

Creutz fermions

Lars Zeidlewicz

Institut für Theoretische Physik WWU Münster

FS QFT May 26, 2008

- Creutz, *Four-dimensional graphene and chiral fermions* arXiv:0712.1201; JHEP 0804:017, 2008
- Boriçi, *Parameter Free Creutz Fermions* arXiv:0712.4401
- Bedaque, Buchoff, Tiburzi, Walker-Loud, Broken Symmetries from Minimally Doubled Fermions arXiv:0801.3361 Search for Fermion Actions on Hyperdiamond Lattices arXiv:0804.1145
- Cichy, Gonzalez Lopez, Jansen, Kujawa, Shindler, *Twisted Mass, Overlap and Creutz Fermions: Cut-off Effects at Tree-level of Perturbation Theory* arXiv:0802.3637

Naive discretization: replace derivatives by finite differences:

$$\partial_{\mu}\psi(x) \rightarrow \frac{1}{2a}(\psi(x+a\hat{\mu})-\psi(x-a\hat{\mu}))$$

But:

- Additional zeros of lattice momenta sin(p_µ) lead to 15 doublers.
- Nielsen-Ninomiya: Chirally symmetric doubler-free lattice fermion formulation is not possible. (1981)

• Wilson fermions:

- Naive fermions + Wilson term.
- Chiral symmetry explicitly broken.
- Additive quark mass renormalization: $m_q = Z(m_0 m_c(g))$.
- Staggered fermions:
 - Spreads spinor components over a 2^d hypercube.
 - Reduces number of doublers to 4 ("tastes").
 - $U(1)_R \otimes U(1)_L$ chiral symmetry.
 - Further reduction of doublers by rooting.
- Ginsparg-Wilson fermions:
 - Chiral symmetry in terms of Ginsparg-Wilson relation: $\{D, \gamma_5\} = a_{\rho}^{1} D \gamma_5 D$
 - Overlap and Domain Wall fermions.

An ancestor of Creutz fermions

Wilczek 1987: Phys. Rev. Lett. 59 2397-2400

$$\mathcal{L} = \sum_{\mu} \gamma_{\mu} \mathit{f}_{\mu}(\mathcal{p})$$

- Find functions $f_{\mu}(p)$ to minimize doubling (to two).
- Possible choice with zeros at (0, 0, 0, 0) and $(0, 0, 0, \pi)$:

$$f_j = \sin(ap_j)/a$$
 $f_4 = \left(\sin(ap_4) + \lambda \sum_{j=1}^3 \sin^2(ap_j/2)\right)/a$

• Requires fine tuning of additional relevant operator.

Castro-Nieto et. al., arXiv:0709.1163

- 2d lattice of Carbon atoms.
- Interesting because graphene is building block of graphite, fullerens, and nanotubes.
- sp^2 hybridization: σ -bonds between lattice neighbours.
- The "additional" electrons form π orbitals.

Low energy excitations:

- Nearest neighbour hopping of electrons in π orbitals.
- Described by a massless Dirac equation.

- Hopping between *a* and *b* sites.
- Choose coordinate system as indicated with sites (*x*₁, *x*₂).
- Introduce creation operators a_{x_1,x_2}^{\dagger} , b_{x_1,x_2}^{\dagger} that obey anticommutation relations.

Hamiltonian in position space given by sum over all possible (nearest neighbour) hoppings:

$$\begin{split} \mathcal{H} = & \mathcal{K} \sum_{(x_1, x_2)} \left(a_{x_1, x_2}^{\dagger} b_{x_1, x_2} + b_{x_1, x_2}^{\dagger} a_{x_1, x_2} + a_{x_1 + 1, x_2}^{\dagger} b_{x_1, x_2} \right. \\ & \left. + b_{x_1 - 1, x_2}^{\dagger} a_{x_1, x_2} + a_{x_1, x_2 - 1}^{\dagger} b_{x_1, x_2} + b_{x_1, x_2 + 1}^{\dagger} a_{x_1, x_2} \right) \end{split}$$

T

- Hopping between *a* and *b* sites.
- Choose coordinate system as indicated with sites (*x*₁, *x*₂).
- Introduce creation operators $a_{x_1,x_2}^{\dagger}, b_{x_1,x_2}^{\dagger}$ that obey anticommutation relations.

In momentum space:
$$a_{(x_1,x_2)} = \int_{-\pi}^{\pi} \frac{d^2 p}{(2\pi)^2} e^{i(p_1x_1+p_2x_2)} a_{(p_1,p_2)}$$

$$H = K \int \frac{d^2 p}{(2\pi)^2} \left(a^{\dagger}_{(p_1, p_2)}, b^{\dagger}_{(p_1, p_2)} \right) \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix} \begin{pmatrix} a_{(p_1, p_2)} \\ b_{(p_1, p_2)} \end{pmatrix}$$
$$z = 1 + e^{-ip_1} + e^{+ip_2} \qquad E(p_1, p_2) = \pm K|z|$$
hus $E = 0 \Leftrightarrow |z| = 0 \Leftrightarrow p_1 = p_2 = \pm 2\pi/3.$

Creutz, http://latticeguy.net/slides/grapheneslides.pdf (May 15, 2008)

- $E = 0 \Leftrightarrow |z| = 0 \Leftrightarrow p_1 = p_2 = \pm 2\pi/3.$
- Chiral symmetry: $\{H, \sigma_3\} = 0$
- Two fermion flavours of opposite chirality.

- Construction of 4d Hamiltonian $H = \gamma_5 D$.
- Starting point mimics 2d case:

$$z = B(4C - \cos(p_1) - \cos(p_2) - \cos(p_3) - \cos(p_4)) + i\sigma_x(\sin(p_1) + \sin(p_2) - \sin(p_3) - \sin(p_4)) + i\sigma_y(\sin(p_1) - \sin(p_2) - \sin(p_3) + \sin(p_4)) + i\sigma_z(\sin(p_1) - \sin(p_2) + \sin(p_3) - \sin(p_4))$$

- Local action, not unique.
- $|z| = 0 \Rightarrow C < 1$
- For $C > \frac{1}{2}$: Two solutions $\pm p_j = \tilde{p} = a\cos(C)$.

Introduction Fermions Graphene Creutz action Boriçi action Symmetries Perturbation theory Summary
Fermion action by Creutz

$$H = \gamma_5 D = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix}$$
$$\gamma_k = \sigma_x \otimes \sigma_k \qquad \gamma_4 = -\sigma_y \otimes 1 \qquad \gamma_5 = \sigma_z \otimes 1$$

$$D_{C} = K \left(-4iBC\gamma_{4} + iB\gamma_{4}\sum_{\mu=1}^{4}\cos(p_{\mu}) + i\sum_{j=1}^{3}\gamma_{j}s_{j}(p) \right)$$

where

$$s_1(p) = \sin(p_1) + \sin(p_2) - \sin(p_3) - \sin(p_4)$$

$$s_2(p) = \sin(p_1) - \sin(p_2) - \sin(p_3) + \sin(p_4)$$

$$s_3(p) = \sin(p_1) - \sin(p_2) + \sin(p_3) - \sin(p_4)$$

Continuum behaviour

Expand $D_C(p)$ about one of its zeros: $p = \tilde{p} + q$: $S = \sqrt{1 - C^2}$

$$egin{aligned} D_{C} &pprox \ i \gamma_{1} \textit{KC} \left(q_{1} + q_{2} - q_{3} - q_{4}
ight) \ &+ i \gamma_{2} \textit{KC} \left(q_{1} - q_{2} - q_{3} + q_{4}
ight) \ &+ i \gamma_{3} \textit{KC} \left(q_{1} - q_{2} + q_{3} - q_{4}
ight) \ &+ i \textit{KBS} \gamma_{4} \left(q_{1} + q_{2} + q_{3} + q_{3}
ight) \end{aligned}$$

Therefore choose new momenta k_{μ} to reproduce Dirac matrix:

$$k_1 = KC(q_1 + q_2 - q_3 - q_4)$$

$$k_2 = KC(q_1 - q_2 - q_3 + q_4)$$

$$k_3 = KC(q_1 - q_2 + q_3 - q_4)$$

$$k_4 = KBS(q_1 + q_2 + q_3 + q_4)$$

Near $p = \tilde{p} - q$ one finds $k_4 \rightarrow -k_4$, i. e. opposite chirality.

Lattice generated by k_{μ} should be orthogonal. This fixes the angles between the axes generated by the q_{μ} 's.

$$\cos heta = rac{B^2 S^2 - C^2}{B^2 S^2 + 3C^2}$$

$$k_{1} = KC(q_{1} + q_{2} - q_{3} - q_{4})$$

$$k_{2} = KC(q_{1} - q_{2} - q_{3} + q_{4})$$

$$k_{3} = KC(q_{1} - q_{2} + q_{3} - q_{4})$$

$$k_{4} = KBS(q_{1} + q_{2} + q_{3} + q_{4})$$

N.B.: *q*-lattice is orthogonal $\Leftrightarrow B = C/S$

Use translated and rescaled Creutz action:

•
$$C = 1/\sqrt{2}$$
 and $B = C/S = 1$; $S = \sqrt{1 - C^2} = C$

•
$$\cos(ilde{p}+q_\mu)=C\cos(q_\mu)-S\sin(q_\mu)$$

•
$$\sin(ilde{p}+q_\mu)=S\cos(q_\mu)+C\sin(q_\mu)$$

•
$$s_4(q) = -\sum_{\mu=1}^4 \sin(q_\mu)$$

$$D_B(q) = i \sum_{\mu=1}^{4} \gamma_\mu \left(s_\mu(q) + c_\mu(q) \right) = i \left(\gamma, s(q) + c(q) \right)$$

$$c_1(q) = \cos(q_1) + \cos(q_2) - \cos(q_3) - \cos(q_4)$$

$$c_2(q) = \cos(q_1) - \cos(q_2) - \cos(q_3) + \cos(q_4)$$

$$c_3(q) = \cos(q_1) - \cos(q_2) + \cos(q_3) - \cos(q_4)$$

$$c_4(q) = \sum_{\mu=1}^{4} \left(\cos(q_\mu) - 1 \right)$$

Use translated and rescaled Creutz action:

•
$$C = 1/\sqrt{2}$$
 and $B = C/S = 1$; $S = \sqrt{1 - C^2} = C$

•
$$\cos(ilde{
ho}+q_\mu)=C\cos(q_\mu)-S\sin(q_\mu)$$

•
$$\sin(ilde{p}+q_\mu)=S\cos(q_\mu)+C\sin(q_\mu)$$

•
$$s_4(q) = -\sum_{\mu=1}^4 \sin(q_\mu)$$

$$D_B(q) = i \sum_{\mu=1}^4 \gamma_\mu \left(s_\mu(q) + c_\mu(q) \right) = i \left(\gamma, s(q) + c(q) \right)$$

Via an orthogonal transformation:

$$D_B(q) = i \sum_{\mu=1}^4 \gamma_\mu \sin(q_\mu) + i \sum_{\mu=1}^4 \Gamma_\mu (\cos(q_\mu) - 1)$$

 γ_{μ} , Γ_{μ} : two different sets of Dirac matrices.

$$S_{C} = \frac{1}{2} \sum_{x} \sum_{\mu=1}^{4} \left(\overline{\psi}(x) (\tilde{\Gamma}_{\mu} + iB\gamma_{4}) \psi(x + \hat{\mu}) - \overline{\psi}(x) (\tilde{\Gamma}_{\mu} - iB\gamma_{4}) \psi(x - \hat{\mu}) \right) - 4iBC \sum_{x} \overline{\psi}(x) \gamma_{4} \psi(x)$$

with

$$\tilde{\mathsf{\Gamma}}_{\mu} = \sum_{k} \gamma_{k} \Xi_{k\mu}, \quad s_{k}(\boldsymbol{p}) = \sum_{\mu} \Xi_{k\mu} \sin(\boldsymbol{p}_{\mu})$$

- $\tilde{\Gamma}_{\mu}$ is neither a Dirac matrix nor a vector!
- Chiral symmetry: $\{\gamma_5, D_C\} = 0$

"Ordinary" C,P,T,CP symmetries are broken. arXiv:0801.3361 For example:

 $P: \quad \overline{\psi}\gamma_j \sin(p_4)\psi \quad \to \quad \overline{\psi}\gamma_4 \gamma_j \sin(p_4)\gamma_4\psi = -\overline{\psi}\gamma_j \sin(p_4)\psi$ $T: \quad \overline{\psi}\gamma_4\psi \quad \to \quad \overline{\psi}\gamma_4\gamma_5 \gamma_4 \gamma_5\gamma_4\psi = -\overline{\psi}\gamma_4\psi$

Therefore:

- New relevant operators demand fine-tuning of extra parameters.
- Are there possible new symmetries substituting the standard ones? arXiv:0804.1145

Permutation symmetries for zeros

Creutz' suggestion for a lattice with high symmetry:

 $C = \cos(\pi/5), B = \sqrt{5}$

- Zeros in momentum space are distributed equally.
- Above lattice has 120 element symmetry.

in general:

- Action distinguishes k₄ ~ (q₁ + q₂ + q₃ + q₄) (appears in the site diagonal term): There's only time-reversal in this direction.
- In space 4! = 24 element symmetry group left.
 (3d diamond lattice)
- Thus 48 element symmetry group; possible difficulties because of special treatment of time?

Introduction Fermions Graphene Creutz action Boriçi action Symmetries Perturbation theory Summary
Discretization effects

- Perturbation theory: m_p , m_{PS} , f_{PS} .
- C = 3/√10 and B = 3 for correct continuum limit of propagator. (also C = 3/√14)
- $\mathcal{O}(a^2)$ scaling behaviour.

Finite T: Stefan-Boltzmann-Limit

- Pressure for gas of $(n_f = 2)$ free fermions: $p/p_{SB} = 90/(21\pi^2) \ln \text{Det}M_F$
- $C = 1/\sqrt{2}$, B = 1 (only choice that seems to work).
- Use q₄-axis for Matsubara sum.

What is so special about Boriçi fermions?

Creutz action

Explanation attempts...

Graphene

Fermions

Restriction to N_t = 4k, k ∈ Z in analogy to staggered fermions?!

Borici action

- B = C/S: orthogonal lattice.
- $C = 1/\sqrt{2}$: q_4 axis as time axis (in general $k_4(q)$).

- k_{μ} generate x_{μ} axes.
- q_4 generates $Q_4 = \frac{1}{2}(-C, C, -C, C).$

Perturbation theory

Summary

- Stepwidth in *Q*₄ direction: *aC*
- Demand same temperature $T = \frac{1}{aN_t} = \frac{1}{(aC)N_t\sqrt{2}}$ $\Rightarrow C = 1/\sqrt{2}.$

- Creutz fermions are motivated by electronic structure of graphene.
- Local: only nearest neighbour interactions.
- Chiral symmetry, minimal doubling.
- $N_f = 2$ on a (non-hypercubic) lattice.
- Possible problems: C,P,T,CP are broken; new symmetries?
- How to perform a Matsubara sum for general Creutz lattices?
- Gauging for arbitrary C, B?