Parton distribution functions for heavy ion collisions @ LHC

KAROL KOVAŘÍK

INSTITUT FÜR THEORETISCHE PHYSIK, KIT

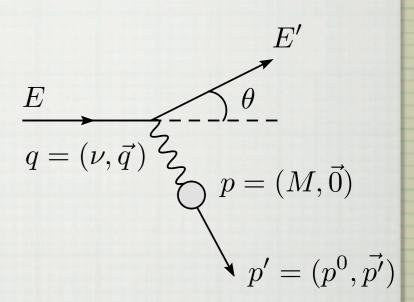
Outline

- 1. Introduction to PDFs
- 2. Motivations & review of available nPDFs
- 3. Details of nuclear CTEQ analysis
- 4. Future experiments and nPDF outlook

1. Introduction to PDFs

- Scattering THE tool to study inner structure of atoms, nuclei & proton
- Parton distribution functions & the inner structure of the proton
 - direct descendants of Rutherford's experiments
 - Rutherford's scattering
 spin-0 non-relativistic projectile with very heavy target (no recoil)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Ruth.}} = \frac{(\alpha Z)^2}{4E^2 \sin^4 \frac{\theta}{2}}.$$



E.Rutherford - nobel prize in chemistry - 1908

Mott's scattering spin-0 relativistic projectile with recoil of the target

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{(\alpha Z)^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \cos^2 \frac{\theta}{2}$$

Kinematics of elastic scattering

- Scattering THE tool to study inner structure of atoms, nuclei & proton
- Parton distribution functions & the inner structure of the proton
 - direct descendants of Rutherford's experiments
 - Scattering of electrons on muons spin-1/2 relativistic projectile scattering on muons

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \left[\cos^2 \frac{\theta}{2} - \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2}\right]$$

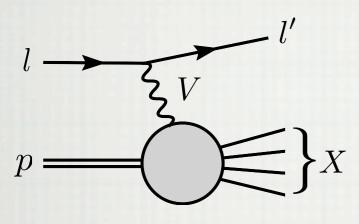
Rosenbluth's scattering

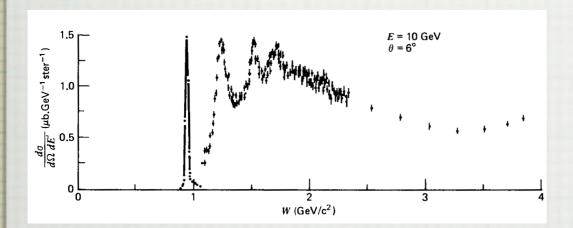
spin-1/2 relativistic projectile scattering on non-point like target with spin-1/2 (proton)

Kinematics of elastic scattering

 $\frac{E}{q=(\nu,\vec{q})} = (M,\vec{0})$ R.Hofstadter – nobel prize – 1961 $p'=(p^0,\vec{p'})$

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\alpha^2}{4E^2\sin^4\frac{\theta}{2}} \frac{E'}{E} \left[\left(F_1(q)^2 - \frac{\kappa^2q^2}{4M^2}F_2(q)^2\right)\cos^2\frac{\theta}{2} - \frac{q^2}{2M^2}(F_1(q) + \kappa F_2(q))^2\sin^2\frac{\theta}{2} \right]$$
electric form-factor magnetic form-factor




Deep Inelastic Scattering

R. Taylor, H. Kendall, J. Friedman - nobel prize - 1990

$$l(k) + p(p) \to l'(k') + X$$

Kinematic variables

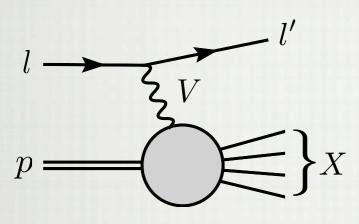
$$q = k - k'$$
 $Q^2 = -q^2$
 $x = \frac{Q^2}{2p \cdot q}$
 $x \in (0, 1)$

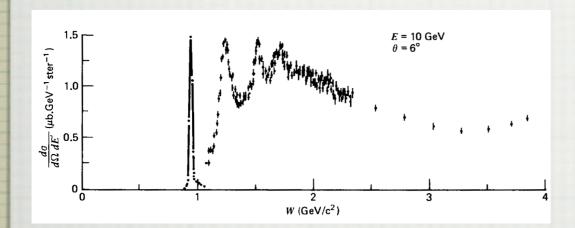
Distinguishing between elastic & inelastic scattering

$$W^2 = (p_1' + p_2' + \ldots + p_n')^2$$

- if $W^2=m_p^2$ elastic scattering
- if $W^2 \gg m_p^2$ inelastic scattering

DIS cross-section & structure functions


$$\frac{d\sigma}{dE'd\Omega} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2F_1(x, Q^2)}{M} \sin^2 \frac{\theta}{2} + \frac{F_2(x, Q^2)}{E - E'} \cos^2 \frac{\theta}{2} \right)$$


Deep Inelastic Scattering

R. Taylor, H. Kendall, J. Friedman - nobel prize - 1990

$$l(k) + p(p) \to l'(k') + X$$

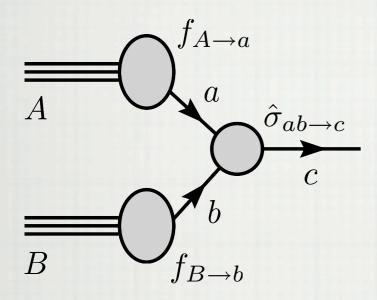
Kinematic variables

$$q = k - k'$$
 $Q^2 = -q^2$
 $x = \frac{Q^2}{2p \cdot q}$
 $x \in (0, 1)$

Distinguishing between elastic & inelastic scattering

$$W^2 = (p_1' + p_2' + \ldots + p_n')^2$$

- if $W^2 = m_p^2$ elastic scattering
- if $W^2 \gg m_p^2$ inelastic scattering


Assuming elastic scattering on partons in the proton (in LO)

$$F_2(x, \aleph^2) = \sum_i e_i^2 \int \mathrm{d}\xi \, \xi \, f_i(\xi) \, \delta \left(\xi - \frac{Q^2}{2p.q} \right) \qquad \text{mom. fraction } \xi = x \quad \text{kinematic variable}$$

parton distribution function

Factorization & PDFs

$$\sigma = \int dx_1 dx_2 \ f_{A \to a}(x_1, Q^2) f_{B \to b}(x_2, Q^2) \ \hat{\sigma}_{ab \to c}(x_1 x_2 s)$$
 from experiment from pQCD

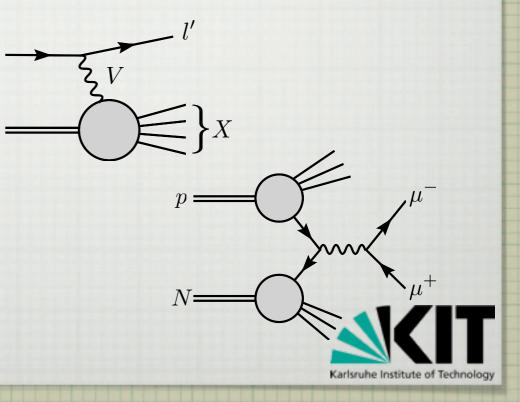
Parton distribution functions (PDFs)

$$f_{A\to a}(x,Q^2)$$

- universal, non-perturbative objects
- describe the structure of hadrons
 in terms of partons quarks & gluons
- Q-dependance governed by the DGLAP evolution equations

$$\frac{\mathrm{d}f_i(x,Q^2)}{\mathrm{d}\ln Q^2} = \frac{\alpha_S(Q^2)}{2\pi} \int_x^1 \frac{\mathrm{d}y}{y} P_{ij}(y) f_j(x/y,Q^2)$$

x-dependance determined from a fit to the data


CTEQ framework to fit PDFs from experimental data

CTEQ6M hep-ph/0201195

- $^{\rm o}$ the input scale set to $\,Q_0=1.3\,{
 m GeV}$
- parameterisation of the PDFs in x

$$x f_k(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} e^{c_3 x} (1 + e^{c_4} x)^{c_5} \qquad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}$$
$$\bar{d}(x, Q_0) / \bar{u}(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} + (1 + c_3 x) (1 - x)^{c_4}$$

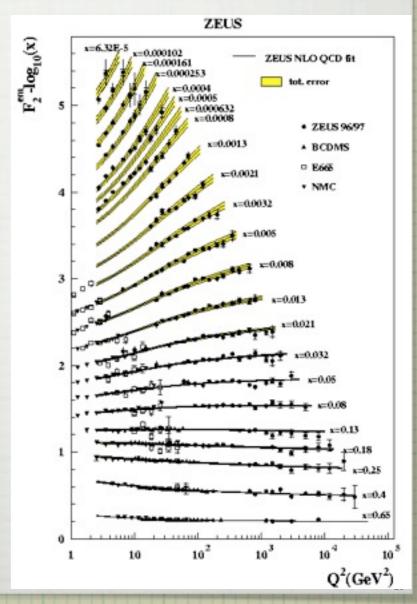
- make sure # of free parameters not too high CTEQ approx. 20 free params
- carefully choose data sets & kinematic cuts to constrain free parameters
- \bullet perform χ^2 fit to data
- Which data sets are included?
 - \bullet Deep Inelastic Scattering $(l^{\pm}p, l^{-}d, \nu N, \bar{\nu}N)$
 - Neutrino DIS di-muon production
 - ullet Drell-Yan & vector boson production (W^\pm,Z^0,γ)
 - hadronic jet data

- Some details of PDF determination
 - which data constrain what distribution?

charged DIS:
$$F_2(x,\mu^2) = x \sum_i e_q^2 \left[q_i(x,\mu^2) + \bar{q}_i(x,\mu^2) \right]$$

neutrino DIS:
$$F_2(x,\mu^2)=x\sum_i\left[q_i(x,\mu^2)+\bar{q}_i(x,\mu^2)\right]$$

$$xF_3(x,\mu^2)=x\sum_i\left[q_i(x,\mu^2)-\bar{q}_i(x,\mu^2)\right]$$

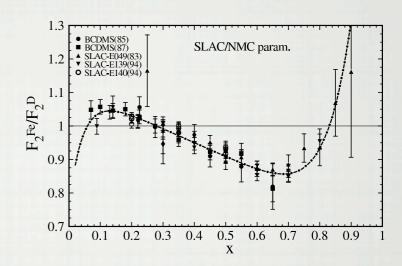

DIS scaling violations & jet data - gluon distribution

- breaking of Bjorken scaling at small x driven by gluon PDF

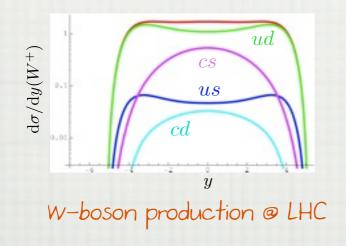
$$\mu^{2} \frac{dF_{2}}{d\mu^{2}} = \frac{\alpha_{S}}{2\pi} \sum_{i} e_{i}^{2} \int_{x}^{1} \frac{dy}{y} P_{qg}(y) f_{g}(x/y, \mu^{2})$$

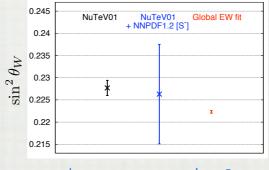
- high x behaviour constrained by jet data

quark & anti-quark distributions



2. Nuclear PDFs

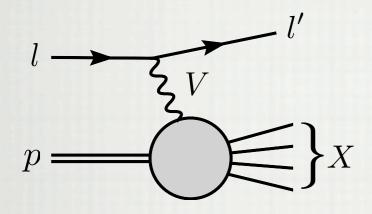

nPDF motivation


- What are nuclear parton density functions (nPDF)?
 - parton densities for partons in bound proton & neutron
- Where are nuclear parton density functions useful?

I. Strange quark content of the proton

(anti-)strange PDF from (anti-)neutrino DIS with heavy nuclei - nuclear effects important

weak mixing angle from NuTeV experiment


2. Heavy ion collisions @ RHIC, LHC

lead & gold heavy nuclei - nuclear effects in gluon PDF substantial

nPDF motivation

Deep Inelastic Scattering on nuclei

$$l(k) + N(p_N) \rightarrow l'(k') + X$$

 Distinguishing between elastic & inelastic scattering (assuming interaction only with one nucleon)

$$W^2 = (p_1' + p_2' + \dots + p_n')^2$$

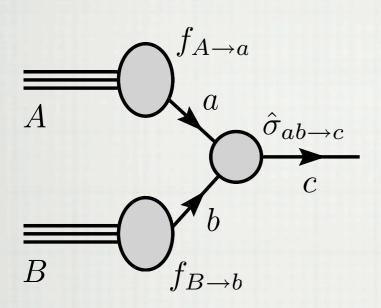
- if $W^2=m_p^2$ elastic scattering
- if $W^2\gg m_p^2$ inelastic scattering

Kinematic variables of the nucleus

$$q = k - k'$$
 $Q^2 = -q^2$
 $x_N = \frac{Q^2}{2p_N \cdot q}$
 $x_N \in (0, 1)$

New kinematic variables for the bound protons

$$p_A = \frac{p_N}{A}$$
 average momentum of a nucleon


$$x_A = \frac{Q^2}{2p_A.q} = A x_N \qquad x_A \in (0, A)$$

momentum fraction of a single nucleon

nPDF motivation

Factorization & PDFs

$$\sigma = \int dx_1 dx_2 \ f_{A \to a}(x_1, Q^2) f_{B \to b}(x_2, Q^2) \ \hat{\sigma}_{ab \to c}(x_1 x_2 s)$$
 from experiment from pQCD

- Nuclear parton distribution functions (nPDFs)
 - distributions of partons bound inside protons & neutrons in nuclei
 - simple assumption that nuclear modifications of proton PDF depends on A - # of nucleons
- Parton distribution functions (PDFs) $f_{A\to a}(x,Q^2)$
 - universal, non-perturbative objects
 - describe the structure of hadrons(in terms of partons quarks & gluons)
 - obey DGLAP evolution equations

- Review of existing global analyses of nuclear PDF
 - 1. Multiplicative nuclear correction factor

$$f_i^A(x_N,Q_0^2) = R_i(x_N,Q_0,A,Z) f_i(x_N,Q_0^2)$$
 bound parton density free parton density

Hirai, Kumano, Nagai [PRC76(2007)065207] arXiv: 0709.0338 Eskola, Paukkunen, Salgado [JHEP0904(2009)065] arXiv: 0902.4154 de Florian, Sassot, Stratmann, Zurita [PRD85(2012)074028]arXiv: 1112.6324

2. Native nuclear PDF

$$f_i^A(x_N,Q_0^2)=f_i(x_N,A,Q_0^2) \qquad \qquad f_i(x_N,Q_0^2)=f_i(x_N,A=1,Q_0^2)$$
 bound parton density
$$\qquad \qquad \text{free parton density}$$

nCTEQ [PRD80(2009)094004] arXiv: 0907.2357

Review of existing global analyses of nuclear PDF

HIRAI, KUMANO, NAGAI'07 [PRC76(2007)065207] LO, NLO, ERROR PDFS

uses multiplicative factor


$$f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$$

where proton PDF in MRST 1998 and factor

$$R_i(x, A, Z) = 1 + \left(1 - \frac{1}{A^{\alpha}}\right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{\beta_i}}$$

- neglects region x> I
- o includes all current DIS & DY data set (same as our analysis
- discussed later)
- use Hessian method to produce error PDFs

$$\chi^2$$
/dof = 1.2

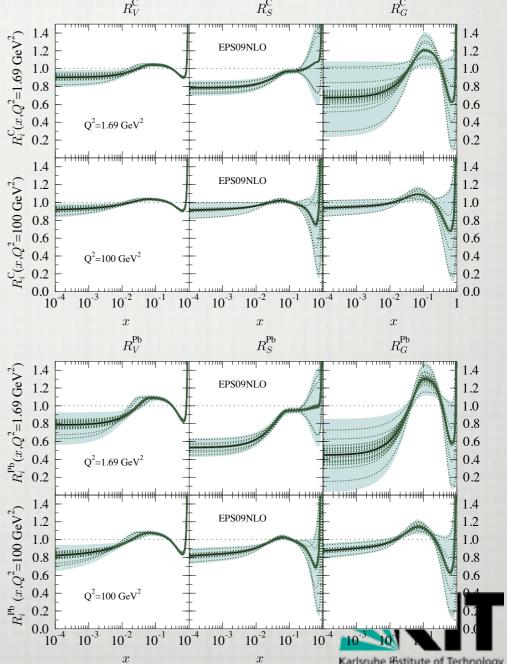
Review of existing global analyses of nuclear PDF

ESKOLA, PAUKKUNEN, SALGADO'09 [JHEP0904(2009)065]

 $\chi^{2}/dof = 0.8$

LO, NLO, ERROR PDFS

uses multiplicative factor


$$f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$$

where proton PDF in CTEQ6.1M and factor is a complicated piecewise defined function

$$R_i(x, A, Z) = \begin{cases} a_0 + (a_1 + a_2 x)(e^{-x} - e^{-x_a}) & x \le x_a \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & x_a \le x \le x_e \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & x_e \le x \le 1 \end{cases}$$

with A-dependent parameters

- neglects region x> l
- $^{\rm o}$ includes all current DIS & DY data set & $\pi^0\,{\rm RHIC}$ data to constrain gluon
- use Hessian method to produce error PDFs

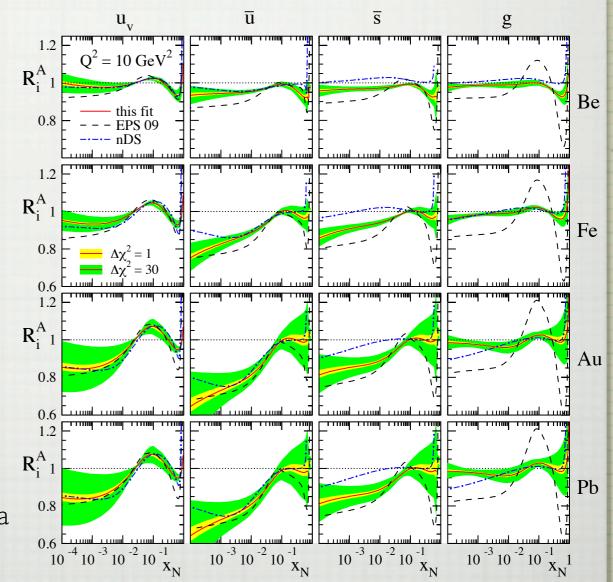
Review of existing global analyses of nuclear PDF

DE FLORIAN, SASSOT, STRATMANN, ZURITA [PRD85(2012)074028]

LO, NLO, ERROR PDFS

uses multiplicative factor

$$f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$$


where proton PDF in MSTW08 and factor is a complicated function different for each flavour

$$R_v^A(x, Q_0^2) = \epsilon_1 x^{\alpha_v} (1 - x)^{\beta_1} (1 + \epsilon_2 (1 - x)^{\beta_2}) \times (1 + a_v (1 - x)^{\beta_3})$$

$$R_s^A(x, Q_0^2) = R_v^A(x, Q_0^2) \frac{\epsilon_s}{\epsilon_1} \frac{1 + a_s x^{\alpha_s}}{a_s + 1}$$

$$R_g^A(x, Q_0^2) = R_v^A(x, Q_0^2) \frac{\epsilon_g}{\epsilon_1} \frac{1 + a_g x^{\alpha_g}}{a_g + 1}$$

- $^{\rm \bullet}$ includes all current DIS & DY data set & $\pi^0\,{\rm RHIC}$ data and $F_2^{\nu A}$ from neutrino data
- use Hessian method to produce error PDFs

- CTEQ framework for nuclear PDF based on CTEQ6M proton fit
 - functional form for bound protons same as for free proton PDF (restrict x to 0<x<1)</p>

$$x f_k(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} e^{c_3 x} (1 + e^{c_4} x)^{c_5}$$

$$\bar{d}(x, Q_0) / \bar{u}(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} + (1 + c_3 x) (1 - x)^{c_4}$$

$$k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}$$

coefficients with A-dependance (reduces to proton for A=I)

$$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} (1 - A^{-c_{k,2}}), \quad k = \{1, \dots, 5\}$$

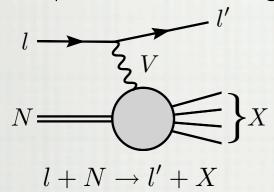
- ullet proton coefficients $c_{k,0}$ fixed to special CTEQ6M fit without much of nuclear data
- PDF for a nucleus with A-nucleons out of which Z-protons

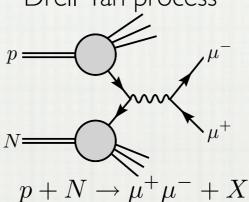
$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

Input scale and other input parameters as in CTEQ6M proton analysis

$$Q_0 = m_c = 1.3 \text{GeV}$$
 $m_b = 4.5 \text{ GeV}$ $\alpha_s(m_Z) = 0.118$

Kinematic cuts on data


$$Q>2\,\mathrm{GeV}\qquad W>3.5\,\mathrm{GeV}$$


Experiments included in the analysis

Charged lepton

Deep Inelastic Scattering

Drell-Yan process

CERN BCDMS & EMC & NMC

N = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)

FNAL E-665

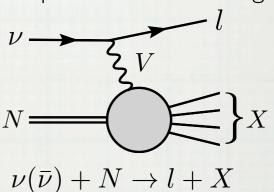
DESY Hermes

N = (D, C, Ca, Pb, Xe) N = (D, He, N, Kr)

SLAC E-139 & E-049

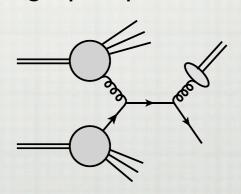
N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)

FNAL E-772 & E-886


N = (D, C, Ca, Fe, W)

1233 data points (708 after cuts)

NOT (YET) INCLUDED


Neutrino

Deep Inelastic Scattering

CHORUS CCFR & NuTeV N = PbN = Fe

Single pion production

RHIC - PHENIX & STAR N = Au

- NPDF fit properties:
 - we fit nuclear data with NLO QCD predictions
 - we include heavy quark effects (ACOT)
 - applied standard CTEQ kinematical cuts Q>2GeV & W>3.5GeV

- NPDF fit results:
 - 708 (1233) data points after (before) cuts
 - 17 free parameters 691 degrees of freedom
 - overall $\chi^2/\text{dof} = 0.87$
 - individually for different data subsets

for
$$F_2^A/F_2^D$$
 $\chi^2/{\rm pt}=0.80$ for $F_2^A/F_2^{A'}$ $\chi^2/{\rm pt}=0.51$ for $\sigma_{DY}^{pA}/\sigma_{DY}^{pA'}$ $\chi^2/{\rm pt}=0.85$

			Be/D	SLAC-E139	17
			C/D	EMC-88	9
W>3.5GeV				EMC-90	2
				SLAC-E139	7
				NMC-95,re	16
				NMC-95	15
$\mathbf{D}\mathbf{A}/\mathbf{D}\mathbf{A}'$				FNAL-E665-95	4
$\mathbf{F_2^A}/\mathbf{F_2^{A'}}:$		// 1	N/D	BCDMS-85	9
Observabl	1 1	# data		Hermes	92
Be/C	NMC-96	15	Al/D	SLAC-E049	18
Al/C	NMC-96	15		SLAC-E139	17
Ca/C	NMC-95	20	Ca/D	EMC-90	2
	NMC-96	15		SLAC-E139	7
Fe/C	NMC-95	15		NMC-95,re	15
Sn/C	NMC-96	144		FNAL-E665-95	4
Pb/C	NMC-96	15	Fe/D	BCDMS-85	6
C/Li	NMC-95	20		BCDMS-87	10
Ca/Li	NMC-95	20		SLAC-E049	14
Total:		279		SLAC-E139	23
				SLAC-E140	6
+== + + = :			Cu/D	EMC-88	9
${}^{\mathrm{pA}}_{\mathrm{DY}}/\sigma^{\mathrm{pA'}}_{\mathrm{DY}}$:				EMC-93(addendum)	10
bservable	Experiment	# data		EMC-93(chariot)	9
/D	FNAL-E772-90	9	Kr/D	Hermes	84
a/D	FNAL-E772-90	9	Ag/D	SLAC-E139	7
e/D	FNAL-E772-90	9	Sn/D	EMC-88	8
//D	FNAL-E772-90	9	Xe/D	FNAL-E665-92	4
e/Be	FNAL-E866-99	28	Au/D	SLAC-E139	18
//Be	FNAL-E866-99	28	Pb/D	FNAL-E665-95	4
otal:		92	Total:		862

 $\mathbf{F_2^A}/\mathbf{F_2^D}$: Observable

He/D

Li/D

Re/D

Experiment

SLAC-E139

NMC-95,re

SLAC-E139

NMC-97

Hermes

NMC-95

data

275

18

16

92

15

17

NPDF Hessian analysis:

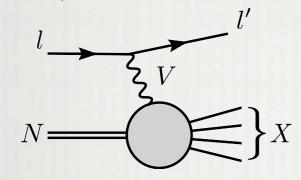
$$\chi^2 = \chi_0^2 + \frac{1}{2} H_{ij} (a_i - a_i^0) (a_j - a_j^0)$$
 $H_{ij} = \frac{\partial^2 \chi^2}{\partial a_i \partial a_j}$

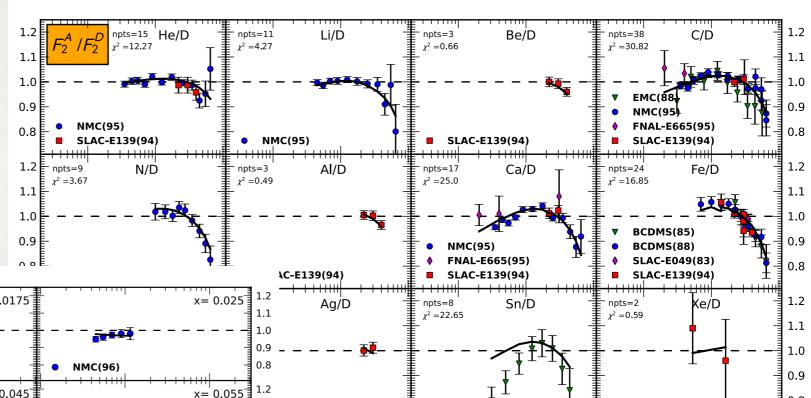
- 17 free parameters 7 gluon parameters
 - 8 valence parameters
 - 2 sea parameters
- Eigenvalues span 10 orders of magnitude

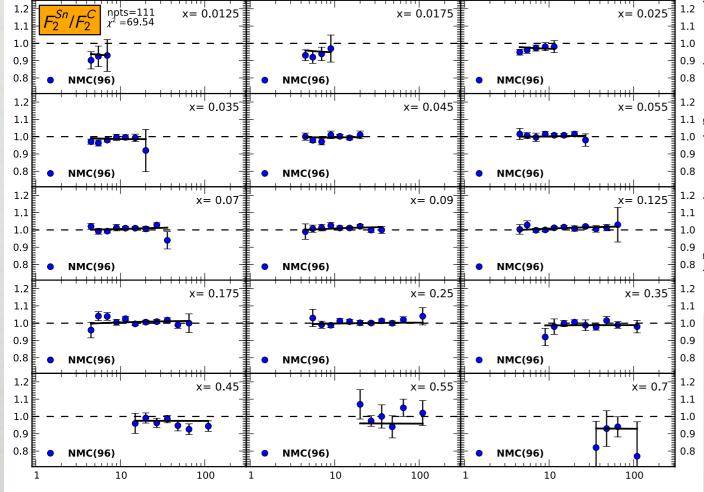
numerical precision required

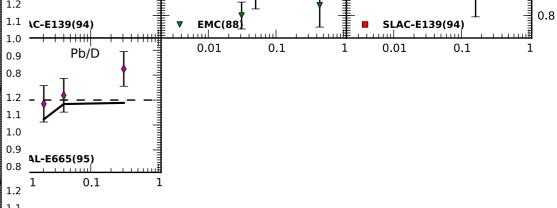
Use improved derivatives - less sensitive to noise

$$\frac{\partial f}{\partial x} = \frac{f_1 - f_{-1}}{2h}$$

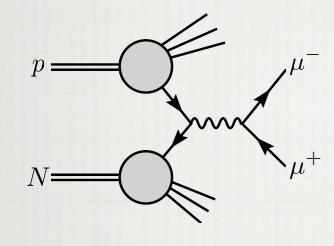

$$\frac{28h}{\text{noise robust Lanczos 3, 5-point derivative}}$$

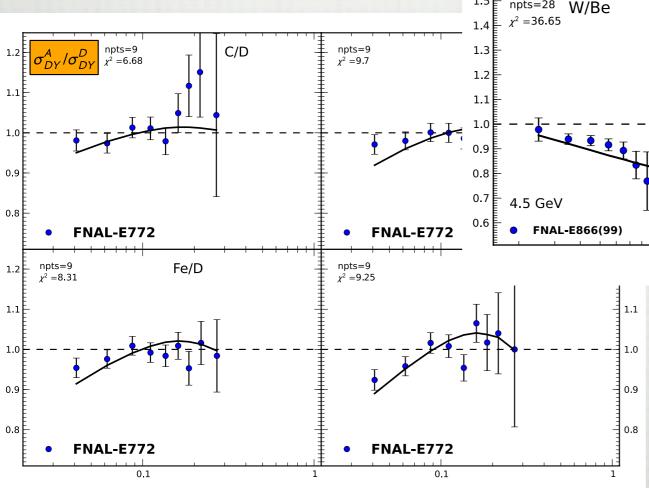

$$\frac{f_1 - f_{-1} + 2(f_2 - f_{-2}) + 3(f_3 - f_{-3})}{110h}$$

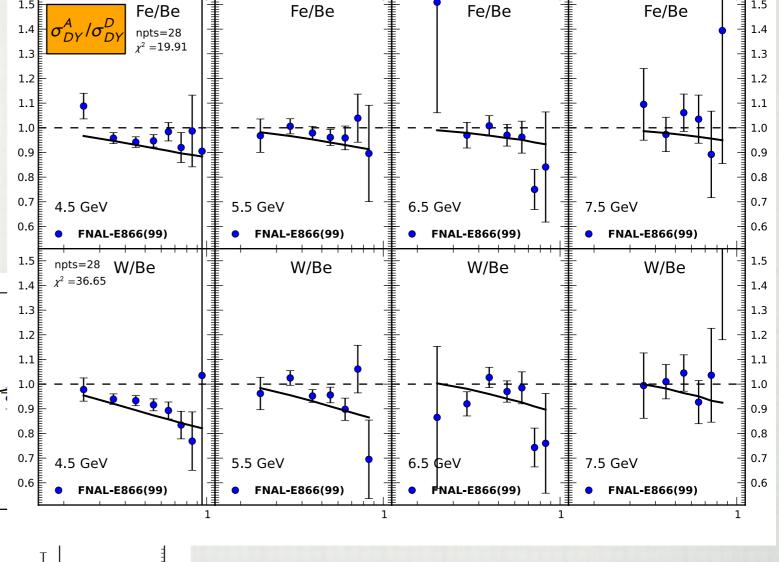

 ullet $\Delta\chi^2=35$ determined so that every nuclear target is described within 90% C.L.



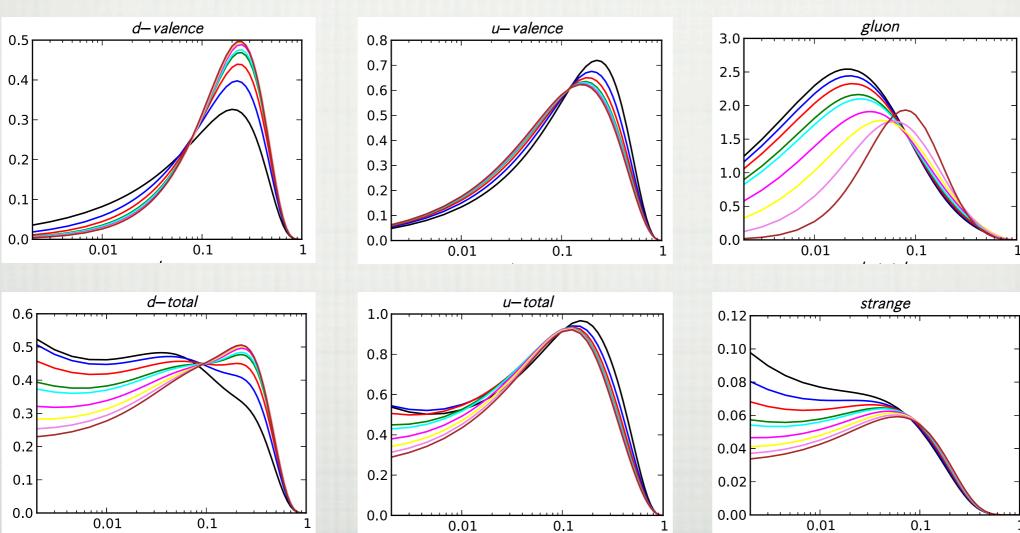
Deep Inelastic Scattering





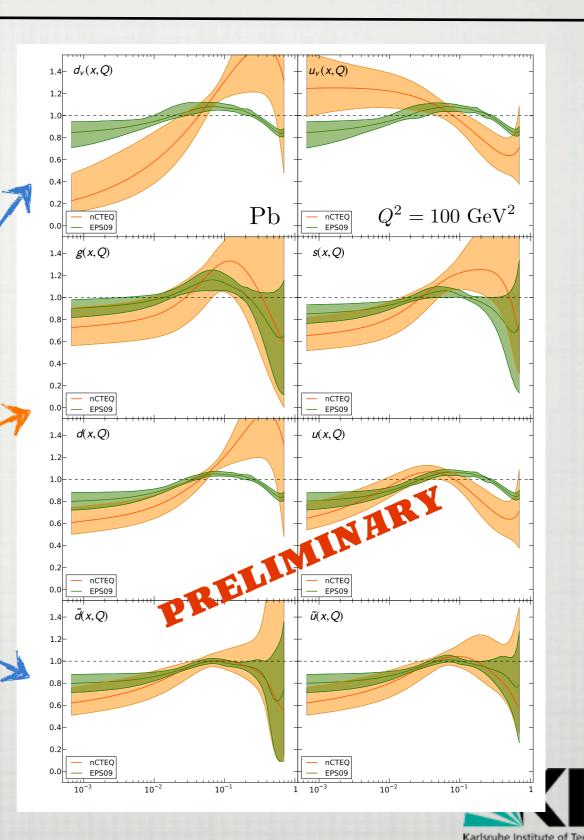


Drell-Yan process


Fe/Be

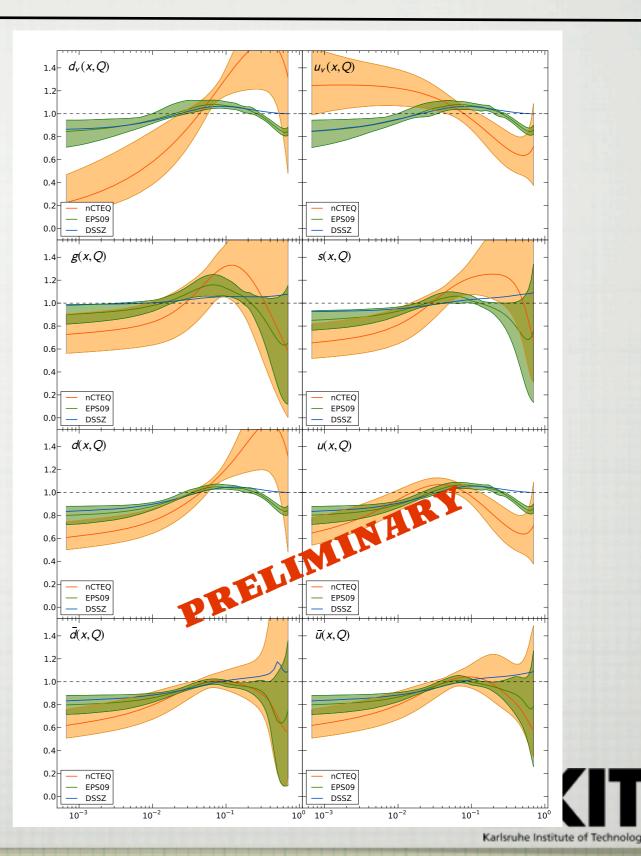
1.5

Parton density functions for bound partons as a function of x


black yellow brown $x\,f_k^A(x,Q) \ \ \text{for} \ \ A = (1,2,4,9,12,27,56,108,207)$ red purple

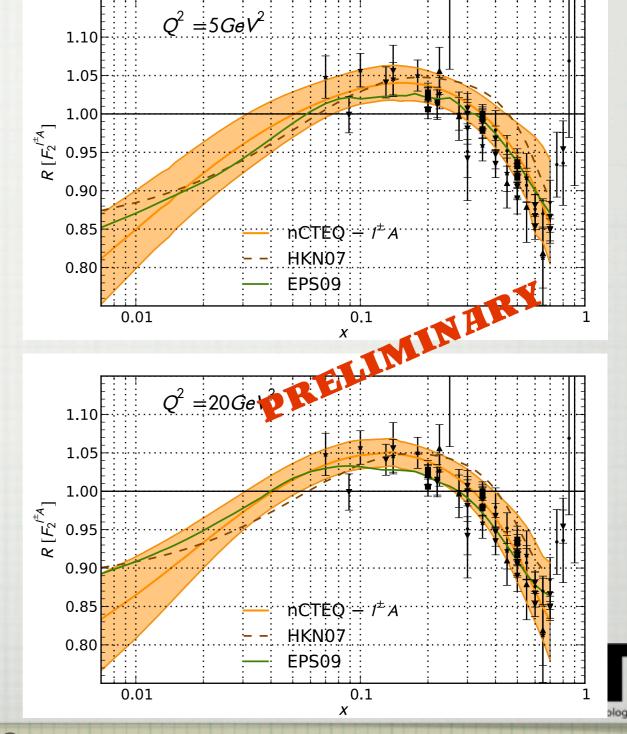
 nCTEQ nuclear correction factors with uncertainties

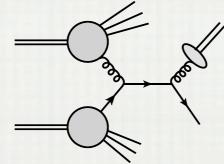
$$R_i(\text{Pb}) = \frac{f_i^{Pb}(x, Q)}{f_i^p(x, Q)}$$
 @ $Q^2 = 100 \text{ GeV}^2$


- different solution for d-valence & u-valence compared to EPS09
- larger uncertainty @ gluon nuclear correction factor & bigger low-x suppression
- sea quark nuclear correction factors similar to EPS09
- nuclear correction factors depend largely on underlying proton baseline

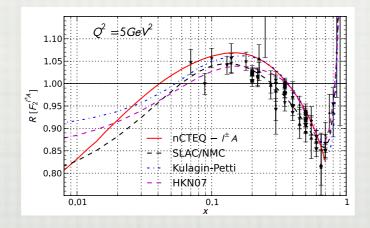
nCTEQ nuclear PDFs with uncertainties

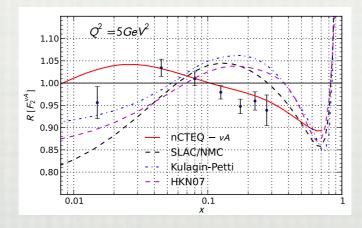
$$xf_i^{\text{Pb}}(x,Q)$$
 @ $Q^2 = 100 \text{ GeV}^2$


- nCTEQ d-valence & u-valence solution between HKN07 & EPS09
- nCTEQ nuclear uncertainties larger than previous nPDF analyses
- nPDFs not dependant on proton baseline better agreement between different nPDFs
- Results still very preliminary


nCTEQ structure function ratios with uncertainties

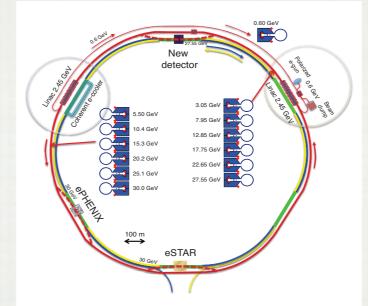
$$R = \frac{F_2^{Fe}(x,Q)}{F_2^D(x,Q)}$$

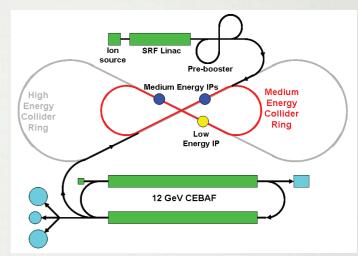

- Structure function ratios are fitted observables
- Despite different d-valence & u-valence solutions - ratio of structure functions remain very similar
- Good description of data & differences between nCTEQ and other nPDFs appear at low-x where there's no data

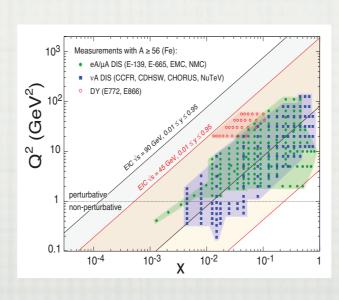


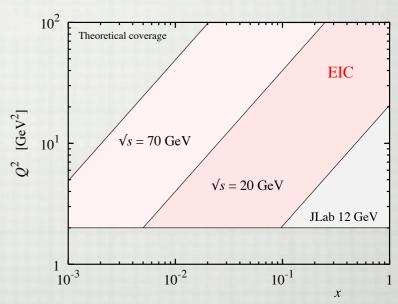
- Why is the nCTEQ analysis still PRELIMINARY?
 - On-going work inclusion of single inclusive pion production data from d-Au from RHIC

- more realistic estimate of the nuclear gluon correction factor
 @ intermediate & high-x
- In discussion inclusion of neutrino DIS data (inconsistencies within NuTeV data)

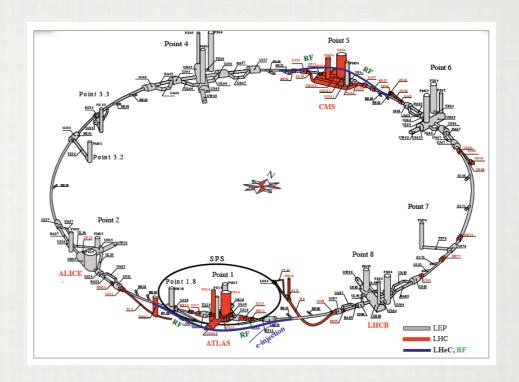


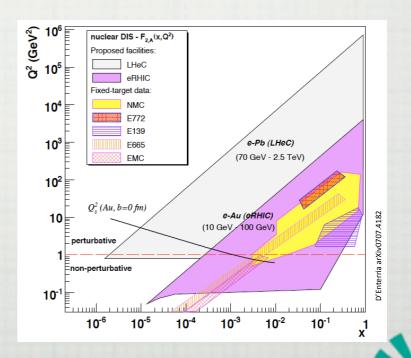

- better flavour separation for nuclear effects


Future experiments


- Electron-Ion-Collider (EIC)
 - 2 different proposals JLab & RHIC
 - multiple nuclear targets
 - reach to small-x

- nPDF requirements on EIC
 - coverage in x-Q² plane (small-x)
 - precision (e.g. for gluon PDF)
 - # nuclei





Future experiments

- LHeC
 - 2 different proposals ring-ring and linac-LHC
 - only Pb (possibly Ca) targets
 - reach to very small-x

- nPDF requirements on LHeC
 - coverage in x-Q² plane (small-x)
 - precision (e.g. for gluon PDF)
 - # nuclei

Conclusions & Outlook

- nCTEQ analysis still preliminary RHIC data being included & analysed at the moment
- nCTEQ has larger uncertainties & larger nuclear suppression for gluon @ low-x
- Some important open questions remain (all can be solved by having more data)
 - uncertainty in nuclear gluon PDF (especially at small-x)
 - important contribution from LHC pA data
 - need HERA-like measurements for many nuclear targets covering also small-x (EIC & LHeC)
 - neutrino DIS on nuclei
 - at the moment NuTeV incompatible with the rest of charged lepton data
 - proton strange quark information from LHC vital
 - new(old) data would solve the problem NOMAD or NuSonG

THANKYOU