Probing new physics with flavour: the status in 2012

Ulrich Nierste

Karlsruhe Institute of Technology

Universität Münster Forschungsseminar Quantenfeldtheorie, June 2012

Contents

Basics $B-\overline{B}$ mixing The $|V_{ub}|$ puzzle New physics in Γ_{12}^q ? Conclusions

Basics

Flavour physics

studies transitions between fermions of different generations.

flavour = fermion species

$$\begin{pmatrix} \textbf{\textit{u}}_{L}, \textbf{\textit{u}}_{L}, \textbf{\textit{u}}_{L} \\ \textbf{\textit{d}}_{L}, \textbf{\textit{d}}_{L}, \textbf{\textit{d}}_{L} \end{pmatrix} \quad \begin{pmatrix} \textbf{\textit{c}}_{L}, \textbf{\textit{c}}_{L}, \textbf{\textit{c}}_{L} \\ \textbf{\textit{s}}_{L}, \textbf{\textit{s}}_{L}, \textbf{\textit{s}}_{L} \end{pmatrix} \quad \begin{pmatrix} \textbf{\textit{t}}_{L}, \textbf{\textit{t}}_{L}, \textbf{\textit{t}}_{L} \\ \textbf{\textit{b}}_{L}, \textbf{\textit{b}}_{L}, \textbf{\textit{b}}_{L} \end{pmatrix}$$

$$\begin{pmatrix} \textbf{\textit{u}}_{R}, \textbf{\textit{u}}_{R}, \textbf{\textit{u}}_{R} \\ \textbf{\textit{d}}_{R}, \textbf{\textit{d}}_{R}, \textbf{\textit{d}}_{R} \end{pmatrix} \quad \begin{pmatrix} \textbf{\textit{c}}_{R}, \textbf{\textit{c}}_{R}, \textbf{\textit{c}}_{R} \\ \textbf{\textit{s}}_{R}, \textbf{\textit{s}}_{R}, \textbf{\textit{s}}_{R} \end{pmatrix} \quad \begin{pmatrix} \textbf{\textit{t}}_{R}, \textbf{\textit{t}}_{R}, \textbf{\textit{t}}_{R} \\ \textbf{\textit{b}}_{R}, \textbf{\textit{b}}_{R}, \textbf{\textit{b}}_{R} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e,L} \\ \textbf{\textit{e}}_{L} \end{pmatrix} \qquad \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix} \qquad \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

$$\begin{pmatrix} \textbf{\textit{e}}_{R} \end{pmatrix} \quad \mu_{R} \qquad \tau_{R}$$

Elektroweak interaction

Gauge group: $SU(2) \times U(1)_Y$

doublets:
$$Q_L^j = \begin{pmatrix} u_L^j \\ d_L^j \end{pmatrix}$$
 und $L^j = \begin{pmatrix} v_L^j \\ \ell_L^j \end{pmatrix}$ $j = 1, 2, 3$ labels the generation.

Examples:
$$Q_L^3 = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$
, $L^1 = \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix}$

singlets: u_R^j , d_R^j and e_R^j .

Important: Only left-handed fields couple to the W boson.

Yukawa interaction

Higgs doublet
$$H = \begin{pmatrix} G^+ \\ v + \frac{h^0 + iG^0}{\sqrt{2}} \end{pmatrix}$$
 with $v = 174 \, \text{GeV}$.

Charge-conjugate doublet:
$$\widetilde{H} = \begin{pmatrix} V + \frac{h^0 - iG^0}{\sqrt{2}} \\ -G^- \end{pmatrix}$$

Yukawa interaction

Higgs doublet
$$H = \begin{pmatrix} G^+ \\ V + \frac{h^0 + iG^0}{\sqrt{2}} \end{pmatrix}$$
 with $V = 174 \, \text{GeV}$.

Charge-conjugate doublet:
$$\widetilde{H} = \begin{pmatrix} V + \frac{h^0 - iG^0}{\sqrt{2}} \\ -G^- \end{pmatrix}$$
Quark Yukawa lagrangian:

$$-L_{Y}^{q} = Y_{jk}^{d} \overline{Q}_{L}^{j} H d_{R}^{k} + Y_{jk}^{u} \overline{Q}_{L}^{j} \widetilde{H} u_{R}^{k} + \text{h.c.}$$

The Yukawa matrices Y^f are arbitrary complex 3×3 matrices.

With three unphysical rotations in flavour space achieve

$$\mathbf{Y}^{u} = \widehat{\mathbf{Y}}^{u} = \begin{pmatrix} y_{u} & 0 & 0 \\ 0 & y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix} \quad \text{and} \quad \mathbf{Y}^{d} = \mathbf{V}^{\dagger} \widehat{\mathbf{Y}}^{d}$$

$$\text{with} \quad \widehat{\mathbf{Y}}^{d} = \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}$$

$$\text{and } y_{i} \geq 0.$$

V is the Cabbibbo-Kobayashi-Maskawa (CKM) matrix.

With three unphysical rotations in flavour space achieve

$$\mathbf{Y}^u = \widehat{\mathbf{Y}}^u = egin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \qquad \text{and} \qquad \mathbf{Y}^d = \mathbf{V}^\dagger \widehat{\mathbf{Y}}^d$$

with
$$\widehat{Y}^d = \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}$$

and $y_i \geq 0$.

V is the Cabbibbo-Kobayashi-Maskawa (CKM) matrix. Rotating

$$d_L^j = V_{jk} d_L^{k\prime}$$

diagonalises Y^d and puts the Cabbibbo-Kobayashi-Maskawa (CKM) matrix V into the W boson vertices.

Flavour physics is governed by extremely small numbers:

$$Y^{d} = V^{\dagger} \widehat{Y}^{d} = \begin{pmatrix} 10^{-5} & -7 \cdot 10^{-5} & (12+6i) \cdot 10^{-5} \\ 4 \cdot 10^{-6} & 3 \cdot 10^{-4} & -6 \cdot 10^{-4} \\ (2+6i) \cdot 10^{-8} & 10^{-5} & 2 \cdot 10^{-2} \end{pmatrix}$$

evaluated at the energy scale m_t . Off-diagonal element with largest magnitude: $V_{ts}^* y_b = -6 \cdot 10^{-4}$.

Flavour puzzle of the Standard Model

Flavour physics is governed by extremely small numbers:

$$Y^{d} = V^{\dagger} \hat{Y}^{d} = \begin{pmatrix} 10^{-5} & -7 \cdot 10^{-5} & (12+6i) \cdot 10^{-5} \\ 4 \cdot 10^{-6} & 3 \cdot 10^{-4} & -6 \cdot 10^{-4} \\ (2+6i) \cdot 10^{-8} & 10^{-5} & 2 \cdot 10^{-2} \end{pmatrix}$$

evaluated at the energy scale m_t . Off-diagonal element with largest magnitude: $V_{ts}^* y_b = -6 \cdot 10^{-4}$.

Flavour puzzle of the Standard Model

Flavour-changing neutral current (FCNC) processes are further loop-suppressed. \Rightarrow El Dorado for new-physics searches.

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2254$:

$$egin{pmatrix} egin{pmatrix} m{V}_{ud} & m{V}_{us} & m{V}_{ub} \ m{V}_{cd} & m{V}_{cs} & m{V}_{cb} \ m{V}_{td} & m{V}_{ts} & m{V}_{tb} \end{pmatrix} \simeq egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + rac{\lambda^2}{2}\right) (\overline{
ho} - i\overline{\eta}) \ -\lambda - iA^2\lambda^5\overline{\eta} & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3 (1 - \overline{
ho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4\overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2254$:

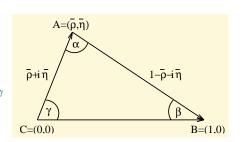
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2}\right) (\overline{\rho} - i\overline{\eta}) \\ -\lambda - iA^2\lambda^5\overline{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4\overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

Unitarity triangle:

Exact definition:

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \\
= \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$



Win-win situation

If ATLAS and CMS find particles not included in the SM: Flavour physics will explore their couplings to quarks.

Win-win situation

If ATLAS and CMS find particles not included in the SM:

Flavour physics will explore their couplings to quarks.

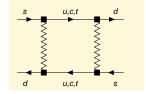
If ATLAS and CMS find no new particles (apart from the SM Higgs boson):

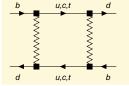
Flavour physics probes new interactions associated with particle masses exceeding 100 TeV.

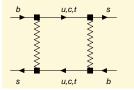
Flavour experiments

		advantages	disadvantages
LHCb	<i>b</i> , <i>c</i>	best statistics	no decays w.
			missing energy
Belle-II,	b , c , τ	good for photons,	less statistics
SuperB		missing energy,	than LHCb,
		coherent (B, \overline{B})	latecomers
BES-III	C , τ	coherent (D, \overline{D})	smaller $ au$ pro-
			duction rate
NA62	$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	best for K+	
	and other K		
KOTO	$K_{\!L} ightarrow \pi^0 u \overline{ u}$	best for K _L	
MEG	$\mu \rightarrow e\gamma$, eee	best for charged	
		LFV	
Project X	μ, K, ν		

Global fit to UT: overconstrain (p̄, η̄), probes FCNC processes K-K̄, B_d-B̄_d and B_s-B̄_s mixing.







- Global fit to UT: overconstrain (p̄, η̄), probes FCNC processes K-K, B_d-B̄_d and B_s-B̄_s mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \to J/\psi \phi$, $B_s \to J/\psi f_0$, and $(\overline{B}_s) \to X \ell \nu_\ell$.

- Global fit to UT: overconstrain (p̄, η̄), probes FCNC processes K-K̄, B_d-B̄_d and B_s-B̄_s mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \to J/\psi \phi$, $B_s \to J/\psi f_0$, and $\overline{B}_s \to X \ell \nu_\ell$.
- Penguin decays: $B \to X_s \gamma$, $B \to X_s \ell^+ \ell^-$, $B \to K \pi$, $B_d \to \phi K_S$, $B_s \to \mu^+ \mu^-$, $K \to \pi \nu \overline{\nu}$.

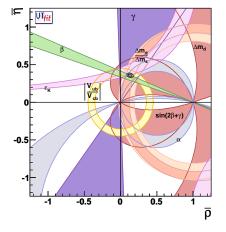
- Global fit to UT: overconstrain (p̄, η̄), probes FCNC processes K-K̄, B_d-B̄_d and B_s-B̄_s mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \to J/\psi \phi$ and $(\overline{B}_s) \to X \ell \nu_\ell$.
- Penguin decays: B → X_Sγ, B → X_Sℓ⁺ℓ⁻, B → Kπ,
 B_d → φK_S, B_S → μ⁺μ⁻, K → πνν̄.
- CKM-suppressed or helicity-suppressed tree-level decays:
 B⁺ → τ⁺ν, B → πℓν, B → Dτν, probe charged Higgses and right-handed W-couplings.

Global fit in the SM from CKMfitter:



Statistical method: Rfit, a Frequentist approach.

Global fit in the SM from UTfit:



Statistical method: Bayesian.

$B-\overline{B}$ mixing in the Standard Model

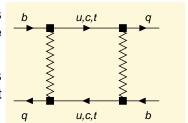
 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices M and Γ .

$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices M and Γ .

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal t.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal c, u.

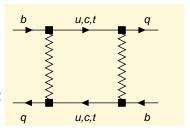


$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices M and Γ .

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal t.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal c, u.



3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^q \right|, \quad \left| \Gamma_{12}^q \right|, \quad \phi_q \equiv \arg \left(- \frac{M_{12}^q}{\Gamma_{12}^q} \right)$$

The two eigenstates found by diagonalising $M - i\Gamma/2$ differ in their masses and widths:

mass difference
$$\Delta m_q \simeq 2|M_{12}^q|,$$
 width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

The two eigenstates found by diagonalising $M - i\Gamma/2$ differ in their masses and widths:

mass difference
$$\Delta m_q \simeq 2|M_{12}^q|,$$
 width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

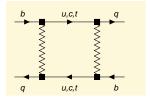
CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$a_{\rm fs}^q = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q$$

$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s:

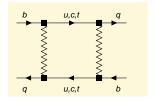
A meson identified ("tagged") as a B_q at time t=0 is described by $|B_q(t)\rangle$.



$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s:

A meson identified ("tagged") as a B_q at time t = 0 is described by $|B_q(t)\rangle$.



For t > 0:

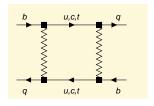
$$|B_q(t)\rangle = \langle B_q|B_q(t)\rangle|B_q\rangle + \langle \overline{B}_q|B_q(t)\rangle|\overline{B}_q\rangle + \ldots,$$

with "..." denoting the states into which $B_q(t)$ can decay.

$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s:

A meson identified ("tagged") as a B_q at time t = 0 is described by $|B_q(t)\rangle$.



For t > 0:

$$|B_q(t)\rangle = \langle B_q|B_q(t)\rangle|B_q\rangle + \langle \overline{B}_q|B_q(t)\rangle|\overline{B}_q\rangle + \ldots,$$

with "..." denoting the states into which $B_q(t)$ can decay.

Analogously: $|\overline{B}_q(t)\rangle$ is the ket of a meson tagged as a \overline{B}_q at time t=0.

Probabilities for B_q survival and $B_q - \overline{B}_q$ mixing:

$$|\langle B_q | B_q(t)
angle|^2 = |\langle \overline{B}_q | \overline{B}_q(t)
angle|^2 = rac{\mathrm{e}^{-\Gamma_q t}}{2} \left[\cosh rac{\Delta \Gamma_q \, t}{2} + \cos \left(\Delta m_q \, t
ight) \right] \ |\langle \overline{B}_q | B_q(t)
angle|^2 \simeq |\langle B_q | \overline{B}_q(t)
angle|^2 \simeq rac{\mathrm{e}^{-\Gamma_q t}}{2} \left[\cosh rac{\Delta \Gamma_q \, t}{2} - \cos \left(\Delta m_q \, t
ight) \right]$$

with
$$\Gamma_q \equiv \frac{\Gamma_L^q + \Gamma_H^q}{2}$$

Probabilities for B_{α} survival and $B_{\alpha} - \overline{B}_{\alpha}$ mixing:

$$|\langle B_q|B_q(t)
angle|^2 = |\langle \overline{B}_q|\overline{B}_q(t)
angle|^2 = rac{\mathrm{e}^{-\Gamma_q t}}{2} \left[\coshrac{\Delta\Gamma_q\,t}{2} + \cos\left(\Delta m_q\,t
ight)
ight] \ |\langle \overline{B}_q|B_q(t)
angle|^2 \simeq |\langle B_q|\overline{B}_q(t)
angle|^2 \simeq rac{\mathrm{e}^{-\Gamma_q t}}{2} \left[\coshrac{\Delta\Gamma_q\,t}{2} - \cos\left(\Delta m_q\,t
ight)
ight] \ \mathrm{with}\ \Gamma_q \equiv rac{\Gamma_L^q + \Gamma_H^q}{2}$$

The CP asymmetry in flavor-specific decays is measured by counting leptons. E.g.:

$$\frac{a_{\mathrm{fs}}^{\mathtt{S}}}{2} \simeq \frac{N({}^{(}\overline{B}_{\mathtt{S}}^{\,)} \to X\ell^{+}) - N({}^{(}\overline{B}_{\mathtt{S}}^{\,)} \to X\ell^{-})}{N({}^{(}\overline{B}_{\mathtt{S}}^{\,)} \to X\ell^{+}) + N({}^{(}\overline{B}_{\mathtt{S}}^{\,)} \to X\ell^{-})}$$

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_g^{SM} = -4.3^\circ \pm 1.4^\circ$, $\phi_s^{SM} = 0.2^\circ$.

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\mathrm{SM,q}} \cdot \Delta_q \,, \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_d^{\rm SM} = -4.3^\circ \pm 1.4^\circ, \qquad \phi_s^{\rm SM} = 0.2^\circ.$

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\mathrm{SM,q}} \cdot \Delta_q \,, \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q=1$. Use $\phi_s=\phi_s^{\rm SM}+\phi_s^{\Delta}\simeq\phi_s^{\Delta}$. The measurements of LHCb, CDF and DØ average to

$$\Delta m_s = (17.69 \pm 0.08) \,\mathrm{ps}^{-1},$$

implying with lattice WA $f_{B_s} \sqrt{B^{\overline{\rm MS}}} = (212 \pm 14)$ MeV:

$$|\Delta_{s}| = 1.03 \pm 0.14_{ ext{(th)}} \pm 0.01_{ ext{(exp)}}$$

New CP phases ϕ_d^{Δ} and ϕ_s^{Δ}

The mixing-induced CP asymmetry $A_{CP}^{mix}(B_d \to J/\psi K_S)$ determines

$$2eta + \phi_d^\Delta$$
 with $eta = rg\left(-rac{V_{td}^*V_{tb}}{V_{cd}^*V_{cb}}
ight)$.

Experimentally: $2\beta + \phi_d^{\Delta} = 21.1^{\circ} \pm 0.9^{\circ}$.

New CP phases ϕ_d^{Δ} and ϕ_s^{Δ}

The mixing-induced CP asymmetry $A_{CP}^{mix}(B_d \to J/\psi K_S)$ determines

$$2\beta + \phi_d^{\Delta}$$
 with $\beta = \arg\left(-rac{V_{td}^*V_{tb}}{V_{cd}^*V_{cb}}
ight)$.

Experimentally: $2\beta + \phi_d^{\Delta} = 21.1^{\circ} \pm 0.9^{\circ}$.

$$A_{\rm CP}^{
m mix}(B_{
m S} o J/\psi\phi)$$
 and $A_{\rm CP}^{
m mix}(B_{
m S} o J/\psi f_0)$ determine

$$2\beta_s - \phi_s^{\Delta}$$
 with $\beta_s = \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = 2.2^{\circ}$.

D0 measures the dimuon asymmetry for a mixture of B_d and B_s mesons with

$$a_{\rm fs} = (0.594 \pm 0.022) a_{\rm fs}^d + (0.406 \pm 0.022) a_{\rm fs}^s$$

Recall:
$$a_{\mathrm{fs}}^q = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q$$
.

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, "So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God."

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing with

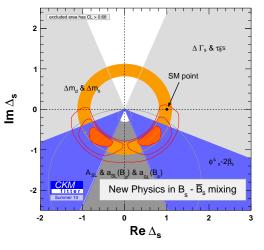
- A. Lenz and the CKMfitter Group (J. Charles,
- S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker,
- S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d :

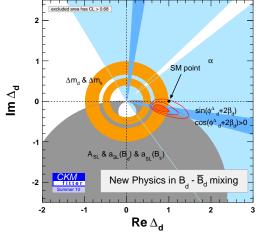
$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q,\mathrm{SM}}}, \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^{\Delta}}.$$

2010 result for $B_s - \overline{B}_s$ mixing:



SM point $\Delta_s = 1$ disfavoured by 2.7σ .

2010 result for $B_d - \overline{B}_d$ mixing:



SM point $\Delta_d = 1$ disfavoured by 2.7σ .

Main driver: $B^+ \rightarrow \tau^+ \nu_{\tau}$

CKM matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

fixed by measurements of
$$|V_{us}| = 0.2254 \pm 0.0013$$
, $|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$ and a global fit to $(\overline{\rho}, \overline{\eta})$

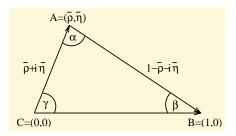
CKM matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

fixed by measurements of $|V_{us}| = 0.2254 \pm 0.0013$, $|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$ and a global fit to $(\overline{\rho}, \overline{\eta})$

Unitarity triangle:

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \\
= \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$



Three ways to measure $|V_{ub}|$:

- exclusive decay $B \to \pi \ell \nu$,
- inclusive decay $B \to X \ell \nu$ and
- leptonic decay $B^+ \to \tau^+ \nu_{\tau}$.

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \to \pi \ell \nu$,
- inclusive decay $B \to X \ell \nu$ and
- leptonic decay $B^+ \to \tau^+ \nu_{\tau}$.

Average of several BaBar and Belle measurements:

$$B^{\text{exp}}(B^+ \to \tau^+ \nu_{\tau}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Standard Model:

$$B(B^+ \to \tau^+ \nu_{\tau}) = 1.13 \cdot 10^{-4} \cdot \left(\frac{|V_{ub}|}{4 \cdot 10^{-3}}\right)^2 \left(\frac{f_B}{200 \text{ MeV}}\right)^2$$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$
 $|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$
 $|V_{ub,B\to\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$$|V_{ub,B\to\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{\text{f}_{\text{B}}}\right] \cdot 10^{-3}$$

= $\left[5.10 \pm 0.59\right] \cdot 10^{-3}$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$
 $|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$
 $|V_{ub,B \to \tau \nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$$|V_{ub,B\to\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{\text{f}_{\text{B}}}\right] \cdot 10^{-3}$$

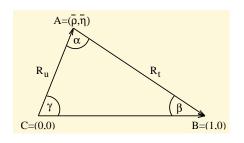
= $\left[5.10 \pm 0.59\right] \cdot 10^{-3}$

 \Rightarrow no puzzle with individual $|V_{ub}|$ determinations

Indirect determination:

find
$$|V_{ub}| \propto |V_{cb}|R_u$$

from
$$R_u = \frac{\sin \beta}{\sin \alpha}$$



With
$$\alpha=89^{\circ}^{+4.4^{\circ}}_{-4.2^{\circ}}$$
 and $\beta=21.15^{\circ}\pm0.89^{\circ}$ find

$$|V_{ub}|_{\text{ind}} = (3.41 \pm 0.15) \cdot 10^{-3}$$

Essential: β from $A_{CP}^{mix}(B_d \to J/\psi K_S)$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,ind}| = (3.41 \pm 0.15) \cdot 10^{-3}$$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{\mu b B \to \tau \nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,ind}| = (3.41 \pm 0.15) \cdot 10^{-3}$$

Alleviate the 2.9 σ tension between $|V_{ub,ind}|$ and $|V_{ub,B\to \tau\nu}|$ with new physics in

- $B^+ o au^+
 u_ au$ or
- $A_{\mathrm{CP}}^{\mathrm{mix}}(B_d \to J/\psi K_{\mathcal{S}})$. \leftarrow easier!

In Summer 2010 the combination of all flavour data was in excellent agreement with the hypothesis of new physics in M_{12}^d and M_{12}^s , while all other (essentially tree-level) quantities entering the global UT fit are SM-like.

Hypothesis	Summer 2010 p-value
$\Delta_d = 1$ (2D)	2.7 σ
$\Delta_{\text{S}}=\text{1 (2D)}$	2.7 σ
$\Delta_d = \Delta_s$ (2D)	2.1 σ
$\Delta_d = \Delta_s = 1$ (4D)	3.6 σ

The mixing-induced CP asymmetries in $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$ determine $\phi_s^{\Delta} - 2\beta_s$ with $2\beta_s = 2.2^{\circ}$.

CDF 2010,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -23^{\circ}_{-34^{\circ}}^{+23^{\circ}}$

DØ EPS 2011,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -30^{\circ}_{-21^{\circ}}^{+22^{\circ}}$ LHCb 12/2011, $J/\psi f_0$: $\phi_s^{\Delta} = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$

$$\phi_s = 10.8^{\circ} + 10.3^{\circ} + 3.4^{\circ}$$

LHCb 12/2011, $J/\psi\phi$: $\phi_s^{\Delta} = 10.8^{\circ} \pm 10.3^{\circ} \pm 3.4^{\circ}$

all at 68%CL

The mixing-induced CP asymmetries in $B_s \to J/\psi \phi$ and $B_s \to J/\psi f_0$ determine $\phi_s^\Delta - 2\beta_s$ with $2\beta_s = 2.2^\circ$.

CDF 2010,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -23^{\circ} \frac{+23^{\circ}}{-34^{\circ}}$

DØ EPS 2011,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -30^{\circ}_{-21^{\circ}}^{+22^{\circ}}$

LHCb 12/2011,
$$J/\psi f_0$$
: $\phi_s^{\Delta} = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$

LHCb 12/2011,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = 10.8^{\circ} \pm 10.3^{\circ} \pm 3.4^{\circ}$

all at 68%CL

LHCb LP 2011 average:
$$\phi_s^{\Delta} = 3.9^{\circ} \pm 9.2^{\circ} \pm 4.0^{\circ}$$

The mixing-induced CP asymmetries in $B_s \to J/\psi \phi$ and $B_s \to J/\psi f_0$ determine $\phi_s^\Delta - 2\beta_s$ with $2\beta_s = 2.2^\circ$.

CDF 2010,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -23^{\circ}_{-34^{\circ}}^{+23^{\circ}}$

DØ EPS 2011,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = -30^{\circ}_{-21^{\circ}}^{+22^{\circ}}$ LHCb 12/2011, $J/\psi f_0$: $\phi_s^{\Delta} = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$

LHCb 12/2011,
$$J/\psi I_0$$
: $\phi_s^2 = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$

LHCb 12/2011,
$$J/\psi\phi$$
: $\phi_s^{\Delta} = 10.8^{\circ} \pm 10.3^{\circ} \pm 3.4^{\circ}$

all at 68%CL

LHCb LP 2011 average:
$$\phi_s^{\Delta} = 3.9^{\circ} \pm 9.2^{\circ} \pm 4.0^{\circ}$$

My average:
$$\phi_s^{\Delta} = -1.8^{\circ} \pm 8.6^{\circ}$$

with CDF/DØ errors inflated by a factor of 1.25 as a guesstimate for correlations.

All measurements are in mutual agreement and consistent with the SM prediction $\phi_s^{\Delta} = 0$.

Spring 2012

ArXiv:1112.1726:

CDF 2010,
$$J/\psi\phi$$
: $-57.4^{\circ} \le \phi_s^{\Delta} \le -0.1^{\circ}$

LHCb has analysed 1 fb⁻¹ of data (was 0.37 fb⁻¹ in 2011 paper), extended $B_s \to J/\psi \pi^+ \pi^-$ analysis to much wider window around $M_{\pi\pi} = M_{f_0}$.

LHCb Moriond 2012, average: $\phi_s^{\Delta} = 2.1^{\circ} \pm 4.8^{\circ} \pm 1.6^{\circ}$

Spring 2012

ArXiv:1112.1726:

CDF 2010,
$$J/\psi\phi$$
: $-57.4^{\circ} \le \phi_s^{\Delta} \le -0.1^{\circ}$

LHCb has analysed 1 fb⁻¹ of data (was 0.37 fb⁻¹ in 2011 paper), extended $B_s \to J/\psi \pi^+ \pi^-$ analysis to much wider window around $M_{\pi\pi} = M_{f_0}$.

LHCb Moriond 2012, average:
$$\phi_s^{\Delta} = 2.1^{\circ} \pm 4.8^{\circ} \pm 1.6^{\circ}$$

My average of CDF, DØ and LHCb data:

$$\phi_s^{\Delta} = -0.3^{\circ} \pm 4.7^{\circ} \pm 1.6^{\circ}$$

But:

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

$$a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$$

for a mixture of B_d and B_s mesons with

$$a_{\rm fs} = (0.594 \pm 0.022) a_{\rm fs}^d + (0.406 \pm 0.022) a_{\rm fs}^s$$

The result is 3.9σ away from $a_{\rm fs}^{\rm SM} = (-0.24 \pm 0.03) \cdot 10^{-3}$.

A. Lenz, UN 2011

But:

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

$$a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$$

for a mixture of B_d and B_s mesons with

$$a_{\rm fs} = (0.594 \pm 0.022) a_{\rm fs}^d + (0.406 \pm 0.022) a_{\rm fs}^s$$

The result is 3.9σ away from $a_{\rm fs}^{\rm SM}=(-0.24\pm0.03)\cdot10^{-3}$. A. Lenz, UN 2011

 $a_{\rm fs}$ favours $\phi_{\rm S}^{\Delta}<0$ in agreement with the $A_{\rm CP}^{\rm mix}(B_{\rm S} o J/\psi\phi)$ measurements of CDF and DØ and $A_{\rm CP}^{\rm mix}(B_{\rm S} o J/\psi f_0)$ from LHCb... but poor agreement with $A_{\rm CP}^{\rm mix}(B_{\rm S} o J/\psi\phi)$ from LHCb.

Theory prediction with new physics:

$$a_{\rm fs} = (3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_d^{\Delta}}{|\Delta_d|} + (2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_s^{\Delta}}{|\Delta_s|}$$

A. Lenz, UN 2011

⇒ The central value of

$$a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$$

is slightly in the unphysical region.

Theory prediction with new physics:

$$a_{\rm fs} = (3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_d^{\Delta}}{|\Delta_d|} + (2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_s^{\Delta}}{|\Delta_s|}$$

A. Lenz, UN 2011

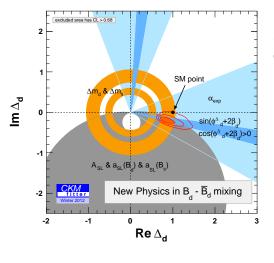
⇒ The central value of

$$a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$$

is slightly in the unphysical region.

How much of a_{fs} could come from a_{fs}^d ?

Post-Moriond-2012 status for $B_d - \overline{B}_d$ mixing:



SM point $\Delta_d = 1$ disfavoured by 3.0σ .

 1σ range:

$$\phi_d^{\Delta} = -13.4^{\circ}_{-2.2^{\circ}}^{+3.3^{\circ}}$$

Drivers:

$$B^+ o au^+
u_ au$$
, $a_{
m fs}$

Lenz et al., 1203.0238

The fit prefers $\phi_d^{\Delta} < 0$, so that a_{fs}^d returned by the fit is well below $a_{fs}^{d \, SM} = (-0.41 \pm 0.06) \cdot 10^{-3}$:

$$a_{\rm fs}^d = \left(-3.32^{+0.66}_{-0.41}\right) \cdot 10^{-3}$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

$$a_{\rm fs}^d = (-4.7 \pm 4.6) \cdot 10^{-3},$$

but assumes that there is no new physics in Γ_{12}^d .

The fit prefers $\phi_d^{\Delta} < 0$, so that a_{fs}^d returned by the fit is well below $a_{fs}^{d \, SM} = (-0.41 \pm 0.06) \cdot 10^{-3}$:

$$a_{\rm fs}^d = \left(-3.32^{+0.66}_{-0.41}\right) \cdot 10^{-3}$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

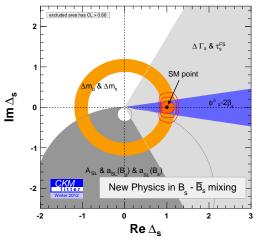
$$a_{\rm fs}^d = (-4.7 \pm 4.6) \cdot 10^{-3},$$

but assumes that there is no new physics in Γ_{12}^d . The contribution from new physics in $B_d - \overline{B}_d$ mixing to a_{fs} is therefore

$$0.594 \left(-3.32^{+0.66}_{-0.41}\right) \cdot 10^{-3} = \left(-2.0^{+0.4}_{-0.2}\right) \cdot 10^{-3}$$

The contribution from ϕ_d^{Δ} reduces the discrepancy in $a_{\rm fs}$ from 3.9σ to $\sim 3.0\sigma$.

Post-Moriond-2012 result for $B_s - \overline{B}_s$ mixing:



Perfect agreement with SM point $\Delta_s = 1$ (0.0 σ).

Lenz et al., 1203.0238

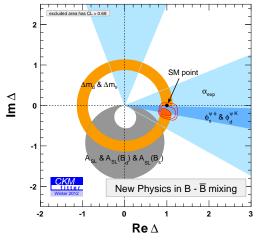
Pulls

Quantity	SM
$A_{\mathrm{CP}}^{\mathrm{mix}}(B_{d} o J/\psi K_{\mathrm{S}})$	2.7σ
$m{\mathcal{A}}_{ ext{CP}}^{ ext{mix}}(m{\mathcal{B}}_{ ext{ iny S}} o m{J}/\psi \phi)$	0.3σ
Δm_d	1.0σ
$\Delta m_{\scriptscriptstyle m S}$	0.0σ
$a_{ m fs}$	3.7σ
${\cal B}({m B} o au u)$	2.8σ
${\it B}({\it B} ightarrow au u), {\it a}_{ m fs}$	4.3σ

Pulls

Quantity	SM	NP
$A_{ ext{CP}}^{ ext{mix}}(B_d o J/\psi\ extbf{K}_{ extsf{S}})$	2.7σ	2.1σ
$A_{ ext{CP}}^{ ext{mix}}(extbf{ extit{B}}_{ extsf{S}} o extbf{ extit{J}}/\psi\phi)$	0.3σ	2.7σ
Δm_d	1.0σ	
$\Delta m_{ m s}$	0.0σ	
$a_{ m fs}$	3.7σ	3.0σ
${\cal B}({\cal B} o au u)$	2.8σ	1.1σ
${\it B}({\it B} ightarrow au u), {\it a}_{ m fs}$	4.3σ	2.8σ

The pulls show the deviation between the measurements and the prediction of the fit without the quantity. Minimal flavour violation, set $\Delta_d = \Delta_s \equiv \Delta$. Post-Moriond-2012 situation:



SM point $\Delta = 1$ disfavoured by 2.1σ .

Lenz et al., 1203.0238

Summary of p-values

Hypothesis	NP in Δ_d and Δ_s	MFV-NP, $\Delta_d = \Delta_s$
$Im\Delta_d = 0$	3.2σ	2.6σ
$\text{Im}\Delta_{\scriptscriptstyle \mathcal{S}}=0$	0.0σ	
$\Delta_d = 1$	3.0σ	2.1σ
$\Delta_s=1$	0.0σ	
$\text{Im}\Delta_d=\text{Im}\Delta_s=0$	2.8σ	
$\Delta_d = \Delta_s = 1$	2.4σ	

No preference of generic scenario over MFV scenario. The SM is disfavoured with 2.4σ , but scenarios which put NP only into M_{12}^q do not describe the data as well as they did in 2010, when the hypothesis $\Delta_s = \Delta_d = 1$ in the generic scenario was disfavoured with 3.6σ .

New physics in Γ_{12}^q ?

Recall the LHCb measurement

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.997 \pm 0.013$$

in excellent agreement with the SM prediction $\tau_{B_s}/\tau_{B_d}=0.998\pm0.003$.

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^s|$ by opening new enhanced decay channels such as $B_s \to \tau^+ \tau^-$ will spoil this ratio.

New physics in Γ_{12}^q ?

Recall the LHCb measurement

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.997 \pm 0.013$$

in excellent agreement with the SM prediction $\tau_{B_s}/\tau_{B_d}=0.998\pm0.003$.

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^s|$ by opening new enhanced decay channels such as $B_s \to \tau^+ \tau^-$ will spoil this ratio.

Phenomenologically, new physics in the doubly Cabibbo-suppressed quantity Γ_{12}^d is still allowed, but requires somewhat contrived models of new physics.

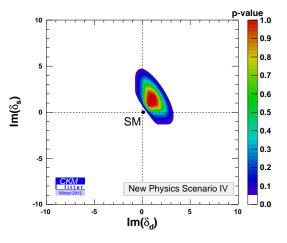
Fit with new physics in Γ_{12}^q

Define

$$\delta_q = rac{\Gamma_{12}^q/M_{12}^q}{\operatorname{Re}\left(\Gamma_{12}^{\mathrm{SM},q}/M_{12}^{\mathrm{SM},q}
ight)}, \qquad ext{for} \quad q = d, \, ext{s}.$$

and fit for real and imaginary parts of Δ_d , Δ_s , δ_d , and δ_s .

Fit with new physics in Γ_{12}^q



Excellent fit, SM point disfavoured by 3.2σ .

If $\delta_s = \delta_s^{\rm SM}$, need new $\mathcal{O}(\mathbf{1})$ effects in Γ_{12}^d .

Lenz et al., 1203.0238

 Flavour physics complements the high-p_T programme at ATLAS and CMS. FCNC processes indirectly probe mass scales exceeding 100 TeV.

- Flavour physics complements the high-p_T programme at ATLAS and CMS. FCNC processes indirectly probe mass scales exceeding 100 TeV.
- Hints for $\phi_d^{\Delta} < 0$ inferred from a global fit to the UT partially explain the DØ dimuon asymmetry. A good fit would further require a sizable $\phi_s^{\Delta} < 0$, which, however, is not seen by LHCb.

- Flavour physics complements the high-p_T programme at ATLAS and CMS. FCNC processes indirectly probe mass scales exceeding 100 TeV.
- Hints for $\phi_d^{\Delta} < 0$ inferred from a global fit to the UT partially explain the DØ dimuon asymmetry. A good fit would further require a sizable $\phi_s^{\Delta} < 0$, which, however, is not seen by LHCb.
- Still: In scenarios with new physics in M^q₁₂ only, the SM is disfavoured by 2.4 σ, driven by the DØ dimuon asymmetry and B(B → τν).

- Flavour physics complements the high-p_T programme at ATLAS and CMS. FCNC processes indirectly probe mass scales exceeding 100 TeV.
- Hints for φ^Δ_d < 0 inferred from a global fit to the UT partially explain the DØ dimuon asymmetry. A good fit would further require a sizable φ^Δ_s < 0, which, however, is not seen by LHCb.
- Still: In scenarios with new physics in M^q₁₂ only, the SM is disfavoured by 2.4 σ, driven by the DØ dimuon asymmetry and B(B → τν).
- A good fit is found if also new physics in Γ^d₁₂ is allowed, but the needed O(1) effects are hard to motivate in realistic models.

The quantum numbers of the SM point towards a grand unified theory (GUT), the gauge couplings converge to a common GUT value at high energies, similarly y_{τ} and y_b converge, and neutrinos have small masses as predicted by GUT pioneers.

The quantum numbers of the SM point towards a grand unified theory (GUT), the gauge couplings converge to a common GUT value at high energies, similarly y_{τ} and y_b converge, and neutrinos have small masses as predicted by GUT pioneers.

So is this just a conspiracy of Nature? Or even...

GOCOMICS.

GET A LAUGH!

GET A LAUGH!