Exact Renormalisation Group

Peter Düben

WWU Münster

3rd of December 2007

Contents

- 1 Introduction
 - Phase Transitions and Critical Exponents
 - The Kadanoff Scaling Picture
- 2 The Exact Renormalisation Group
 - Some Renormalisation Group Equations
 - Fixed Points and Renormalisation Group Flows
 - The Exact Renormalisation Group and Turbulence

Statistical Physics

- In statistical physics a system has $\approx 10^{23}$ degrees of freedom
- It seems to be impossible to calculate these systems exactly
- → The reduction of the degrees of freedom is inevitable!

Statistical Physics

- It's known that continuous phase transitions can be characterized by parameters known as critical exponents:
 - Heat capacity: $C_V \propto |T_c T|^{-\alpha}$
 - Susceptibility: $\chi \propto |t|^{-\gamma}$
 - Correlation Length: $\xi \propto |t|^{-\nu}$
 - Pair Correlation Function: $G(r) = \langle \Psi(\mathbf{0})\Psi(r) \rangle \propto \frac{1}{r^{d-2+\eta}}$
- These critical exponents obey scaling relations like:
 - $\beta = \frac{\gamma}{\delta 1}$

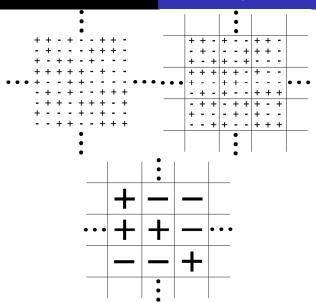
Statistical Physics

- The statistical systems are divided into distinct universality classes, each with a characteristic long range behaviour if the order parameter has the same symmetry and dimension.
- Landau introduced his theory and defined the order parameter. If we know something about the order parameter we get to know something about the macroskopic nature of the system.

Kadanoff Scaling

1966 **Kadanoff** introduced a complete new concept of scaling. He maps a near critical or critical system onto itself by a reduction of the degrees of freedom:

- Consider a lattice of spacing with $s=\frac{1}{2}$ Ising Spins with the values ± 1 ($H=-\frac{1}{2}J\sum_{\delta}s_{\mathbf{x}}s_{\mathbf{x}+\delta}$).
- Divide the lattice into blocks of $L \times L \times L$ with $L = b \cdot a$. So each block containes b^d spins.
- Associate with each block a new effettive block spin $s_{x'}$ and rescale all spatial coordinates $x \to x' = \frac{x}{h}$.
- The condition is, that the statistical properties and the coupling to the external field has to stay the same.



Kadanoff Scaling

The new spin on the renormalised lattice takes the value of the majority of the spins in the block

$$s_{\{s_i\}} = sign(\sum_i s_i') = \pm 1$$
 or we use: $\bar{s}_i = \frac{1}{b^d} \sum_{i \in I} s_i \cong \zeta(b) s_i'$

Kadanoff introduced a spin and a thermal renormalisation factor:

$$t' \approx \vartheta(b)t$$
 $h' \approx \zeta(b)h$

The correlation function should renormalise as:

$$G(\mathbf{x};t,h) \equiv < S_0 S_{\mathbf{x}} > \approx \zeta^2(b) G(\mathbf{x'};t',h')$$

■ But how should one define ζ and ϑ ?

Kadanoff Scaling

- We know if: $t = h = 0 \rightarrow t' = h' = 0$ and at the critical point we have: $G_C(\mathbf{r}) \propto \frac{1}{r^{d-2+\eta}}$
- One finds that ζ must be a power of b and Kadanoff proposed the form: $\zeta(b) = b^{-\omega}$ and $\vartheta(b) = b^{\lambda}$
- The previous scaling laws are still valid and the analysis leads to new exponent relations, the hyperscaling laws like: $d\nu = 2 \alpha$
- All the exponents are now determined by ω and λ .

The Wilson Renormalisation Group

Again there is a lattice with Ising Spins: $H = -J \sum_{\langle i,j \rangle} s_i s_j$

We now use the partition function:

$$Z[T,n] = \sum_{\{S_i\}} e^{-H[S_i,T,n,a]}$$

$$\rightarrow Z[\textit{T},\textit{n}] = \sum_{\{s_l\}} \sum_{\{\sigma_l^\alpha\}} e^{-\textit{H}[s_l,\sigma_l^\alpha,\textit{T},\textit{n},a]} = \sum_{\{s_l\}} e^{-\textit{H}'[s_l,\textit{T},\frac{\textit{n}}{\textit{bd}},ab]}$$

Since we have infinite many interactions we use a H with all possible couplings:

$$H[\textbf{\textit{K}}, s_i, n] = -\textit{K}_1 \sum_{< i, j >} s_i s_j + \textit{K}_2 \sum_{< < i, j >>} s_i s_j + \textit{K}_3 \sum_{< < i, j, k, l >>} s_i s_j s_k s_l + ...$$

We now want to rescale the lattice spacing by $ab \to a$. And if we renormalise the couplings $(K \to K')$ we obtain a system that looks exactly like the old one.

Transformation + Rescaling and Renormalisation = Renormalisation Group Transformation (RGT)

The RGT has the following attributes:

- It preserves the partition function Z
- It maps a Hamiltonian onto another one
- It consists of integrating out short distance degrees of freedom to obtain an effective Hamiltonian for the long distance degree of freedom

We now consider a linear transformation between spins and block spins with a renormalisation by $\lambda(b)$:

$$S_I = \frac{\lambda(b)}{b^d} \sum_{i \in I} S_i^I$$

The relation among the stochastic variables S_i' and S_i leads to relations among their thermodynamic averages:

$$= \frac{1}{Z} \sum_{\{S_{I}\}} S_{I}S_{J}e^{-H[\mathbf{K}',S_{L}]} = \frac{1}{Z} \sum_{\{S_{I}\}} S_{I}S_{J} \sum_{\{\sigma_{L}^{\alpha}\}} e^{-H[\mathbf{K},S_{L},\sigma_{L}^{\alpha}]}$$

$$= \frac{\lambda^{2}(b)}{b^{2d}} \frac{1}{Z} \sum_{\{S_{I}\}} \sum_{\{\sigma_{I}^{\alpha}\}} \sum_{i \in I, j \in J} S_{I}^{I}S_{J}^{J}e^{-H[\mathbf{K},S_{I}]} = \frac{\lambda^{2}(b)}{b^{2d}} \sum_{i \in I, j \in J} G^{(2)}(\mathbf{x}_{i},\mathbf{x}_{j})$$

With the definition of the two-point correlation function of the Spins S_i :

$$G^{(2)}(\mathbf{x}_{i},\mathbf{x}_{j}) = G^{(2)}(\mathbf{r}_{ij},\mathbf{K}) = < S_{i}S_{j} >$$

If we consider two spins S_I and S_J with large distance we see:

$$\sum_{i \in I, j \in J} G^{(2)}(oldsymbol{x_i}, oldsymbol{x_j}) \simeq b^{2d} G^{(2)}(oldsymbol{x_i}, oldsymbol{x_j})$$

And find that:

$$G^{(2)}(r_{IJ}, \mathbf{K'}) = \lambda^2(b)G^{(2)}(r_{ij}, \mathbf{K})$$

In three dimensions and at large distances a typical form of the two point correlation function is:

$$<$$
 $S_i S_j >=$ $G^{(2)}(\bar{r},\bar{\xi}) \sim \frac{e^{-\bar{r}/\bar{\xi}}}{\bar{r}^{\theta}}$

where: $\bar{r} = \frac{r}{a}$ $\bar{\xi} = \frac{\xi}{a}$.

We thus obtain: $G^{(2)}(\bar{r'},\bar{\xi'})\sim \frac{e^{-\frac{\bar{r}/b}{\bar{\xi'}}}}{\bar{r}^{\theta}}b^{\theta}$ where $\bar{r'}=\frac{r}{h_2}$

Now we can see that: $\bar{\xi}' = \frac{\bar{\xi}}{b}$ and $\lambda(b) = b^{\theta/2}$ so we have a relation between the renormalisation and the critical exponents!!!

Now we will have a look on the physics in the **momentum** space:

The Wilson RG procedure is carried out in two steps:

- Integration of the high energy modes of the field: $p \in [\Lambda', \Lambda]$ with $\Lambda \propto a^{-1}$
- 2 And change of lenght scale by a factor ${m p} \to {m p}' = \lambda(b){m p}$

Wilson devided $\phi(p)$ into rapid and slow modes ($\phi = \phi_{<} + \phi_{>}$):

$$Z = \int D\phi e^{-H[\phi, \mathbf{K}, \Lambda]} = \int D\phi_{<} D\phi_{>} e^{-H[\phi_{<}, \phi_{>}, \mathbf{K}, \Lambda]}$$

K' is the new coupling constant:

$$Z = \int D\phi < e^{-H[\phi < , \mathbf{K}', \Lambda/b]}$$

with:
$$e^{-H[\phi_<,\mathbf{K}',\Lambda/b]} = \int D\phi_> e^{-H[\phi_<,\phi_>,\mathbf{K},\Lambda]}$$

Transformation of the Field Variable

We consider a general transformation of the field which leaves the partition function invariant. $\phi_p' = \phi_p + \sigma \Psi_p[\phi]$

Then one has:
$$H[\phi'] = H[\phi] + \sigma \int_{\rho} \Psi_{\rho}[\phi] \frac{\delta H[\phi]}{\delta \phi_{\rho}}$$

Moreover we have:
$$D\phi' = \int D\phi \frac{\partial \{\phi'\}}{\partial \{\phi\}} = \int D\phi (1 + \sigma \int_{p} \frac{\delta \Psi_{p}[\phi]}{\delta \phi_{p}})$$

Since the partition function must stay the same we obtain:

$$Z = \int D\phi' \exp\{-H[\phi']\} = \int D\phi \exp\{-H[\phi] - \sigma G_{tra}[\Psi]H[\phi]\}$$

with:
$$G_{tra}[\Psi]H[\phi] = \int\limits_{\rho} (\psi_{\rho} \frac{\delta H}{\delta \phi_{\rho}} - \frac{\delta \Psi_{\rho}}{\delta \phi_{\rho}})$$

If we consider the case of N Components the expression generalizes

to:
$$G_{tra}[\Psi]H[\phi] = \sum_{\alpha=1}^{N} \int_{\rho} (\psi_{\rho}^{\alpha} \frac{\delta H}{\delta \phi_{\rho}^{\alpha}} - \frac{\delta \Psi_{\rho}^{\alpha}}{\delta \phi_{\rho}^{\alpha}})$$

Rescaling

We consider an infinitesimal change of (momentum) scale:

$$p \rightarrow p' = bp = (1 + \sigma)p$$

The consequence on $H[\phi]$ is written as: $H \to H' = H + \sigma G_{dil}H$ Now there are changes introduced on various factors:

- The differential volume
- The couplings
- The field itself
- .

We obtain something like:

$$G_{dil}H=-(\int\limits_{m{
ho}}\phi_{m{
ho}}m{p}\partial_{m{
ho}}rac{\delta}{\delta\phi_{m{
ho}}}+d_{\phi}\int\limits_{m{
ho}}\phi_{m{
ho}}rac{\delta}{\delta\phi_{m{
ho}}})H$$

If we choose the new Cutoff in infinitesimal distance to the old Cutoff ($\Lambda' = \Lambda - d\Lambda$) we obtain a differential equation as renormalization group equation. We define a so called renormalization group time by:

$$\dot{H} = -\Lambda \frac{\partial H}{\partial \Lambda} =: \frac{\partial H}{\partial t}$$
 and $t = -\ln(\frac{\Lambda}{\Lambda_0})$

The general expression of the exact RG equation may formally be written as:

$$\dot{H} = G_{dil}H + G_{tra}[\Psi]H$$

We get the new Hamiltonian: $H \to H' = H + \dot{H}\Delta t$ Wilson used $\Psi_p = (c+2p^2)(\phi_p - \frac{\delta H}{\delta \phi_{-p}})$ and obtained the RG equation:

$$\dot{H} = G_{dil}H + \int\limits_{\mathcal{D}} (c+2p^2) [rac{\delta}{\delta\phi_p} rac{\delta H}{\delta\phi_{-p}} - rac{\delta H_p}{\delta\phi_{-p}} rac{\delta H}{\delta\phi_p} + rac{\delta H}{\delta\phi_p}\phi_p]$$

Polchinskis Smooth Cutoff

Polchinski introduced a general ultraviolet Cutoff function: $K(p^2/\Lambda^2)$. He used the Hamiltonian:

$$H[\phi] \equiv \frac{1}{2} \int \phi_p \phi_{-p} p^2 K^{-1}(\frac{p^2}{\Lambda^2}) + H_{int}[\phi]$$

Leaving $Z[\mathbf{K}]$ invariant he obtains the Polchinski equation:

$$\Lambda \frac{dH_{int}}{d\Lambda} = \frac{1}{2} \int\limits_{p} p^{-2} \Lambda \frac{dK}{d\Lambda} (\frac{\delta H_{int}}{\delta \phi_{p}} \frac{\delta H_{int}}{\delta \phi_{-p}} - \frac{\delta^{2} H_{int}}{\delta \phi_{p} \delta \phi_{-p}})$$

The Equation of Wegner and Houghton

If we introduce Polchinski's cutoff function $K(p^2/\Lambda^2)$ as a sharp cutoff we can get to the ER Group Equation derived by Wegner and Houghton:

$$\dot{H} = \lim_{t \to 0} \frac{1}{2t} \left[\int_{\rho}^{\prime} ln(\frac{\delta^{2}H}{\delta\phi_{\rho}\delta\phi_{-\rho}}) - \int_{\rho}^{\prime} \frac{\delta H}{\delta\phi_{\rho}} \frac{\delta H_{int}}{\delta\phi_{-\rho}} (\frac{\delta^{2}H}{\delta\phi_{\rho}\delta\phi_{-\rho}})^{-1} \right] + G_{dil}H + const$$

The prime on the integral symbol indicates that the momenta are restricted to $p \in [\Lambda - d\Lambda, \Lambda]$

The Effective Average Action Method

We introduce an infrared cutoff for the rapid modes by giving the slow modes of the partition function a large mass.

$$Z_k[B] = \int D\phi(x) exp(-H[\phi] - \Delta H_k[\phi] + \int B\phi)$$

with:
$$\Delta H_k[\phi] = \frac{1}{2} \int_{p} R_k(p) \phi_p \phi_{-p}$$

We now define: $W_k[Z] = log(Z_k[B])$

The magnetisation is by definition the average of $\phi(x)$ and is therefore:

$$M(x) = \frac{\delta W_k}{\delta B(x)}$$

We perform the Legendre transformation:

$$\Gamma_k[M] + W_k[B] = \int BM - \frac{1}{2} \int_{\rho} R_k(\rho) M_{\rho} M_{-\rho}$$

- If k = 0 all fluctuations are integrated out, we see that: $W_k \to W$; $Z_k \to Z$ and so we find: $\Gamma_{k-0}[M] = \Gamma[M]$
- If $k = \Lambda$ all fluctuations are frozen, we see that: $\Gamma_{k=\Lambda}[M] = H[\phi = M]$
- When $0 < k < \Lambda$ the rapid modes must be almost uneffected by the Cutoff function: $R_k(|p| > k) \simeq 0$ The slow modes have a mass that allmost decouples from the long distance physics.

The Wetterich Equation

With the effective action one can build up a RG Equation called the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int\limits_{\rho} \partial_k R_k(\rho) (\Gamma_k^{(2)}[M] + R_k)_{\rho,-\rho}^{-1}$$

With:
$$\Gamma_k^{(2)}[M] = \frac{\delta^2 \Gamma_k}{\delta M_p \delta M_{-p}}$$

Approximations and Truncations

Expansion of the field:

$$H = H_{kin} + \lambda_4 \int\limits_{
ho} (\phi)^4 + \lambda_6 \int\limits_{
ho} (\phi)^6 + \lambda_8 \int\limits_{
ho} (\phi)^8$$

Expansion of the derivatives of the field:

$$H[\phi] = \int d^dx \{V(\phi) + \frac{1}{2}Z(\phi)(\partial_\mu\phi)^2 + O(\partial^4)\}$$

One special case of the derivative expansion is the Local Potential Approximation (LPA):

$$H[\phi] = \int d^dx (rac{z}{2}(\partial_\mu\phi)^2 + V(\phi))$$

Fixed Points and Renormalisation Group Flows

The RG flow takes place in the space of coupling constants K. We consider a second order phase transition: $\bar{\xi} = \infty \to \bar{\xi}' = \infty$. T(.; p) should be the function that maps $K = K^{(0)}$ onto $K^{(1)}$ after a RG transformation: $K^{(n+1)} = T(K^{(n)})$

We define the critical surface: Set of points ${\pmb K}$ in the coupling constant space for which $\bar\xi=\infty$

We define a fixed point in the space of coupling constants as a place K^* where we find: $T(K^*,p) = K^*$

If a system $\mathbf{K}^{(0)}$ has $\bar{\xi} < \infty$ it moves away from the critial surface under RG transformations $(\bar{\xi}' = \bar{\xi}/b)$.

We now consider an infinitesimal RG transformation:

$$\boldsymbol{K}_{b(1+\epsilon)} - \boldsymbol{K}_b = \boldsymbol{T}(\boldsymbol{K}_b, 1+\epsilon) - \boldsymbol{T}(\boldsymbol{K}_b, 1)$$

We find the evolution of the couplings of the model with the scales: $b\frac{\partial K_b}{\partial b} = \frac{\partial T}{\partial b}|_{K_b,1} = \beta(K_b)$

We thus obtain in vincinity to the FP K_* :

$$eta(\mathbf{K}_b) - eta(\mathbf{K}^*) = \frac{deta}{d\mathbf{K}_b}|_{\mathbf{K}^*}\delta\mathbf{K}_b + O(\delta\mathbf{K}_b^2)$$

with:
$$\delta \mathbf{K} = \mathbf{K}_b - \mathbf{K}^*$$
 and $M_{ij} = \frac{d\beta_i}{dK_{b,j}}|_{\mathbf{K}}$

We suppose that the set of Eigenvectors is a complete basis:

$$M\mathbf{e}_{i} = \lambda_{i}\mathbf{e}_{i}$$
 and $\delta \mathbf{K}_{b} = \sum_{i} v_{i}(b)\mathbf{e}_{i}$

One now obtains: $b \frac{dv_i(b)}{db} = \lambda_i v_i(b) \rightarrow v_i(b) = v_i(1)b^{\lambda_i}$ We define:

- λ_i > 0: v_i is a relevant coupling and e_i is a relevant direction and goes away from K*
- λ_i < 0: v_i is a **irrelevant** coupling and e_i is a **irrelevant** direction and approaches K*
- $\lambda_i = 0$: v_i is a **marginal** coupling and \mathbf{e}_i is a **marginal** direction

With the Local Potential Approximation the following fixed points are found:

- $d \ge 4$: There is only the trivial Gausian fixed point in the origin.
- 3 ≤ d < 4: There is the trivial Gausian fixed point and the so called Wilson Fisher fixed point.
- A new nontrivial fixed point emanates from the origin below each dimensional threshold: $d_k = 2k/(k-1)$ and $k = 2,3,4,...\infty$

The exact Renormalisation Group and Turbulence

The hydrodynamic flow is described by the Navier Stokes equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \nabla) \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u}$$

Normaly one assumes that the fluid is incompressible: $\nabla \mathbf{u} = 0$ You can describe the degree of turbulence by the so called Reynolds number: $R = \frac{LV}{\nu}$

If you want to describe the turbulence you have three problems:

- Nonlinear partial differential equation
- Nonlocal
- High number of degrees of freedom

Kolmogorov creates the K41 Theory to describe the Turbulence. He took the structure $S_p(x)$ function as macroskopic measurable quantity:

$$S_{\rho}(\mathbf{x}) := \langle [(\mathbf{u}(\mathbf{r} + \mathbf{x}_0 \mathbf{I}_0) - \mathbf{u}(\mathbf{r})) * \mathbf{I}_0]^{\rho} \rangle$$

Kolmogorov postulated that you can find a nonvanishing energy dissipation (ϵ) at microscopic lenght scales. Now you have three relevant lenght scales in turulence:

- The macroscopic lenght scale L
- The intermediate lenght scale x
- The microskopic lenght scale $\eta = (\frac{\nu^3}{a})^{\frac{1}{4}}$

The structure function of the intermediate scale should be independent of makroscopic and of the microskopic lenght scale. It should be given by: $S_p(x) = C_p \epsilon^{\frac{\rho}{3}} x^{\frac{\rho}{3}}$

Summary

- Kadanoff Scaling
- Achitecture of the Renormalisation Group Equations
- Important examples of Renormalisation Group Equations:
 - The Wilson R.G.E.
 - The Polchinski R.G.E.
 - The R.G.E. of Wegner and Houghton
 - The Wetterich R.G.E.
- Approximations and Truncations
- Fixed Points and Renormalisation Group Flows
- The Exact Renormalisation Group and Turbulence

