

Similarly to what we have shown for J_{\pm} in SU(2), one can show that:

 V_{\pm} shifts eigenvalues of I_3 by $\pm \frac{1}{2}$ and Y by ± 1 , U_{\pm} shifts eigenvalues of I_3 by $\pm (-\frac{1}{2})$ and Y by ± 1 , and I_{\pm} shifts eigenvalues of I_3 by ± 1 and Y by 0

SU(3) of flavour

Historically, after the discovery of pion (1947) many more strongly interacting particles (hadrons) were identified.

- Mesons: hadrons with integer spin
- Baryons: hadrons with half-integer spin

Classification according to spin and parity: observed that particles within the same families have similar masses

Additionally, observed that some particles decay with a very long lifetime, despite being massive enough to decay into lighter objects

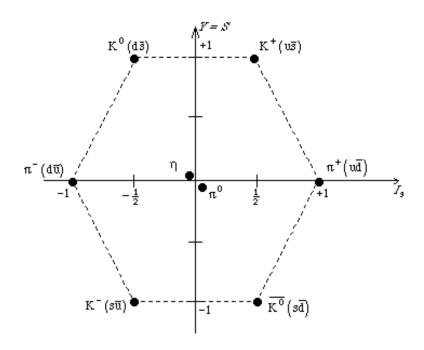
Proposed a new quantum number, strangeness *S*, conserved in strong interactions

Gell-Mann-Nishijima relation

$$Q = I_3 + Y/2$$
 $Y = B + S$

Extension of the isospin SU(2) isospin symmetry to SU(3) flavour symmetry -> needed to accommodate hypercharge U(1) symmetry in addition to isospin

- Accommodates the idea of isospin and hypercharge as conserved quantities (by strong interactions)
- Allows for correspondence between (I₃, Y) plots of mesons and baryons with the same spin and parity and the representations of the SU(3) group (Gell-Mann and Ne'eman)



BUT: Fundamental representation not identified with any known particles at that point

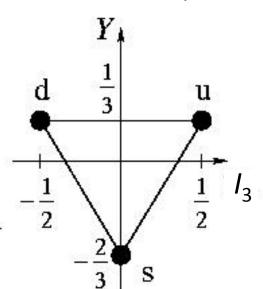
Quark model (Gell-Mann and Zweig)

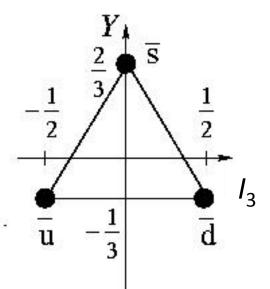
- All hadrons built out of spin-1/2 quarks which transform as members of fundamental representation
- There are three types of quarks (flavours) in the fundamental representation: up, down, strange
- Mesons (B = 0) are q qbar bound states
- Baryons (B = 1) are qqq bound states

Note: SU(3) flavour not as good as SU(2) isospin symmetry, mass splitting within a multiplet ~ 10%. Also, only 3 flavours were known in 60's of the last century, now we know there are 6 flavours.

Eigenvalues of J_3 generators are additive in a product representation!

Quarks and antiquarks SU(3) representations (triplets)





$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$Yu = \frac{1}{3}u$$

$$Y_{3}u = \frac{1}{2}u$$

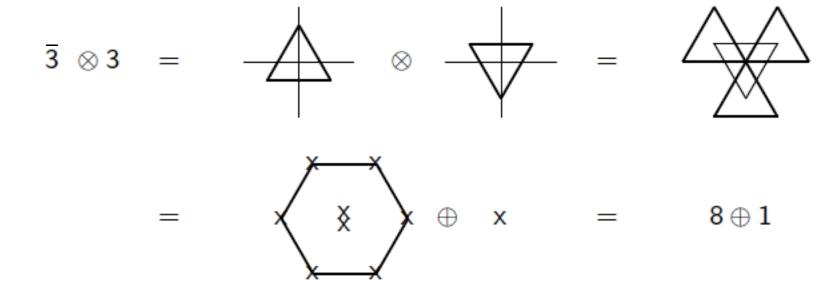
$$Y_{3}d = -\frac{1}{2}d$$

$$Y_{3}s = 0$$

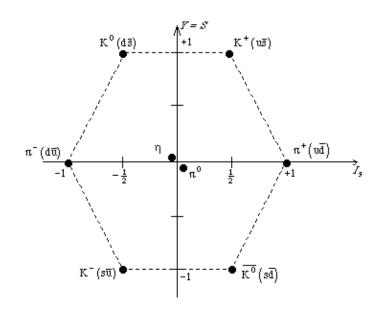
$$Y_{5}u = -\frac{1}{3}u$$

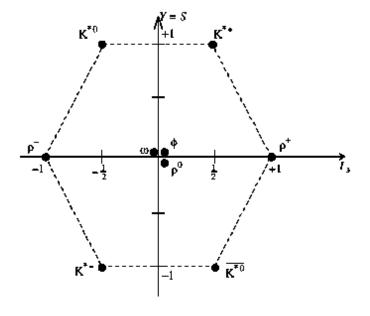
$$Y_{7}u = -\frac{1}{3}u$$

Mesons:



Meson octets:

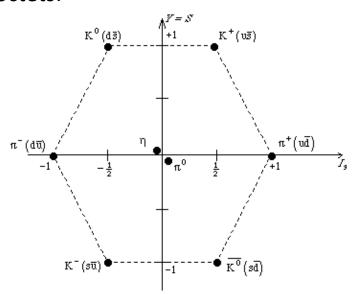




$$J^{p} = 0^{-}$$

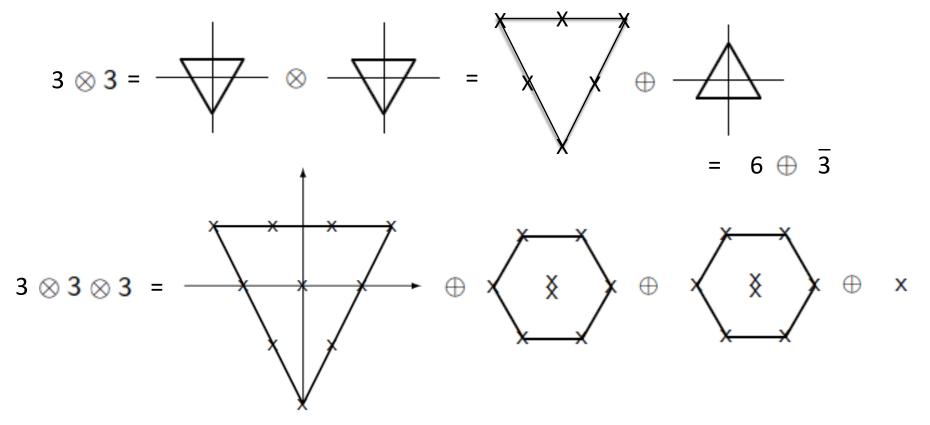
$$J^{P} = 1^{-}$$

Meson octets:





Baryons:

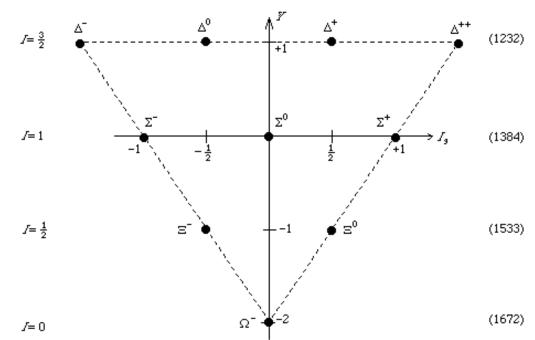


See e.g. Georgi, Lie Algebras in Particle Physics

= 10 \oplus 8 \oplus 8 \oplus 1

General method for SU(N) → Young tableaux

e.g. SU(3) decouplet



 $J^{p} = 3/2 +$

Problem: Δ++= u û u û u û

spatial (ground state!) and spin (=3/2) wavefunctions totally symmetric

violation of Fermi-Dirac statistics

SU(3) of colour: EXACT