Chapter 4
The Wave Equation

Ancther classcd example of ahyperbalic PDE is awave ejuation. The wave equa-
tion is a seand-order linea hyperbolic PDE that describes the propagation o a
variety of waves, such as sound @ water waves. It arises in diff erent fields auch as
aoudtics, eledromagnetics, or fluid dyrnamics. Inits Smplest form, the wave equa-
tionrefersto ascdar functionu = u(r,t), r € R" that satisfies:

d%u

W :Cz DZU. (41)

Here 002 denatesthe Lapladanin R" and c is a constant speed of the wave propaga-
tion. An even more compad form of Eq. (4.1) is given by

Ou=0,

where = 02— 1 2 isthe d' Alembertian.

4.1 The Wave Equation in 1D

The wave equationfor the scdar u in the one dimensional case reals

ot2 = 7 9’

The one-dimensional wave equation (4.2) can be solved exadly by d Alembert’'s
method, using a Fourier transform method, or via separation o variables. To ill us-
trate the ideaof the d’ Alembert method, let usintroducenew coordinates (£, ) by
use of the transformation

4.2

§=x—ct, n =x+ct. (4.3)
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In the new coordinate system one ca write

1
Uxx:UE§+2UE,7+Unn, gutt:USEleJEn‘i’Unn,
and Eq. (4.2) becomes
ou
0&on

That is, the function u remains constant along the aurves (4.3), i.e., Eqg. (4.3) de-
scribes charaderistic curves of the wave equation (4.2) (seeApp. B). Moreover, one
can seethat the derivative du/d¢& does not dependsonn, i.e.,

d (du du
2(%)-0- %0
After integrationwith resped to £ one obtains

u(&,n)=F(&)+Gn),

where F is the primitive function o f and G is the "constant of integration, in
genera the function o n. Turning bad to the wordinates (x,t) one obtains the
general solution o Eq. (4.2)

(4.4)

| u(x,t) = F(x—ct) + G(x+ct). | (4.5)

4.1.1 Solution of thel VP

Now let us consider an initial value problem for Eq. (4.2):

Wt = Uy, t>0,
u(x,0) = f(x), (4.6)
U (x,0) = g(x).

To write down the general solution of the IVP for Eq. (4.2), one neels to exspress
the abitrary function F and G in terms of initial data f and g. Usingthe relation

0 0

—F(x—ct)=—cF'(x—ct), where F'(x—ct):= oF

= F(&)

one becomes:



After differentiation o the first equationwith resped to x one can solve the system
intermsof F'(x) andG/(x), i.e.,

Fo9=3(f00-ga).  Gw=5(rx+aw).

F(x)zéf(x)_zic/:

where the integration constant C is chasen in such a way that the initial condtion
F(x) + G(x) = f(x) isfullfield. Alltogether one obtains:

X

gy)dy+C. G =51+ 5 [ gdy—C.

u(x,t) = %(f(XCt)+ f(x+ ct)) + 2—10/):? g(y)dy|. 4.7)

4.1.2 Numerical Treatment

4.1.2.1 A Simple Explicit Method

Thefirst ideais just to use central differences for bath time and spacederivatives,
ie,

i . o
w2 U 2 u o —2u +ul 49
AT X2 ’ '
or, with a = cAt/Ax
uWt =t 21— a?)ul Fa?l Ul ) (4.9)

Schematicd representation o the scheme (4.9) is hown onFig. 4.1.
Note that one shoud aso implement initial conditions (4.6). In order to imple-
ment the secondinitial condtion ore needs the virtual paint u; 2,

0.0 =gx) = U0 4 (o
W(X,Y) =9g(X) = At .

.\ tj41
Fig. 4.1 Schematica visu- I G - 7h
dizaion o the numericd
scheme (4.9) for (4.2). tj 4




With g := g(x;) one can rewrite the last expresson as
ut=ul - 2Atg + O0(A?),

and the sesoondtime row can be cdculated as

1
ut = Atgi+ (1—ad)fi + Eorz(fH + fiy1), (4.10)

where u(x;,0) = W0 = f(x) = fi.

von Neumann Stability Analysis

In order to investigate the stability of the explicit scheme (4.9) we start with the
usua ansatz (1.21) _
g =gld,

which leads to the foll owing expresdon for the amplificaionfador g(k)
¢? =2(1-a?g—1+2a’gcos(kAx).

After severa transformationsthe last expresson beacomesjust a quadratic equation
for g, namely
9>~ 2Bg+1=0, (4.11)

where

1o (KX
B=1 20{sm(2).

Solutions of the equationfor g(k) read

gi2=B++vB?—1.

Noticethat if |3| > 1 then at least one of absolute value of gy » is bigger that ore.
Therefor one shoud desirefor |B| < 1, i.e.,

gr2=pB+ivp2-1
and
97 =p*+1-p*=1.
That is, the scheme (4.9) is condtional stable. The stability condtionreads
—1< 12a29n2<%(> <1,

what is equivalent to the standart CFL condtion (2.7)



Fig. 4.2 Schematicd visual-
izaion o the implicit numeri-
cd scheme (4.12) for (4.2). — o ® ®

4.1.2.2 An Implicit Method

One can try to overcome the problems with condtional stability by introducing an
implicit scheme. The simplest way to doit is just to replace # terms on the right
hand side of (4.8) by an average from the values to the time steps j +1 and j — 1,
i.e

Wt ood vl @2 ( i1
u —

j—1 j—1 j+1 j+1 j+1
INE =5 (Wi 2l +u T+ 2! +u{1).(4.12)

i+1

Schematicd diagramm of the numericd scheme (4.12) is shown onFig. (4.2).
Let us ched the stahility of the implicit scheme (4.12). To this aim we use the

standart ansatz _
g =g j ks

leading to the equationfor g(k)
Bg*—29+pB =0
with A
B—1+ 2cxzsin2<TX) .

One can seethat 3 > 1 for al k. Hencethe solutions g » take the form

i Y
oo LV

and 1 (1_g?
|g|2: _(B;B):l

That is, the implicit scheme (4.12) is absolute stable.

Now, the question is, whether the implicit scheme (4.12) is better than the explicit
scheme (4.9) form numericd point of view. To answer this question, let us analyse
dispersionrelationfor the wave equation (4.2) aswell asfor both schemes (4.9) and
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Fig. 4.3 Dispersion relation
for the one-dimensional wave 1 .
equation (4.2), caculated us- 05
ing the explicit (blue arves)
and implicit (red curves) % 02 oz 06 08 1
methods (4.9) and (4.12). ka xim
(4.12). The exad dispersionrelationis
w = +ck,

i.e, al Fourier modes propagate withou dispersion with the same phase velocity
w/k = +c. Usingthe ansatz u! ~ €%~1%4 for the explicit method(4.9) one obtains:

cos(wAt) = 1 — a?(1— cos(kAX)), (4.13
whil e for the implicit method (4.12)

1
cos(wAt) = 17 o2(1— coskix) (4.19)

One can seethat for a — 0 bath methods provide the same result, otherwise the
explicit scheme (4.9) always excealsthe implicit one (seeFig. (4.3)). For a = 1the
scheme (4.9) bemmes exad, while (4.12) deviates more and more from the exad
value of w for increasing a. Hence for Eq. (4.2) there ae no motivation to use
implicit schemeinstead of the explicit one.

4.1.3 Examples

Example 1.
Use the explicit method (4.9) to solve the one-dimansional wave equation (4.2):
ut =4uy for xe[0,L] and tel0,T] (4.15

with boundry condtions



Fig. 4.4 Spacetime evolution
of Eq. (4.15) with the initia
distribution u(x, 0) = sin(7x),
U (x,0) =0.
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Asame that theinitial position and velocity are

u(x,0) = f(x) = sin(rnx),

Other parametersare:;

Space i nterval

and w(x,0)=g(x) =0.

L=10

Space discretization step|Ax=0.1
Time discretization step [|[At=0.05
Amount of tinme steps T=20

First one can find the d’ Alambert solution. In the cae of zero initial velocity

Eq. (4.7) becomes

fix—2t)+ f(x+2t) _ sinm(x—2t) +sin7(x+ 2t)

u(x,t) = 5

5 = sin(7x) cos(2t),

i.e., the solutionisjust a sum of atravelling waves with initial form, given by %
Numericd solution o (4.15) is shown onFig. (4.4).

Example 2.

Solve Eg. (4.15) with the same boundrry condtions. Assume now, that initial dis-

tributions of positionand velocity are

0, x€][0,xq];

u(x,0)=f(x) =0 and w(x0)=g(x) =410, XE€ x1,%];

Other parametersare;

0, X€&[x,L].



Fig. 4.5 Spacetime evolu-
tion o Eq. (4.15) with the
initial distributionu(x,0) = 0,
U (x,0) = g(x).

Initial nonzero velocity |/gp=0.5

Initial space intervals x1=L/4, x,=3L/4
Space i nterval L=10

Space di scretization step|Ax=0.1

Time discretization step [|[At=0.05

Amount of tine steps T =400

Numericd solution o the problemis shown onFig. (4.5).

Example 3. Vibrating String
Use the explicit method(4.9) to solve the wave equation for avibrating string:
W =CUuy for xe[0,l] and te[0,T], (4.16)
where ¢ = 1 with the boundary condtions
u0,t)=0  u(L,t)=0.
Asamethat theinitial position and velocity are
u(x,0) = f(x) =sin(nrix/L), and w(x,0)=g(x)=0, n=123,....

Other parametersare;

Space i nterval L=1

Space discretization step||Ax=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Usually a vibrating string produces a sound whose frequency is constant. There-
fore, sincefrequency charaderizesthe pitch, the sound poduced is a cmnstant note.
Vibrating strings are the basis of any string instrument like guitar or cdlo. If the
spedl of propagationc is known, one can cdculate the frequency of the sound po-



duced bythe string. The speed of propagation o awave cis equal to the wavelength
multi plied by the frequency f:
c=Af

If thelength of the stringis L, the fundamental harmonic is the one produced by the
vibrationwhase nodes are the two ends of the string, so L is half of the wavelength

of the fundamental harmonic, so c

2L
Solutionsof the equationin questionaregivenin form of standingwaves. The stand-
ingwaveis awave that remainsin a constant position. This phenomenoncan occur
because the medium is movingin the oppasite diredion to the wave, or it can arise
in a stationary medium as a result of interference between two waves traveling in
oppdasite diredions (seeFig. (4.6))
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Fig. 4.6 Standingwavesin astring. The fundamental mode and the first five overtones are shown.
The red dds represent the wave nodes.




4.2 The Wave Equation in 2D
4.2.1 Examples

4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solve atwo-dimansional wave
equation

Ut = CZ(UXX+UW)5 u= U(X,y,t)
onthe recanguar domain [0, L] x [0, L] with Dirichlet boundry conditions. Other
parameters are:

Space interval L=1

Space discretization step|[Ax=Ay=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Initial condition u(x,y,0) = 4x2y(1—x)(1-y)

Numericd solution o the problem for two diff erent time momentst = 0 andt =500
can be seen onFig. (4.7)
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Fig. 4.7 Numericd solution o the two-dimensional wave eguation, shown for t = 0 andt = 500



