# Phase structure of tmQCD at finite temperature

#### Lars Zeidlewicz



FS QFT Nov 24, 2008

Introduction Action Phase Structure tmfTQCD Conclusion

# The plan of this talk

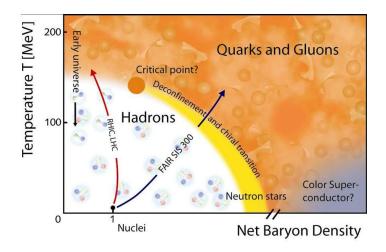
#### Overview

#### Twisted mass lattice QCD (tmQCD):

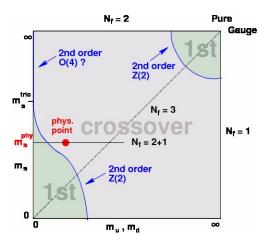
- Introduction of the twisted mass term.
- $\mathcal{O}(a)$  improvement for maximal twist.

#### Lattice phase structure:

- What is already known from Wilson fermions?
- Phase structure of tmQCD at T = 0.


#### Phase structure of tmQCD at finite temperatures:

- Expectations from theoretical conjectures/predictions.
- Results from our MC simulations.


```
tmfT collaboration
PoS(Lat2008)206 [arXiv:0809.5228 [hep-lat]]
```

### Physical context

Transition to QGP: What can we learn from lattice QCD?



# $N_f = 2 + 1$ mass plane



- Transition depends on quark mass values.
- Behaviour in the  $N_f = 2$  chiral limit is an open question.

ntroduction Action Phase Structure tmfTQCD Conclusion

# Twisting the mass in the continuum

#### From physical to twisted basis:

$$\psi \longrightarrow \chi = e^{i\gamma_5\tau^3\omega/2} \psi$$
 $\overline{\psi} \longrightarrow \overline{\chi} = \overline{\psi} e^{i\gamma_5\tau^3\omega/2}$ 

- Kinetic term is left invariant.
- Mass term:

$$\overline{\psi} m_q \psi \longrightarrow \overline{\chi} \left( \underbrace{m_q \cos(\omega)}_{\mathbf{m}'} + i \gamma_5 \tau^3 \underbrace{m_q \sin(\omega)}_{\mathbf{\mu}} \right) \chi$$

Non-anomalous transformation: same physics in different bases

### Lattice action

$$S_{\mathsf{tm}} = S_{\mathsf{naive}} + S_{\mathsf{Wilson}} + i\mu \sum_{\mathsf{x}} \overline{\psi} \gamma_5 \tau^3 \psi$$

#### Naive discretization:

Replace derivatives by finite differences:

$$abla_{
u}\psi(x)=rac{1}{2a}\left(\psi(x+a\hat{
u})-\psi(x-a\hat{
u})
ight)$$

### Wilson term: $\sim \overline{\psi} \Box \psi$

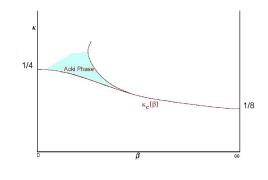
- Removes doublers...
- ...but breaks chiral symmetry.
- The twist rotation is no longer a symmetry of the action.

# Automatic $\mathcal{O}(a)$ -improvement

#### Maximal twist:

- Tune untwisted quark mass to its critical value  $m_c(\beta)$ .  $(\omega = \pi/2)$
- The quark mass is solely determined by the twisted mass parameter  $\mu$ .

#### Improvement:

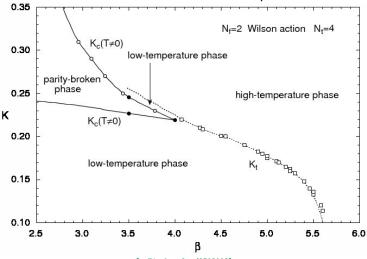

Lattice artefacts are a function of the twist angle:

$$O_{\text{Lat}}(\omega) = O_{\text{Cont}} + aO_{1}(\omega) + a^{2}O_{2}(\omega) + \dots$$

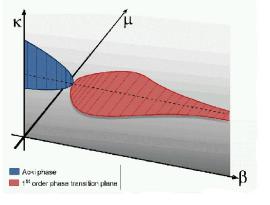
• At maximal twist  $O_1(\omega=\pi/2)=0$  (as long as  $O_{\text{Cont}}\neq 0$ )

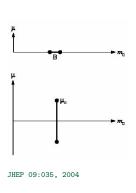
# Aoki phase

- The twisted mass term introduces an explicit breaking of (ordinary) parity and flavour symmetry due to an external field (μ).
- Aoki phase: SSB in the  $(\kappa, \beta)$  plane (i. e. for Wilson fermions  $\mu = 0$ ).




$$\lim_{h\to 0} \lim_{V\to\infty} \left\langle i\overline{\psi}\gamma_5 \tau^3 \psi \right\rangle \neq 0$$


$$\kappa = 1/(2am + 8)$$
$$\beta = 6/g^2$$


### Wilson fermions at finite T

Thermal confinement → deconfinement phase transition:



### Zero temperature phase structure of tmQCD





[arXiv:hep-lat/0509131]

- 3d phase space:  $(\kappa, \beta, \mu)$
- $\kappa_c(\beta)$  is part of a transition surface extending to  $\mu \neq 0$ .
- Both phase transition scenarios are predicted by  $\chi$ PT.

# How does the phase structure of tmQCD look like at finite *T*?

- Temperature is given by finite time direction:  $T = \frac{1}{aN_t}$
- Phase space is three dimensional:  $(\kappa, \beta, \mu)$
- Expect "leftovers" of zero temperature phase structure:
   Aoki phase and 1<sup>st</sup>-order scenario (Sharpe/Singleton)

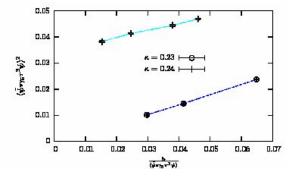
#### Starting points:

- Theoretical arguments that provide some expectations.
- Results of numerical simulations.
- Knowledge of finite T phase structure of Wilson fermions.

troduction Action Phase Structure tmfTQCD Conclusion

### Simulation details

### Regions of investigation:


- $\beta = 1.8$  and  $\beta = 3.0$ : strong coupling (Aoki)
- $\beta \approx 3.45$ : intermediate coupling (Sharpe/Singleton)
- $\beta \gtrsim$  3.65: weak coupling/thermal transition

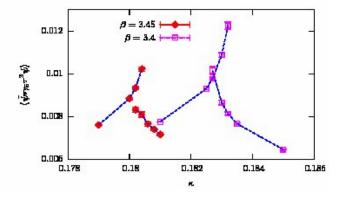
- Algorithm: Generalized Hybrid MonteCarlo see Comput. Phys. Commun., 174:87-98, 2006
- Tree-level Symanzik improved gauge action (plaquettes and rectangles).
- Lattice extent:  $N_s^3 \times N_t = 16^3 \times 8$

ntroduction Action Phase Structure tmfTQCD Conclusion

### Small $\beta$ regime

- Order parameter for Aoki phase:  $\langle \overline{\psi} i \gamma_5 \tau^3 \psi \rangle$
- Fisher plot: (o.p.)<sup>2</sup> vs. external field normalized to o.p.




[arXiv:0809.5228 [hep-lat]]

For  $\beta \leq 3.0$  there is an Aoki phase of nonvanishing width!

troduction Action Phase Structure tmfTQCD Conclusion

# Intermediate couplings

- For  $\beta \sim$  3.4 there are signs of a 1<sup>st</sup> order transition plane.
- Metastabilities:

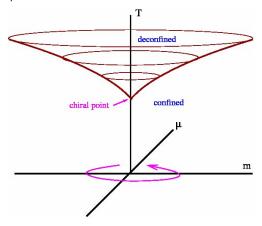


troduction Action Phase Structure tmfTQCD Conclusion

#### Towards the continuum limit

#### The thermal transition/crossover:

- $\beta \gtrsim 3.65$
- How does the transition depend on  $\kappa$ ,  $\mu$ ,  $\beta$ ?
- Where do we find it?

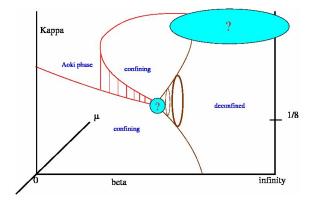

#### Two approaches:

- Looking for a thermal transition line as a function of  $\beta$  for fixed  $\mu$ (= 0.005).
- 2 Looking for the behaviour of the transition depending on  $\kappa$  and  $\mu$  for fixed coupling ( $\beta = 3.75$ ).

# Creutz's continuum argument

Phys. Rev. D76 054501 (2007)

- Continuum tree-level relation:  $m_q^2 = m'^2 + \mu^2$
- $dT_c/dm_q > 0$




• On the lattice: continuum-like behaviour for  $\beta \to \infty$ .

troduction Action Phase Structure tmfTQCD Conclusion

# Creutz's proposal

- Aoki phase persists at T > 0 up to a critical  $\beta_c$ .
- The thermal transition line of Wilson fermions is part of a conical thermal transition surface.



Phys. Rev. D76 054501 (2007)

### Lattice Observables I

#### Polyakov loop

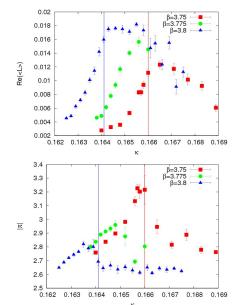
$$L(\mathbf{x}) = \frac{1}{N_c} \operatorname{Tr} \prod_{n_4=0}^{N_t-1} U_4(\mathbf{x}, x_4)$$

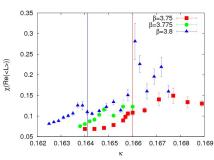
 The Polyakov loop expectation value is related to the free energy of a single quark:

$$\langle L \rangle = e^{-\beta F}$$

- In pure gauge theory \(\lambda L\rangle\) is also the order parameter for the breaking of the \(Z\_3\) symmetry.
- A rise in \( \lambda L \rangle \) indicates the deconfinement transition.

#### Lattice Observables II


#### **Pionnorm**


$$\|\pi\|^2 = \sum_{x} \left\langle \overline{d}(x) \gamma_5 u(x) \overline{u}(0) \gamma_5 d(0) \right\rangle$$

- Pionnorm is the zero momentum pion correlator.
- The pion correlator peaks at the phase transition or crossover.
- $\|\pi\|^2$  is invariant under twist rotations of the flavour doublets  $\psi = (u, d)$ :

$$\psi \to e^{\frac{i}{2}\omega\gamma_5\tau^3}\psi \qquad \overline{\psi} \to \overline{\psi}e^{\frac{i}{2}\omega\gamma_5\tau^3}$$

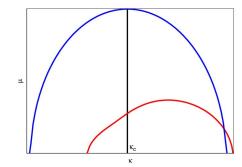
# Small twist angles: $\mu = 0.005$





- Two transitions but...
- asymmetric situation:
- second transition ( $m_q < 0$ ) is very broad; no signal in chiral observables.

# Distortions by the lattice: $\chi$ PT in NLO


#### NLO L $\chi$ PT relation:

$$m_q^2 = \left(\frac{1}{Z_P^2}\mu^2 + \frac{1}{Z_S^2}\frac{1}{4}\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)^2\right)(1 + K\cos\omega)$$

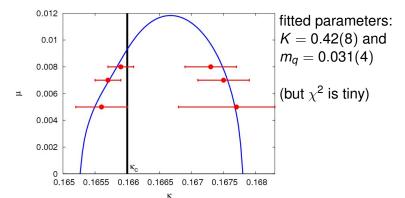
Tree level:

$$m_q^2 = \mu^2 + \frac{1}{4} \left( \frac{1}{\kappa} - \frac{1}{\kappa c} \right)^2$$

- Known from zero temperature simulations (ETMC):
  - $Z_P(\beta)$ ,  $Z_S(\beta)$  translate to continuum parameters
  - $\kappa_c(\beta)$
- K: unknown O(a) parameter from χPT



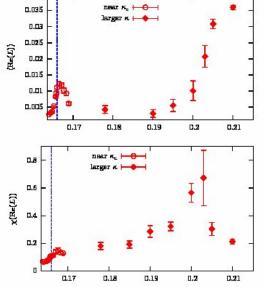
### Transition surface: NLO $\chi$ PT prediction


Check of reliability at  $\beta = 3.75$ :  $\mu = 0.005, 0.007, 0.008, 0.010$ 

# Transition surface: NLO $\chi$ PT prediction

Check of reliability at  $\beta = 3.75$ :  $\mu = 0.005, 0.007, 0.008, 0.010$ 

#### Results:


- Behaviour of observables is qualitatively unaltered.
- Transitions move closer towards each other.



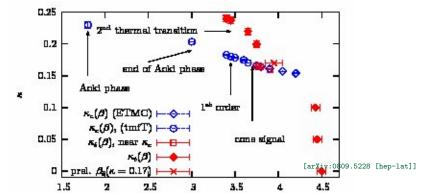
Introduction Action Phase Structure tmfTQCD Conclusion

# Doubler signal

0.04

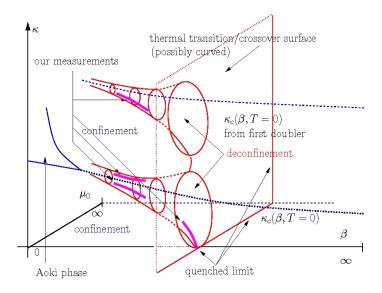


### Polyakov loop


What happens for very large values of  $\kappa$ ?

[arXiv:0809.5228 [hep-lat]]

Susceptibility of the Polyakov loop troduction Action Phase Structure tmfTQCD Conclusions


### Collection of results

- Aoki phase for small  $\beta \lesssim 3.0$
- 1<sup>st</sup> order behaviour for  $\beta \sim 3.4$
- thermal transition surface surrounding  $\kappa_c(eta)$  for  $eta\gtrsim 3.7$
- ullet signals of doubler physics for large  $\kappa\gg\kappa_{\mathcal{C}}$



### Artistic view

[arXiv:0809.5228 [hep-lat]]



### What's next?

• finish study at  $\beta = 3.75$  by "closing the cone"

• scan in  $\beta$ -direction at maximal twist

zero temperature simulations to set the scale

 physical questions: Thermal transition, EoS, order of the transition in the chiral limit,...