Non-perturbative Determination of HQET Parameters

Michael Topp

Institute for Theoretical Physics WWI J Münster

06.06.2011

Table of Contents

- 1 Introduction
 - What is HQET?
- HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- Trom QCD to HQET
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

- 1 Introduction
 - What is HQET?
- 2 HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- 4 "From QCD to HQET"
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

HQET

Heavy Quark Effective Theory

- HQ → (here) system of a single b-(anti-)quark and (anti-)light (e.g.: u, d) quark(s)
- Compare with sun/earth, proton/electron... heavy constituent nearly at rest in rest frame (for $m_b \to \infty$ "static approximation")
- ET → expansion in 1/m_b

(Eichten, 1987; Eichten and Hill, 1990)

...on the lattice

$$\Lambda_{\rm IR} = L^{-1} \ll m_{\pi}, ..., m_{\rm B} \ll a^{-1} = \Lambda_{\rm UV}$$

Here: requirement $L/a \approx O(10^2)$, solution later!

HQET

Heavy Quark Effective Theory

- HQ → (here) system of a single b-(anti-)quark and (anti-)light (e.g.: u, d) quark(s)
- Compare with sun/earth, proton/electron...
 heavy constituent nearly at rest in rest frame
 (for m_b → ∞ "static approximation")
- ET \rightarrow expansion in $1/m_b$

(Eichten, 1987; Eichten and Hill, 1990)

...on the lattice

$$\Lambda_{IB} = L^{-1} \ll m_{\pi}, ..., m_{B} \ll a^{-1} = \Lambda_{UV}$$

Here: requirement $L/a \approx O(10^2)$, solution later!

Strategy

Introduction

- Euclidean action
- What are the dominant degrees of freedom for our kin. situation for b/u.d?
- Decouple large and small components order by order in D_k/m $\overline{\psi}_h \ D_k/m \ \psi_h \ll \overline{\psi}_h \psi_h$

Definitions

- Projector for quark velocity $\mathbf{u} = 0$ is given by $P_{\pm} = \frac{1 \pm \gamma_0}{2}$
- Gamma matrices in Dirac representation

$$\gamma_k = \begin{pmatrix} 0 & -i\sigma_k \\ i\sigma_k & 0 \end{pmatrix} \quad \gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

•
$$\mathcal{D} := \gamma_{\mu} D_{\mu}$$
 $\sigma_{\mu\nu} := \frac{i}{2} \left[\gamma_{\mu}, \gamma_{\nu} \right]$

Strategy

Introduction

- Euclidean action
- What are the dominant degrees of freedom for our kin. situation for b/u.d?
- Decouple large and small components order by order in D_k/m $\overline{\psi}_h \ D_k/m \ \psi_h \ll \overline{\psi}_h \psi_h$

Definitions

- Projector for quark velocity $\mathbf{u} = 0$ is given by $P_{\pm} = \frac{1 \pm \gamma_0}{2}$
- Gamma matrices in Dirac representation

$$\gamma_k = \begin{pmatrix} 0 & -i\sigma_k \\ i\sigma_k & 0 \end{pmatrix} \quad \gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• $\mathcal{D} := \gamma_{\mu} \mathsf{D}_{\mu}$ $\sigma_{\mu\nu} := \frac{i}{2} \left[\gamma_{\mu}, \gamma_{\nu} \right]$

Definitions for the lattice

Derivatives on the lattice

Derivative acting on colour singlet function

$$\partial_{\mu}f(x) = \frac{1}{a}\left[f(x+a\hat{\mu}) - f(x)\right]$$

 $\partial_{\mu}^{*}f(x) = \frac{1}{a}\left[f(x) - f(x-a\hat{\mu})\right]$ $\tilde{\partial}_{\mu} = \frac{1}{2}\left(\partial_{\mu} + \partial_{\mu}^{*}\right)$

Covariant derivative acting on quark field

$$\nabla_{\mu}\psi(x) = \frac{1}{a} \left[U(x,\mu)\psi(x+a\hat{\mu}) - \psi(x) \right]
\nabla^*_{\mu}\psi(x) = \frac{1}{a} \left[\psi(x) - U(x-a\hat{\mu},\mu)^{-1}\psi(x-a\hat{\mu}) \right]$$

$$\dot{ar{
abla}}_{\mu}$$
 and $\dot{ar{
abla}}_{\mu}^*$ similarly for e.g. $\overline{\psi}(x)\dot{ar{
abla}}_{\mu}$

Definitions for the lattice

Derivatives on the lattice

• Derivative acting on colour singlet function

$$\partial_{\mu}f(x) = \frac{1}{a}\left[f(x+a\hat{\mu}) - f(x)\right]$$

$$\partial_{\mu}^{*}f(x) = \frac{1}{a}\left[f(x) - f(x-a\hat{\mu})\right]$$

$$\tilde{\partial}_{\mu} = \frac{1}{2}\left(\partial_{\mu} + \partial_{\mu}^{*}\right)$$

· Covariant derivative acting on quark field

$$\nabla_{\mu}\psi(x) = \frac{1}{a}\left[U(x,\mu)\psi(x+a\hat{\mu})-\psi(x)\right]$$

$$\nabla^*_{\mu}\psi(x) = \frac{1}{a}\left[\psi(x)-U(x-a\hat{\mu},\mu)^{-1}\psi(x-a\hat{\mu})\right]$$

 $\dot{ar{
abla}}_{\mu}$ and $\dot{ar{
abla}}_{\mu}^{*}$ similarly for e.g. $\overline{\psi}(x)\dot{ar{
abla}}_{\mu}$

Wilson-Dirac operator

$$D_{\mathsf{W}} = rac{1}{2} \left[\gamma_{\mu} \left(
abla_{\mu}^* +
abla_{\mu}
ight) - a
abla_{\mu}^*
abla_{\mu}
ight]$$

Definitions for the lattice

Derivatives on the lattice

Derivative acting on colour singlet function

$$\partial_{\mu}f(x) = \frac{1}{a}\left[f(x+a\hat{\mu}) - f(x)\right]$$

 $\partial_{\mu}^{*}f(x) = \frac{1}{a}\left[f(x) - f(x-a\hat{\mu})\right]$ $\tilde{\partial}_{\mu} = \frac{1}{2}\left(\partial_{\mu} + \partial_{\mu}^{*}\right)$

· Covariant derivative acting on quark field

$$\nabla_{\mu}\psi(x) = \frac{1}{a}\left[U(x,\mu)\psi(x+a\hat{\mu})-\psi(x)\right]$$

$$\nabla^*_{\mu}\psi(x) = \frac{1}{a}\left[\psi(x)-U(x-a\hat{\mu},\mu)^{-1}\psi(x-a\hat{\mu})\right]$$

 $\dot{ar{
abla}}_{\mu}$ and $\dot{ar{
abla}}_{\mu}^{*}$ similarly for e.g. $\overline{\psi}(x)\dot{ar{
abla}}_{\mu}$

Wilson-Dirac operator

$$D_{\mathsf{W}} = rac{1}{2} \left[\gamma_{\mu} \left(
abla_{\mu}^* +
abla_{\mu}
ight) - a
abla_{\mu}^*
abla_{\mu}
ight]$$

- Introduction
 - What is HQET?
- 2 HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- 4 "From QCD to HQET"
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

1st Fouldy Wouthuysen-Tani transformation

- Count all fields, derivatives of fiels (e.g. $F_{\mu\nu}$) as O(1), except for $D_0\psi_h=O(m)\psi_h$
- Transformed Lagrangian $\mathcal{L} = \overline{\psi}' (\mathcal{D}' + m) \psi'$ $S = \frac{1}{2m} D_k \gamma_k = -S^{\dagger}$ $\psi \to \psi' = e^{S}\psi \qquad \overline{\psi} \to \overline{\psi}' = \overline{\psi}e^{-\overline{S}}$ $\mathcal{D}' + m = e^{-S} (\mathcal{D} + m) e^{-S}$

- Count all fields, derivatives of fiels (e.g. $F_{\mu\nu}$) as O(1), except for $D_0\psi_h=O(m)\psi_h$
- Transformed Lagrangian $\mathcal{L} = \overline{\psi}' (\mathcal{D}' + m) \psi'$ $S = \frac{1}{2m} D_k \gamma_k = -S^{\dagger}$

$$\psi \to \psi' = e^{S}\psi \qquad \overline{\psi} \to \overline{\psi}' = \overline{\psi}e^{-\overline{S}}$$

 $\mathcal{D}' + m = e^{-S}(\mathcal{D} + m)e^{-S}$

Expand
$$e^{-S} \Rightarrow \mathcal{D}' + m$$

= $\mathcal{D} + m + \{-S, \mathcal{D} + m\} + \frac{1}{2}\{-S, \{-S, \mathcal{D} + m\}\} + ...$

- Count all fields, derivatives of fiels (e.g. $F_{\mu\nu}$) as O(1), except for $D_0\psi_h=O(m)\psi_h$
- Transformed Lagrangian $\mathcal{L} = \overline{\psi}' (\mathcal{D}' + m) \psi'$ $S = \frac{1}{2m} D_k \gamma_k = -S^{\dagger}$ $\psi \to \psi' = \mathrm{e}^S \psi \qquad \overline{\psi} \to \overline{\psi}' = \overline{\psi} \mathrm{e}^{-\overline{S}}$ $\mathcal{D}' + m = \mathrm{e}^{-S} (\mathcal{D} + m) \mathrm{e}^{-S}$

Expand
$$e^{-S} \Rightarrow \mathcal{D}' + m$$

= $\mathcal{D} + m + \{-S, \mathcal{D} + m\} + \frac{1}{2}\{-S, \{-S, \mathcal{D} + m\}\} + ...$

• After some algebra $\mathcal{D}' = D_0 \gamma_0 - \frac{1}{2m} \left[\underbrace{\gamma_k \gamma_0 F_{k0}}_{\text{off-diagonal}} + \frac{1}{2i} \sigma_{kl} F_{kl} + D_k D_k \right] + O(1/m^2)$

$$F_{kl} = [D_k, D_l]$$

1st Fouldy Wouthuysen-Tani transformation

- Count all fields, derivatives of fiels (e.g. $F_{\mu\nu}$) as O(1), except for $D_0\psi_h=O(m)\psi_h$
- Transformed Lagrangian $\mathcal{L} = \overline{\psi}' \left(\mathcal{D}' + m \right) \psi'$ $S = \frac{1}{2m} D_k \gamma_k = -S^{\dagger}$ $\psi \to \psi' = e^S \psi \qquad \overline{\psi} \to \overline{\psi}' = \overline{\psi} e^{-\overline{S}}$ $\mathcal{D}' + m = e^{-S} \left(\mathcal{D} + m \right) e^{-S}$ Expand $e^{-S} \Rightarrow \mathcal{D}' + m$ $= \mathcal{D} + m + \{-S, \mathcal{D} + m\} + \frac{1}{2} \{-S, \{-S, \mathcal{D} + m\}\} + \dots$
- · After some algebra

$$\mathcal{D}' = D_0 \gamma_0 - \frac{1}{2m} \left[\underbrace{\gamma_k \gamma_0 F_{k0}}_{\text{off-diagonal}} + \frac{1}{2i} \sigma_{kl} F_{kl} + D_k D_k \right] + O(1/m^2)$$

$$F_{kl} = \left[D_k, D_l \right]$$

2nd Fouldy Wouthuysen-Tani transformation

After 1st transformation

$$\mathcal{D}' = D_0 \gamma_0 - \frac{1}{2m} \left[\underbrace{\gamma_k \gamma_0 F_{k0}}_{\text{off-diagonal}} + \frac{1}{2i} \sigma_{kl} F_{kl} + D_k D_k \right] + O(1/m^2)$$

- $\psi'' = e^{S'}\psi'$ for cancelling off-diagonal term
- $\{-S', \mathcal{D}' + m\} \stackrel{!}{=} \frac{1}{2m} \gamma_k \gamma_0 F_{k0} + O(1/m^2)$ works with $S' = \frac{1}{4m^2} \gamma_0 \gamma_k F_{k0}$

(classical) Lagrangian

$$\mathcal{L} = \mathcal{L}_{h}^{stat} + \frac{1}{2m}\mathcal{L}_{h}^{(1)} + \mathcal{L}_{\overline{h}}^{stat} + \frac{1}{2m}\mathcal{L}_{\overline{h}}^{(1)} + O(\frac{1}{m^2})$$

2nd Fouldy Wouthuysen-Tani transformation

After 1st transformation

$$\mathcal{D}' = D_0 \gamma_0 - \frac{1}{2m} \left[\underbrace{\gamma_k \gamma_0 F_{k0}}_{\text{off-diagonal}} + \frac{1}{2i} \sigma_{kl} F_{kl} + D_k D_k \right] + O(1/m^2)$$

- $\psi'' = e^{S'} \psi'$ for cancelling off-diagonal term
- $\{-S', \mathcal{D}' + m\} \stackrel{!}{=} \frac{1}{2m} \gamma_k \gamma_0 F_{k0} + O(1/m^2)$ works with $S' = \frac{1}{4m^2} \gamma_0 \gamma_k F_{k0}$

(classical) Lagrangian

$$\mathcal{L} = \mathcal{L}_{h}^{stat} + \frac{1}{2m}\mathcal{L}_{h}^{(1)} + \mathcal{L}_{\bar{h}}^{stat} + \frac{1}{2m}\mathcal{L}_{\bar{h}}^{(1)} + O(\frac{1}{m^2})$$

Lagrangian up to order 1/m

$$\begin{split} \mathcal{L}_{h}^{\text{stat}} &= \overline{\psi}_{h}(m+D_{0})\psi_{h} & P_{+}\psi_{h} = \psi_{h} & \overline{\psi}_{h}P_{+} = \overline{\psi}_{h} \\ \mathcal{L}_{\overline{h}}^{\text{stat}} &= \overline{\psi}_{\overline{h}}(m+D_{0})\psi_{\overline{h}} & P_{-}\psi_{\overline{h}} = \psi_{\overline{h}} & \overline{\psi}_{\overline{h}}P_{-} = \overline{\psi}_{\overline{h}} \\ \mathcal{L}_{h}^{(1)} &= -(O_{\text{kin}} + O_{\text{spin}}) & \mathcal{L}_{\overline{h}}^{(1)} = -(\overline{O}_{\text{kin}} + \overline{O}_{\text{spin}}) \end{split}$$

$$\begin{aligned} O_{\text{kin}} &= \overline{\psi}_{\text{h}}(x) \mathbf{D}^{2} \psi_{\text{h}}(x) & O_{\text{spin}} &= \overline{\psi}_{\text{h}}(x) \sigma \cdot \mathbf{B}(\mathbf{x}) \psi_{\text{h}}(x) \\ \overline{O}_{\text{kin}} &= \overline{\psi}_{\tilde{\text{h}}}(x) \mathbf{D}^{2} \psi_{\tilde{\text{h}}}(x) & \overline{O}_{\text{spin}} &= \overline{\psi}_{\tilde{\text{h}}}(x) \sigma \cdot \mathbf{B}(\mathbf{x}) \psi_{\tilde{\text{h}}}(x) \\ B_{k} &= \frac{i}{2} \epsilon_{ijk} F_{ij} \end{aligned}$$

$$\begin{split} \mathcal{L}_{\text{h}}^{\text{stat}} &= \overline{\psi}_{\text{h}}(m+D_0)\psi_{\text{h}} & P_{+}\psi_{\text{h}} = \psi_{\text{h}} & \overline{\psi}_{\text{h}}P_{+} = \overline{\psi}_{\text{h}} \\ \mathcal{L}_{\overline{\text{h}}}^{\text{stat}} &= \overline{\psi}_{\overline{\text{h}}}(m+D_0)\psi_{\overline{\text{h}}} & P_{-}\psi_{\overline{\text{h}}} = \psi_{\overline{\text{h}}} & \overline{\psi}_{\overline{\text{h}}}P_{-} = \overline{\psi}_{\overline{\text{h}}} \\ \mathcal{L}_{\text{h}}^{(1)} &= -(O_{\text{kin}} + O_{\text{spin}}) & \mathcal{L}_{\overline{\text{h}}}^{(1)} = -(\overline{O}_{\text{kin}} + \overline{O}_{\text{spin}}) \end{split}$$

$$egin{aligned} O_{\mathsf{kin}} &= \overline{\psi}_{\mathsf{h}}(x) \mathbf{D}^2 \psi_{\mathsf{h}}(x) & O_{\mathsf{spin}} &= \overline{\psi}_{\mathsf{h}}(x) \sigma \cdot \mathbf{B}(\mathbf{x}) \psi_{\mathsf{h}}(x) \\ \overline{O}_{\mathsf{kin}} &= \overline{\psi}_{\mathsf{h}}(x) \mathbf{D}^2 \psi_{\mathsf{h}}(x) & \overline{O}_{\mathsf{spin}} &= \overline{\psi}_{\mathsf{h}}(x) \sigma \cdot \mathbf{B}(\mathbf{x}) \psi_{\mathsf{h}}(x) \\ B_k &= \frac{i}{2} \epsilon_{ijk} F_{ij} \end{aligned}$$

Propagator (static approximation)

From
$$(\partial_{x_0} + A_0(x) + m) G_h(x, y) = \delta(x - y) P_+$$
, get solution

$$G_{\mathsf{h}}(x,y) = \theta(x_0 - y_0) \, \mathrm{e}^{-m(x_0 - y_0)} \mathcal{P} \, \exp \left[- \int\limits_{y_0}^{x_0} \mathrm{d}z_0 A_0(z_0, \mathbf{x}) \right] \, \delta(\mathbf{x} - \mathbf{y}) \, P_+$$

- · Similar result for the anti-quark's propagator
- For any gauge field A_{μ} mass as factor $e^{-m|x_0-y_0|}$

Energy shift

After path integration over gauge fields of any 2-point function with b-quark still exp. decay

$$\rightarrow C_h(x, y; m) = C_h(x, y; 0)e^{-m|x_0-y_0|}$$

Remove *m* from $\mathcal{L}_{\bar{h}/h}^{\text{stat}}$, treat

$$E_{\bar{h}/h}^{QCD} = E_{\bar{h}/h}^{stat} + m$$

Propagator (static approximation)

From
$$(\partial_{x_0} + A_0(x) + m) G_h(x, y) = \delta(x - y) P_+$$
, get solution

$$G_{\rm h}(x,y) = \theta(x_0 - y_0) \, {
m e}^{-m(x_0 - y_0)} \, {\cal P} \, \exp \left[- \int\limits_{y_0}^{x_0} {
m d} z_0 A_0(z_0,{f x})
ight] \, \delta({f x} - {f y}) \, P_+$$

- · Similar result for the anti-quark's propagator
- For any gauge field A_{μ} mass as factor $e^{-m|x_0-y_0|}$

Energy shift

After path integration over gauge fields of any 2-point function with b-quark still exp. decay

$$\rightarrow C_h(x, y; m) = C_h(x, y; 0)e^{-m|x_0-y_0|}$$

Remove *m* from $\mathcal{L}_{\bar{\mathbf{h}}/\mathbf{h}}^{\text{stat}}$, treat

$$E_{\bar{h}/h}^{\rm QCD} = E_{\bar{h}/h}^{\rm stat} + m$$

Toal quantum Lagrangian (static)

- Renormalizability of static theory: by adding counter terms
 → absorb UV divergences
- Symmetry of static Lagrangian has to be conserved \rightarrow add $c_1\overline{\psi}_h\psi_h$ with $c_1=\delta m=(e_1g_0^2+e_2g_0^4+...)\Lambda_{\rm cut}$
- Chiral symmetry would forbid this, but not present in static theory

Energy shift

$$E_{ar{\mathrm{h}}/\mathrm{h}}^{\mathrm{QCD}} = \left. E_{ar{\mathrm{h}}/\mathrm{h}}^{\mathrm{stat}} \right|_{\delta m = 0} + \delta m + m = \left. E_{ar{\mathrm{h}}/\mathrm{h}}^{\mathrm{stat}} \right|_{\delta m = 0} + m_{\mathrm{bare}}$$

(other divergences after renorm. (light quark mass, coupling) absorbed in δm)

Toal quantum Lagrangian (static)

- Renormalizability of static theory: by adding counter terms
 → absorb UV divergences
- Symmetry of static Lagrangian has to be conserved \rightarrow add $c_1\overline{\psi}_h\psi_h$ with $c_1=\delta m=(e_1g_0^2+e_2g_0^4+...)\Lambda_{\rm cut}$
- Chiral symmetry would forbid this, but not present in static theory

Energy shift

$$E_{ar{\mathsf{h}}/\mathsf{h}}^{\mathsf{QCD}} = \left. E_{ar{\mathsf{h}}/\mathsf{h}}^{\mathsf{stat}} \right|_{\delta m = 0} + \delta m + m = \left. E_{ar{\mathsf{h}}/\mathsf{h}}^{\mathsf{stat}} \right|_{\delta m = 0} + m_{\mathsf{bare}}$$

(other divergences after renorm. (light quark mass, coupling) absorbed in δm)

Static Lagrangian

With suitable normalization factor:

$$\mathcal{L}_{h} = \frac{1}{1 + a\delta m} \overline{\psi}_{h}(x) \left[\nabla_{0}^{*} + \delta m\right] \psi_{h}(x)$$

$$\mathcal{L}_{\bar{h}} = \frac{1}{1 + a\delta m} \overline{\psi}_{\bar{h}}(x) \left[-\nabla_{0} + \delta m\right] \psi_{\bar{h}}(x)$$

Propagator:

$$G_{h}(x,y) = \theta(x_{0} - y_{0}) \delta(\mathbf{x} - \mathbf{y}) \exp(-\widehat{\delta m}(x_{0} - y_{0})) \mathcal{P}(y,x;0)^{\dagger} P_{+}$$
$$\widehat{\delta m} = \frac{1}{a} \ln(1 + a\delta m)$$

 $(\mathcal{P}(y, x; 0))$ parallel transp. fields in fund. repr. along time-like path)

Static Lagrangian

With suitable normalization factor:

$$\mathcal{L}_{h} = \frac{1}{1 + a\delta m} \overline{\psi}_{h}(x) \left[\nabla_{0}^{*} + \delta m\right] \psi_{h}(x)$$

$$\mathcal{L}_{\bar{h}} = \frac{1}{1 + a\delta m} \overline{\psi}_{\bar{h}}(x) \left[-\nabla_{0} + \delta m\right] \psi_{\bar{h}}(x)$$

Propagator:

$$G_{h}(x,y) = \theta(x_{0} - y_{0}) \delta(\mathbf{x} - \mathbf{y}) \exp(-\widehat{\delta m}(x_{0} - y_{0})) \mathcal{P}(y,x;0)^{\dagger} P_{+}$$

$$\widehat{\delta m} = \frac{1}{a} \ln(1 + a\delta m)$$

 $(\mathcal{P}(y, x; 0))$ parallel transp. fields in fund. repr. along time-like path)

Symanzik O(a) improvement

- Add terms to lattice action S to reduce cutoff effects
- Terms must vanish in continuum limit

•
$$S_{\text{eff}} = S_0 + aS_1 + ...$$
 $S_i = \int d^4x \, \mathcal{L}_i(x)$ $(S_0 = \int d^4x \, \mathcal{L}_0^{\text{stat}}(x))$

(Kurt and Sommer, 2001)

Mass dim. 5 terms (fields and masses) to add that conserve symmetry:

- $O_3 = \overline{\psi}_h D_0 D_0 \psi_h$ (vanishes due to eq. of motion $D_0 \psi_h = 0$ • $O_4 = m_1 \overline{\psi}_h D_0 \psi_h$ (vanishes as well)
 - $O_4 = m_l \psi_h D_0 \psi_h$ (vanishes as well)
- $O_5 = m_1^2 \overline{\psi}_{\rm h} \psi_{\rm h}$ (absorb in δm

Symanzik O(a) improvement

- Add terms to lattice action S to reduce cutoff effects
- Terms must vanish in continuum limit

•
$$S_{\text{eff}} = S_0 + aS_1 + ...$$
 $S_i = \int d^4x \, \mathcal{L}_i(x)$ $(S_0 = \int d^4x \, \mathcal{L}_0^{\text{stat}}(x))$

(Kurt and Sommer, 2001)

Mass dim. 5 terms (fields and masses) to add that conserve symmetry:

- $O_3 = \overline{\psi}_{\rm h} D_0 D_0 \psi_{\rm h}$ (vanishes due to eq. of motion $D_0 \psi_{\rm h} = 0$)
- $O_4 = m_l \overline{\psi}_h D_0 \psi_h$ (vanishes as well)
- $O_5 = m_{\rm l}^2 \overline{\psi}_{\rm h} \psi_{\rm h}$ (absorb in δm)

Add terms to lattice action S to reduce cutoff effects

- Add terms to lattice action 5 to reduce cuton energy
- Terms must vanish in continuum limit

•
$$S_{\text{eff}} = S_0 + aS_1 + ...$$
 $S_i = \int d^4x \, \mathcal{L}_i(x)$ $(S_0 = \int d^4x \, \mathcal{L}_0^{\text{stat}}(x))$

(Kurt and Sommer, 2001)

Mass dim. 5 terms (fields and masses) to add that conserve symmetry:

- $O_3 = \overline{\psi}_{\rm h} D_0 D_0 \psi_{\rm h}$ (vanishes due to eq. of motion $D_0 \psi_{\rm h} = 0$)
- $O_4 = m_l \overline{\psi}_h D_0 \psi_h$ (vanishes as well)
- $O_5 = m_{\rm l}^2 \overline{\psi}_{\rm h} \psi_{\rm h}$ (absorb in δm)
- \rightarrow automatically O(a) improved

In Symanzik's effective theory

$$\left(A_0^{\mathrm{stat}}\right)_{\mathrm{eff}} \,=\, A_0^{\mathrm{stat}} + a \sum\limits_{k=1}^4 \omega_k \left(\delta A_0^{\mathrm{stat}}\right)_{\!k}$$

In Symanzik's effective theory

$$\left(A_0^{\mathrm{stat}}\right)_{\mathrm{eff}} = A_0^{\mathrm{stat}} + a \sum_{k=1}^4 \omega_k \left(\delta A_0^{\mathrm{stat}}\right)_k$$

$$\begin{array}{ll} \left(A_0^{\text{stat}}\right)_1 \ = \ \overline{\psi} \, \overline{D}_{j} \gamma_{j} \gamma_{5} \psi_{h} & \left(A_0^{\text{stat}}\right)_2 \ = \ \overline{\psi} \gamma_{5} D_0 \psi_{h} \\ \left(A_0^{\text{stat}}\right)_3 \ = \ \overline{\psi} \, \overline{D}_0 \gamma_{5} \psi_{h} & \left(A_0^{\text{stat}}\right)_4 \ = \ m_{l} \overline{\psi} \gamma_0 \gamma_5 \psi_{h} \end{array}$$

- Eq. of motion for $\overline{\psi}$ relates 1st, 3rd and 4th term!
- Eq. of motion for ψ_h excludes 2nd term!
- Neglect 4th term because of assumption $am_1 \ll 1$

In Symanzik's effective theory

$$\left(A_0^{\mathrm{stat}}\right)_{\mathrm{eff}} = A_0^{\mathrm{stat}} + a \sum_{k=1}^4 \omega_k \left(\delta A_0^{\mathrm{stat}}\right)_k$$

$$\begin{array}{ll} \left(A_0^{\text{stat}}\right)_1 \ = \ \overline{\psi} \overleftarrow{D}_j \gamma_j \gamma_5 \psi_h & \left(A_0^{\text{stat}}\right)_2 \ = \ \overline{\psi} \gamma_5 D_0 \psi_h \\ \left(A_0^{\text{stat}}\right)_3 \ = \ \overline{\psi} \overleftarrow{D}_0 \gamma_5 \psi_h & \left(A_0^{\text{stat}}\right)_4 \ = \ m_l \overline{\psi} \gamma_0 \gamma_5 \psi_h \end{array}$$

- Eq. of motion for $\overline{\psi}$ relates 1st, 3rd and 4th term!
- Eq. of motion for ψ_h excludes 2nd term!
- Neglect 4th term because of assumption $am_l \ll 1$

$$(A_0^{\text{stat}})_{\text{eff}} = A_0^{\text{stat}} + a\tilde{\omega}_1 (\delta A_0^{\text{stat}})_1$$

Renormalized improved axial current on the lattice

$$\left(A_0^{\rm stat}\right)_{\rm eff} = A_0^{\rm stat} + a\tilde{\omega}_1 \left(\delta A_0^{\rm stat}\right)_1$$

Renormalized improved axial current on the lattice

$$\begin{array}{lcl} \left(A_{\mathsf{R}}^{\mathsf{stat}}\right)_{0} & = & Z_{\mathsf{A}}^{\mathsf{stat}}(g_{0},a\mu)\left(A_{\mathsf{I}}^{\mathsf{stat}}\right)_{0} \\ \left(A_{\mathsf{I}}^{\mathsf{stat}}\right)_{0} & = & A_{0}^{\mathsf{stat}} + ac_{\mathsf{A}}^{\mathsf{stat}}(g_{0})\overline{\psi}\gamma_{\mathsf{j}}\gamma_{\mathsf{5}}\frac{1}{2}\left(\overleftarrow{\nabla}_{\mathsf{j}} + \overleftarrow{\nabla}_{\mathsf{j}}^{*}\right)\psi_{\mathsf{h}} \end{array}$$

Improvement coefficient $c_A^{\rm stat}$ can be determined that cutoff effects are $O(a^2)$

Axial current

$$\left(A_0^{
m stat}
ight)_{
m eff} = A_0^{
m stat} + a ilde{\omega}_1 \left(\delta A_0^{
m stat}
ight)_1$$

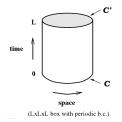
Renormalized improved axial current on the lattice

$$\begin{array}{lcl} \left(A_{\mathsf{R}}^{\mathsf{stat}}\right)_{\!0} & = & Z_{\mathsf{A}}^{\mathsf{stat}}(g_0,a\mu) \left(A_{\mathsf{I}}^{\mathsf{stat}}\right)_{\!0} \\ \left(A_{\mathsf{I}}^{\mathsf{stat}}\right)_{\!0} & = & A_{\!0}^{\mathsf{stat}} + a c_{\mathsf{A}}^{\mathsf{stat}}(g_0) \overline{\psi} \gamma_{\mathsf{J}} \gamma_{\mathsf{5}} \frac{1}{2} \left(\overleftarrow{\nabla}_{\mathsf{J}} + \overleftarrow{\nabla}_{\mathsf{J}}^*\right) \psi_{\mathsf{h}} \end{array}$$

Improvement coefficient c_{Δ}^{stat} can be determined that cutoff effects are $O(a^2)$

- Introduction
 - What is HQET?
- 2 HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- 4 "From QCD to HQET"
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

• Cylindric finite space-time volume $T \times L^3$ (Lüscher et al., 1992)



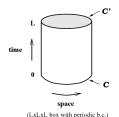
C and C': gauge potentials

· Periodic spatial boundary conditions

$$\frac{\psi(x + L\hat{k}) = e^{i\theta_k}\psi(x)}{\overline{\psi}(x + L\hat{k}) = e^{-i\theta_k}\overline{\psi}(x)}$$

General features

• Cylindric finite space-time volume $T \times L^3$ (Lüscher et al., 1992)



C and C': gauge potentials

• Periodic spatial boundary conditions

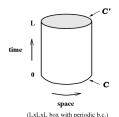
$$rac{\psi(x+L\hat{k})=\mathrm{e}^{\mathrm{i} heta_k}\psi(x)}{\overline{\psi}(x+L\hat{k})=\mathrm{e}^{-\mathrm{i} heta_k}\overline{\psi}(x)}$$

Time boundary conditions

$$\begin{aligned} & P_+ \psi \big|_{x_0 = 0} = \rho & P_- \psi \big|_{x_0 = T} = \rho' \\ & \overline{\psi} P_+ \big|_{x_0 = 0} = \overline{\rho} & \overline{\psi} P_- \big|_{x_0 = T} = \overline{\rho}' \end{aligned}$$

General features

• Cylindric finite space-time volume $T \times L^3$ (Lüscher et al., 1992)



C and C': gauge potentials

• Periodic spatial boundary conditions

$$rac{\psi(x+L\hat{k})=\mathrm{e}^{\mathrm{i} heta_k}\psi(x)}{\overline{\psi}(x+L\hat{k})=\mathrm{e}^{-\mathrm{i} heta_k}\overline{\psi}(x)}$$

· Time boundary conditions

$$\begin{aligned} & \left. \begin{array}{l} P_+ \psi \right|_{x_0 = 0} = \rho & \left. \begin{array}{l} P_- \psi \right|_{x_0 = T} = \rho' \\ \overline{\psi} P_+ \right|_{x_0 = 0} = \overline{\rho} & \overline{\psi} P_- \right|_{x_0 = T} = \overline{\rho}' \end{aligned}$$

Definition

Introduction

$$\zeta(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}(\mathbf{x})} \qquad \overline{\zeta}(\mathbf{x}) = -\frac{\delta}{\delta \rho(\mathbf{x})}
\zeta'(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}'(\mathbf{x})} \qquad \overline{\zeta}'(\mathbf{x}) = -\frac{\delta}{\delta \rho'(\mathbf{x})}$$

Can be used to build up correlation functions, 2 cases

Definition

Introduction

$$\zeta(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}(\mathbf{x})} \qquad \overline{\zeta}(\mathbf{x}) = -\frac{\delta}{\delta \rho(\mathbf{x})}
\zeta'(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}'(\mathbf{x})} \qquad \overline{\zeta}'(\mathbf{x}) = -\frac{\delta}{\delta \rho'(\mathbf{x})}$$

Can be used to build up correlation functions, 2 cases

 Bulk to boundary correlation functions

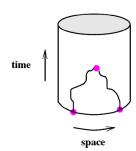
Boundary fields

Definition

$$\zeta(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}(\mathbf{x})} \qquad \overline{\zeta}(\mathbf{x}) = -\frac{\delta}{\delta \rho(\mathbf{x})}
\zeta'(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}'(\mathbf{x})} \qquad \overline{\zeta}'(\mathbf{x}) = -\frac{\delta}{\delta \rho'(\mathbf{x})}$$

Can be used to build up correlation functions, 2 cases

- Bulk to boundary correlation functions
- Boundary to boundary correlation functions



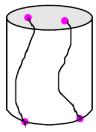
Boundary fields

Definition

$$\zeta(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}(\mathbf{x})} \qquad \overline{\zeta}(\mathbf{x}) = -\frac{\delta}{\delta \rho(\mathbf{x})}
\zeta'(\mathbf{x}) = \frac{\delta}{\delta \overline{\rho}'(\mathbf{x})} \qquad \overline{\zeta}'(\mathbf{x}) = -\frac{\delta}{\delta \rho'(\mathbf{x})}$$

Can be used to build up correlation functions, 2 cases

- Bulk to boundary correlation functions
- Boundary to boundary correlation functions



1st case in QCD

 f_A

$$f_{A}(x_{0},\theta) = -\frac{a^{6}}{2} \sum_{\mathbf{y},\mathbf{z}} \left\langle (A_{I})_{0}(x) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{5} \zeta_{I}(\mathbf{z}) \right\rangle$$

with O(a) improved axial current $(A_I)_{ij}$

$$(A_{\rm I})_{\mu} = \overline{\psi}_{\rm I} \gamma_{\mu} \gamma_5 \psi_{\rm h} + a c_{\rm A} \, \widetilde{\partial}_{\mu} \overline{\psi}_{\rm I} \gamma_5 \psi_{\rm h}$$

 f_A

$$f_{A}(x_{0}, \theta) = -\frac{a^{6}}{2} \sum_{\mathbf{y}, \mathbf{z}} \langle (A_{I})_{0}(x) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{5} \zeta_{I}(\mathbf{z}) \rangle$$

with O(a) improved axial current $(A_1)_{ij}$

$$\left(\mathsf{A}_\mathsf{I}
ight)_\mu = \overline{\psi}_\mathsf{I} \, \gamma_\mu \gamma_5 \, \psi_\mathsf{h} + \mathsf{a} c_\mathsf{A} \, \widetilde{\partial}_\mu \overline{\psi}_\mathsf{I} \, \gamma_5 \, \psi_\mathsf{h}$$

2nd case in QCD

 f_1

$$f_{1}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}} \left\langle \overline{\zeta}'_{1}(\mathbf{u}) \gamma_{5} \zeta'_{h}(\mathbf{z}) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{5} \zeta_{I}(\mathbf{z}) \right\rangle$$

$$k_{1}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}, k} \left\langle \overline{\zeta}_{1}'(\mathbf{u}) \gamma_{k} \zeta_{h}'(\mathbf{z}) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{k} \zeta_{1}(\mathbf{z}) \right\rangle$$

2nd case in QCD

 f_1

Introduction

$$f_{1}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}} \left\langle \overline{\zeta}'_{1}(\mathbf{u}) \gamma_{5} \zeta'_{h}(\mathbf{z}) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{5} \zeta_{I}(\mathbf{z}) \right\rangle$$

 k_1

$$k_{1}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}, k} \left\langle \overline{\zeta}'_{l}(\mathbf{u}) \gamma_{k} \zeta'_{h}(\mathbf{z}) \overline{\zeta}_{h}(\mathbf{y}) \gamma_{k} \zeta_{l}(\mathbf{z}) \right\rangle$$

Renormalizion/matching problem at $O(1/m_b)$

- $O_{kin}(x)$ and $O_{spin}(x)$ of O(5)
- $W_{\text{NRQCD}} \propto \exp\left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x) + \mathcal{L}_{\text{h}}^{(1)}(x)]\right)$ is not renormalizable. (W_{NRQCD} : path integral weight)
- New divergences at each order in perturbation theory

 ⇒ ∄ continuum limit of lattice theory

Solution

HQET is to reproduce 1/m-expansion of observables \Rightarrow expand W in 1/m (counting $\omega_{kin} = O(1/m) = \omega_{spin}$)

$$W_{\text{NRQCD}} \to W_{\text{HQET}} := \exp\left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x)]\right) \times \left(1 - a^4 \sum_{x} \mathcal{L}_{\text{h}}^{(1)}(x)\right)$$

Renormalizion/matching problem at $O(1/m_b)$

- $O_{kin}(x)$ and $O_{spin}(x)$ of O(5)
- $W_{\text{NRQCD}} \propto \exp\left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x) + \mathcal{L}_{\text{h}}^{(1)}(x)]\right)$ is not renormalizable. (W_{NRQCD} : path integral weight)
- New divergences at each order in perturbation theory

 ⇒ ∄ continuum limit of lattice theory

Solution

HQET is to reproduce 1/m-expansion of observables \Rightarrow expand W in 1/m (counting $\omega_{kin} = O(1/m) = \omega_{spin}$)

$$W_{\text{NRQCD}} o W_{\text{HQET}} := \exp\left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x)]\right) \times \left(1 - a^4 \sum_{x} \mathcal{L}_{\text{h}}^{(1)}(x)\right)$$

Correlation functions up to $O(1/m_b)$

Definition of expectation values in HQET

$$\begin{split} \langle O \rangle &= \langle O \rangle_{\text{stat}} &+ \omega_{\text{kin}} \, a^4 \sum_{x} \langle O O_{\text{kin}}(x) \rangle_{\text{stat}} \\ &+ \omega_{\text{spin}} \, a^4 \sum_{x} \langle O O_{\text{spin}}(x) \rangle_{\text{stat}} \\ &\coloneqq \langle O \rangle_{\text{stat}} &+ \omega_{\text{kin}} \langle O \rangle_{\text{kin}} + \omega_{\text{spin}} \langle O \rangle_{\text{spin}} \end{split}$$

with path integral average to be taken with respect to the lowest order action

$$\langle O \rangle_{\text{stat}} = \frac{1}{\mathcal{Z}} \int_{\text{fields}} O \exp \left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x)] \right)$$

Correlation functions up to $O(1/m_b)$

Definition of expectation values in HQET

$$\begin{split} \langle O \rangle &= \langle O \rangle_{\text{stat}} &+ \omega_{\text{kin}} \, a^4 \sum_{x} \langle OO_{\text{kin}}(x) \rangle_{\text{stat}} \\ &+ \omega_{\text{spin}} \, a^4 \sum_{x} \langle OO_{\text{spin}}(x) \rangle_{\text{stat}} \\ &\coloneqq \langle O \rangle_{\text{stat}} &+ \omega_{\text{kin}} \langle O \rangle_{\text{kin}} + \omega_{\text{spin}} \langle O \rangle_{\text{spin}} \end{split}$$

with path integral average to be taken with respect to the lowest order action

$$\langle O \rangle_{\text{stat}} = \frac{1}{\mathcal{Z}} \int_{\text{fields}} O \exp \left(-a^4 \sum_{x} [\mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x)] \right)$$

Renormalized expansion in $1/m_b$

$$[f_{A}]_{R}(x_{0}, \theta) = Z_{A}^{HQET} Z_{\zeta_{h}} Z_{\zeta} e^{-m_{b}x_{0}} \times$$

$$[f_{A}^{stat} + c_{A}^{HQET} f_{\delta A}^{stat} + \omega_{kin} f_{A}^{kin} + \omega_{spin} f_{A}^{spin}]$$

$$f_{\delta A}^{\mathrm{stat}}(x_0, \theta) = -\frac{a^6}{2} \sum_{\mathbf{y}, \mathbf{z}} \left\langle \delta A_0^{\mathrm{stat}}(x) \, \overline{\zeta}_{\mathrm{h}}(\mathbf{y}) \, \gamma_5 \, \zeta_{\mathrm{l}}(\mathbf{z}) \right\rangle$$

Renormalized expansion in $1/m_b$

$$[f_1]_{\mathsf{R}}(x_0, \theta) = Z_{\zeta_{\mathsf{h}}}^2 Z_{\zeta}^2 e^{-m_{\mathsf{b}}T} \times \left[f_1^{\mathsf{stat}} + \omega_{\mathsf{kin}} f_1^{\mathsf{kin}} + \omega_{\mathsf{spin}} f_1^{\mathsf{spin}} \right]$$

$$[k_1]_{\mathsf{R}}(x_0, \theta) = Z_{\zeta_{\mathsf{h}}}^2 Z_{\zeta}^2 e^{-m_{\mathsf{b}}\mathsf{T}} \times$$

$$\left[f_1^{\mathsf{stat}} + \omega_{\mathsf{kin}} f_1^{\mathsf{kin}} - \frac{1}{3} \omega_{\mathsf{spin}} f_1^{\mathsf{spin}} \right]$$

Non-perturbative matching

Renormalization at leading order in 1/m

- Consider matrix element Φ^{QCD}
 massless limit → chiral symmetry → no μ− but m−dependence
- In HQET arbitrary renorm. sceme \rightarrow no m- but $\mu-$ dependence
- Matching $\Phi^{\rm QCD}(m) = \tilde{C}_{\rm match}(m,\mu) \times \Phi(\mu) + O(1/m)$
- Perturbative expansion $\tilde{C}_{\text{match}}(m,\mu) = 1 + c_1(m/\mu)\bar{g}^2(\mu) + ...$

Renormalization at NLO in 1/m

- Power divergences in HQET parameters
- Perturbative renormalization not sufficient, non-perturbative method required

Renormalization at leading order in 1/m

- Consider matrix element Φ^{QCD}
 massless limit → chiral symmetry → no μ− but m−dependence
- In HQET
 arbitrary renorm. sceme → no m− but μ− dependence
- Matching $\Phi^{\rm QCD}(m) = \tilde{C}_{\rm match}(m,\mu) \times \Phi(\mu) + O(1/m)$
- Perturbative expansion $\tilde{C}_{\text{match}}(m,\mu) = 1 + c_1(m/\mu)\bar{g}^2(\mu) + ...$

Renormalization at NLO in 1/m

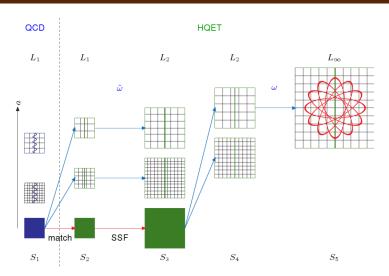
- Power divergences in HQET parameters
- Perturbative renormalization not sufficient, non-perturbative method required

- Introduction
 - What is HQET?
- 2 HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- Trom QCD to HQET
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

$N_{\text{HQET}} = 5$

ω_{i}	definition	classical	static
		value	value
$\overline{\omega_1}$	<i>m</i> _{bare}	<i>m</i> _b	m ^{stat} bare
ω_2	$ln(Z_A^{\rm stat})$	0	$\ln(Z_{A,RGI}^{ m stat}C_{ m PS})$
ω_3	$c_A^{(1)}$	$-1/(2m_{\rm b})$	ac^{stat}_{A}
ω_4	ω_{kin}	$1/(2m_{\rm b})$	0
ω_5	$\omega_{\sf spin}$	$1/(2m_{\rm b})$	0

Illustration of the strategy



- N_{HQET} observables Φ_i(L, M, a) needed (with M RGI mass of the heavy quark)
- Chosen from combinations of SF correlation function that they are renormalizable in a suitable way
- $\exists \Phi_i(L, M, 0)$
- Pick observables that have a linear expansion in $\omega_{\rm i}$ for HQET

$$\Phi(L, M, a) = \eta(L, a) + \phi(L, a)\omega(M, a)$$

- N_{HQET} observables Φ_i(L, M, a) needed (with M RGI mass of the heavy guark)
- Chosen from combinations of SF correlation function that they are renormalizable in a suitable way
- $\exists \Phi_i(L, M, 0)$
- Pick observables that have a linear expansion in ω_i for HQET

$$\Phi(L,M,a) = \eta(L,a) + \phi(L,a)\omega(M,a)$$

$$\Phi_{i}^{QCD}(L_{1},M,0) = \lim_{a \to 0} \Phi_{i}^{QCD}(L_{1},M,a)$$

- N_{HQET} observables Φ_i(L, M, a) needed (with M RGI mass of the heavy quark)
- Chosen from combinations of SF correlation function that they are renormalizable in a suitable way
- $\exists \Phi_i(L, M, 0)$
- Pick observables that have a linear expansion in ω_i for HQET

$$\Phi(L, M, a) = \eta(L, a) + \phi(L, a)\omega(M, a)$$

$$\Phi_{i}^{QCD}\big(L_{1},\textit{M},0\big) = \lim_{a \rightarrow 0} \Phi_{i}^{QCD}\big(L_{1},\textit{M},a\big)$$

S_1

Elements of $\Phi^{QCD}(L_1, m, a)$

1
$$L\Gamma^{P} = -L\tilde{\partial}_{0} \{ \ln \left[-f_{A}(x_{0} = T/2, \theta_{0}) \right] \}$$

2 In
$$\left[\frac{-f_A(x_0 = T/2, \theta_0)}{\sqrt{f_1(\theta_0)}} \right]$$

3
$$R_A = \ln \left[f_A(x_0 = T/2, \theta_1) / f_A(x_0 = T/2, \theta_2) \right]$$

•
$$R_1 = \frac{1}{4} \left\{ \ln \left[f_1(\theta_1) k_1(\theta_1)^3 \right] - \ln \left[f_1(\theta_2) k_1(\theta_2)^3 \right] \right\}$$

$$\mathbf{5} \quad \frac{3}{4} \ln \left[\frac{f_1(\theta_0)}{k_1(\theta_0)} \right]$$

• θ_i from SF with $\theta_1 < \theta_2$

S_2 and S_3 (SSF)

Impose matching

Introduction

$$\Phi(L_1 \approx 0.4 \,\text{fm}, M, a) = \Phi^{QCD}(L_1 \approx 0.4 \,\text{fm}, M, 0)$$

(Choose L_1 that $1/L_1 \ll m_b$ for precise HQET expansion and while doing continuum extrapolation keep $am_b < 1/2$)

• Invert expression for $\Phi(L_1, M, a)$ which is linear in ω $\tilde{\omega} := \phi^{-1}(L_1, a) [\Phi^{QCD}(L_1, M, 0) - \eta(L_1, a)]$

Impose matching

Introduction

$$\Phi(L_1 \approx 0.4 \, \text{fm}, M, a) = \Phi^{QCD}(L_1 \approx 0.4 \, \text{fm}, M, 0)$$

(Choose L_1 that $1/L_1 \ll m_b$ for precise HQET expansion and while doing continuum extrapolation keep $am_b < 1/2$)

- Invert expression for $\Phi(L_1, M, a)$ which is linear in ω $\tilde{\omega} := \phi^{-1}(L_1, a)[\Phi^{QCD}(L_1, M, 0) - \eta(L_1, a)]$
- Then one needs $\Phi(L, M, 0)$ at larger $L = L_2$

$$\Phi(L_2, M, 0) = \lim_{a \to 0} [\eta(L_2, a) + \phi(L_2, a)\tilde{\omega}(M, a)]$$

S_2 and S_3 (SSF)

Impose matching

Introduction

$$\Phi(L_1 \approx 0.4 \, \text{fm}, M, a) = \Phi^{QCD}(L_1 \approx 0.4 \, \text{fm}, M, 0)$$

(Choose L_1 that $1/L_1 \ll m_b$ for precise HQET expansion and while doing continuum extrapolation keep $am_b < 1/2$)

- Invert expression for $\Phi(L_1, M, a)$ which is linear in ω $\tilde{\omega} := \phi^{-1}(L_1, a)[\Phi^{QCD}(L_1, M, 0) - \eta(L_1, a)]$
- Then one needs $\Phi(L, M, 0)$ at larger $L = L_2$

$$\Phi(L_2, M, 0) = \lim_{a \to 0} [\eta(L_2, a) + \phi(L_2, a)\tilde{\omega}(M, a)]$$

(can be done as long as $s = L_2/L_1 = n_2/n_1$

with $n_i = L_i/a$ is kept fixed at small ratio to keep cutoff effects a smooth function of a/L_i)

Impose matching

Introduction

$$\Phi(L_1 \approx 0.4 \, \text{fm}, M, a) = \Phi^{QCD}(L_1 \approx 0.4 \, \text{fm}, M, 0)$$

(Choose L_1 that $1/L_1 \ll m_b$ for precise HQET expansion and while doing continuum extrapolation keep $am_b < 1/2$)

- Invert expression for $\Phi(L_1, M, a)$ which is linear in ω $\tilde{\omega} := \phi^{-1}(L_1, a)[\Phi^{QCD}(L_1, M, 0) - \eta(L_1, a)]$
- Then one needs $\Phi(L, M, 0)$ at larger $L = L_2$

$$\Phi(L_{2}, M, 0) = \lim_{a \to 0} [\eta(L_{2}, a) + \phi(L_{2}, a)\tilde{\omega}(M, a)]$$

(can be done as long as $s = L_2/L_1 = n_2/n_1$

with $n_i = L_i/a$ is kept fixed at small ratio to keep cutoff effects a smooth function of a/L_i)

Get ω

Introduction

$$\omega(M, a) := \phi^{-1}(L_2, a)[\Phi(L_2, M, 0) - \eta(L_2, a)]$$

 $(\phi^{-1} \text{ and } \eta \text{ from simulation } S_4)$

• Interpolate to desired value of β

$$\Phi(L_2, M, 0) = \eta^{b}(L_2, 0) + \lim_{a/L_1 \to 0} \left(\Sigma(L_1, a) [\Phi(L_1, M, 0) - \eta^{b}(L_1, a)] + \hat{\Sigma}(L_1, a) \right)$$

$$(\eta = \eta^{a} + \eta^{b} \text{ with } \eta^{b}_{i \le 2} = 0)$$

S_4 and S_5

Get ω

Introduction

$$\omega(M, a) := \phi^{-1}(L_2, a)[\Phi(L_2, M, 0) - \eta(L_2, a)]$$

 $(\phi^{-1}$ and η from simulation S_4)

• Interpolate to desired value of β

$$\Phi(L_2, M, 0) = \eta^{b}(L_2, 0) + \lim_{a/L_1 \to 0} \left(\Sigma(L_1, a) [\Phi(L_1, M, 0) - \eta^{b}(L_1, a)] + \hat{\Sigma}(L_1, a) \right)$$

$$(\eta = \eta^{a} + \eta^{b} \text{ with } \eta_{i \leq 2}^{b} = 0)$$

Simulation	L	Theory	L/a
S ₁	L ₁	QCD	40, 32, 24, 20
S_2	L_1	HQET	16, 12, 10, 8, 6
S_3	L_2	HQET	32, 24, 20, 16, 12
S_4	L_2	HQET	16, 12, 8

(Della Morte et al., 2008; Blossier et al., 2009)

- QCD f_A , f_1 , k_1 and further correlation functions for calculating $f_A^{impr.}$ (depend on θ , κ and on x_0 (f_A only))
- HQET $f_A, f_{\delta A}, f_A^{\text{kin}}, f_A^{\text{spin}}, f_1, f_1^{\text{kin}}, f_1^{\text{spin}}$ (depend on θ , action (HYP1/HYP2) and on x_0 ($f_A s$ only))

Simulation	L	Theory	L/a
S ₁	<i>L</i> ₁	QCD	40, 32, 24, 20
S_2	L_1	HQET	16, 12, 10, 8, 6
S_3	L_2	HQET	32, 24, 20, 16, 12
S_4	L_2	HQET	16, 12, 8

(Della Morte et al., 2008; Blossier et al., 2009)

- QCD
 f_A, f₁, k₁ and further correlation functions for calculating f_A^{impr.}
 (depend on θ, κ and on x₀ (f_A only))
- HQET f_A , $f_{\delta A}$, f_A^{kin} , f_A^{spin} , f_1 , f_1^{kin} , f_1^{spin} (depend on θ , action (HYP1/HYP2) and on x_0 ($f_A s$ only))
- $\theta = 0, 0.5$ or 1 Same value for all spatial dimensions! (remember $\psi(x + L\hat{k}) = e^{i\theta}\psi(x)$ from the SF)

Simulation	L	Theory	L/a
S ₁	L ₁	QCD	40, 32, 24, 20
S_2	L_1	HQET	16, 12, 10, 8, 6
S_3	L_2	HQET	32, 24, 20, 16, 12
S_4	L_2	HQET	16, 12, 8

(Della Morte et al., 2008; Blossier et al., 2009)

- QCD
 - f_A , f_1 , k_1 and further correlation functions for calculating $f_A^{\text{impr.}}$ (depend on θ , κ and on x_0 (f_A only))
- HQET f_A , $f_{\delta A}$, f_A^{kin} , f_A^{spin} , f_1 , f_1^{kin} , f_1^{spin} (depend on θ , action (HYP1/HYP2) and on x_0 ($f_A s$ only))
- $\theta = 0, 0.5$ or 1 Same value for all spatial dimensions! (remember $\psi(x + L\hat{k}) = e^{i\theta}\psi(x)$ from the SF)

"Software code"

- Functions and define constants (n_{lattice}^{QCD} , used values of θ , ...)
- Read from input files: paths to folders with input data, tli coefficients for Σ, η, Φ
- Loop over n_{lattice}^{QCD}
 - Read from input files values for κ , ...
 - Loop over all values stored in input file (lines)
 - "If sequence" to check, if line in input file fits to relevant data for computation yes → store in array
 - Call function to perform binning and then jackknifing
 - Call function to compute $\Phi_i^{QCD}(L, M, a)$
- Take continuum limit (call function that uses Gauss-Jordan algorithm)

"Software code"

- Loop over n_{lattice}^{HQET}
 - Read from input files values for θ , ...
 - Loop over all values stored in input file (lines)
 - "If sequence" to check if line in input file fits to relevant data for computation yes → store in array
 - Call function to perform binning and then jackknifing
 - Call functions to compute functions build of correlation functions (e.g. combination with different values for θ)
 - Depending on lattice call function to calculate $\Sigma_{ij}, \eta_i, ...$
- Perform necessary continuum limits $(\rightarrow \Phi(L_2, M, 0))$
- Loop over lattices from S₄
 - Compute ω for each combination of $\kappa_{\rm S}$ and HYP1/HYP2
- Interpolate
- · Output of all computed data

- Introduction
 - What is HQET?
- 2 HQET and its Lagrangian
 - Continuum HQET
 - Lattice HQET
- 3 HQET and the Schrödinger Functional
 - Correlation functions
- 4 "From QCD to HQET"
 - Step Scaling Function
 - C++ program
- Outlook / Summary
 - Applications

Up to now only reproducing results but

now use software for...

• Some data with $N_f = 2$

(ALPHA Collaboration, 2010/2011)

- Investigation of the quark mass dependence of the mass splitting (between B and B*) in the B-meson system from the charm region to the static limit
 - $\Delta m = m_{\text{B}^*} m_{\text{B}} = \frac{2\lambda_2^{\text{RGI}}}{M_{\text{b}}} C_{\text{spin}} (M_{\text{b}}/\Lambda_{\overline{\text{MS}}}) + O(1/M_{\text{b}}^2)$
 - Analysis of new data from (quenched) simulations beyond the matching point at m_b to clarify the issue
- 3 ...

Outlook

Up to now only reproducing results but

now use software for...

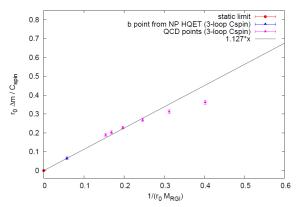
• Some data with $N_f = 2$

(ALPHA Collaboration, 2010/2011)

- Investigation of the quark mass dependence of the mass splitting (between *B* and *B**) in the B-meson system from the charm region to the static limit
 - $\Delta m = m_{\text{B}^*} m_{\text{B}} = \frac{2 \lambda_{\text{B}}^{\text{RGI}}}{M_{\text{b}}} C_{\text{spin}} \left(M_{\text{b}} / \Lambda_{\overline{\text{MS}}} \right) + O(1 / M_{\text{b}}^2)$
 - Analysis of new data from (quenched) simulations beyond the matching point at m_b to clarify the issue
- **3** ..

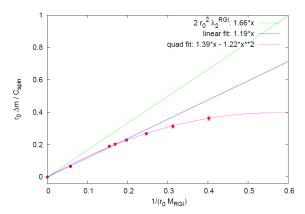
Spin Splitting - Expectation

Compilation of quenched data in the charm region and from HQET (ALPHA Collaboration, 2008-2010)

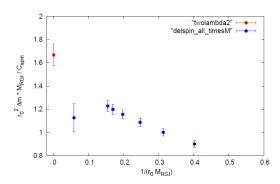


• Linear behavior expected when plotting $\Delta m/C_{\rm spin} \left(M_{\rm b}/\Lambda_{\overline{\rm MS}}\right)$ against $1/M_{\rm b}$

Slope $\varpropto \lambda_2^{RGI}$ also directly (and independently) computable in HQET



• Comparison of fits with calculated value for $r_0^2 \lambda_2^{\text{RGI}}$



• $\Delta m M_{\rm b} = 2 \lambda_2^{\rm RGI} C_{\rm spin} \left(M_{\rm b} / \Lambda_{\overline{\rm MS}} \right) + O(1/M_{\rm b})$

- Roughly constant behaviour in b-quark region expected, if O(1/M_b²) corrections are small
- Large $O(1/M_b^2)$ corrections for the spin-splitting in the b-region?
- Investigate problematic region with data from mentioned further simulations

Summary

- Why do we need HQET?
- **1** How can we derive \mathcal{L} for HQET?
- What does the SF offer us for HQET?
- What are the parameters of HQET?
- Mow can we compute them?
- What is to do next?

Thank you for your attention!

Literature

Overview

 Sommer, R.: Introduction to Non-perturbative HQET. arXiv: hep-lat/1008.0710

Sommer, R.:

Non-perturbative QCD: renormalization, O(a)-improvement and matching to Heavy Quark Effective Theory.

arXiv: hep-lat/0611020

• $N_f = 0$

 Heitger, J.; Sommer, R.: Non-perturbative Heavy Quark Effective Theory. arXiv: hep-lat/0310035

 Blossier, B.; Della Morte, M.; Garron, N.; Sommer, R.: HQET at order 1/m: I. Non-perturbative parameters in the quenched approximation.

arXiv: hep.lat/1001.4783.

 Della Morte, M.; Garron, N.; Papinutto, M.; Sommer, R.: Heavy Quark Effective Theory computation of the mass of the bottom quark. arXiv: hep-ph/0609294

N_f = 2

ALPHA Collaboration:

B meson spectrum and decay constant from Nf=2 simulations arXiv: 1012 1357