
Chapter 3
Boundary Value Problem

A boundary value problem (BVP) is a problem, typically an ODEor a PDE, which
has values assigned on the physical boundary of the domain inwhich the problem
is specified. Let us consider a genearal ODE of the form

x(n) = f (t, x, x′, x′′, · · · ,x(n−1)) , t ∈ [a, b] (3.1)

At t = a andt = b the solution is supposed to satisfy

r1(x(a)x′(a), · · · ,x(n−1)(a), x(b)x′(b), · · · ,x(n−1)(b)) = 0, (3.2)
...

rn(x(a)x′(a), · · · ,x(n−1)(a), x(b)x′(b), · · · ,x(n−1)(b)) = 0.

The resulting problem (3.1)–(3.2) is called atwo point boundary value problem[8].
In order to be useful in applications, a BVP (3.1)–(3.2) should bewell posed. This
means that given the input to the problem there exists a unique solution, which
depends continuously on the input. However, questions of existence and uniqueness
for BVPs are much more difficult than for IVPs and there is no general theory.

3.1 Single shooting methods

3.1.1 Linear shooting method

Consider a linear two-point second-order BVP of the form

x′′(t) = p(t)x′(t)+q(t)x(t)+ r(t) , t ∈ [a, b] (3.3)

with
x(a) = α , x(b) = β .
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The main idea of the method is to reduce the solution of the BVP(3.3) to the solution
of an initial value problem [10, 6]. Namely, let us consider two special IVPs for two
functionsu(t) andv(t). Suppose thatu(t) is a solution of the IVP

u′′(t) = p(t)u′(t)+q(t)u(t)+ r(t) , u(a) = α , u′(a) = 0

andv(t) is the unique solution to the IVP

v′′(t) = p(t)v′(t)+q(t)v(t) , v(a) = 0, v′(a) = 1.

Then the linear combination

x(t) = u(t)+cv(t) , c = const. (3.4)

is a solution to BVP (3.3). The unknown constantc can be found from the boundary
condition on the right end of the time interval, i.e.,

x(b) = u(b)+cv(b) = β ⇒ c =
β −u(b)

v(b)
.

That is, ifv(b) 6= 0 the unique solution of (3.3) reads

x(t) = u(t)+
β −u(b)

v(b)
v(t) .

Example 1

Let us solve a BVP [6]

x′′(t) =
2t

1+ t2 x′(t)−
2

1+ t2 x(t)+1, (3.5)

x(0) = 1.25, x(1) = −0.95.

over the time intervalt ∈ [0, 4] using the linear shooting method (3.4).
According to Eq. (3.4) the solution of this equation has the form

x(t) = u(t)−
0.95+u(4)

v(4)
v(t) ,

whereu(t) andv(t) are solutions of two IVPs

u′′(t) =
2t

1+ t2 u′(t)+
2

1+ t2 u(t)+1, u(0) = 1.25, u′(0) = 0

and

v′′(t) =
2t

1+ t2 v′(t)+
2

1+ t2 v(t) , v(0) = 0, v′(0) = 1.



Fig. 3.1 Numerical solution
of Eq. (3.5) over the interval
[0, 4] by the linear shooting
method (3.4).

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

4

t

u,
v,

x

 

 

u(t)

v(t)

x(t)

Numerical solution of the problem 3.5 as well as both dunctionsu(t) andv(t) are
presented on Fig. 3.1

3.1.2 Single shooting for general BVP

For a general BVP for a second-order ODE, the simple shootingmethod is stated as
follows: Let

x′′(t) = f (t, x(t), x′(t)) , t ∈ [a, b] (3.6)

x(a) = α, x(b) = β .

be the BVP in question and letx(t, s) denote the solution of the IVP

x′′(t) = f (t, x(t), x′(t)) , t ∈ [a, b] (3.7)

x(a) = α, x′(a) = s,

wheres is a parameter that can be varied. The IVP (3.7) is solved withdifferent val-
ues ofswith, e.g., RK4 method till the boundary condition on the right sidex(b) = β
becomes fulfilled. As mentioned above, the solutionx(t, s) of (3.7) depends on the
parameters. Let us define a function

F(s) := x(b, s)−β .

If the BVP (3.6) has a solution, then the functionF(s) has a root, which is just the
value of the slopex′(a) giving the solutionx(t) of the BVP in question. The zeros
of F(s) can be found with, e.g.,Newton’s method[7].
The Newton’s method is probably the best known method for finding numerical
approximations to the zeroes of a real-valued function. Theidea of the method is



to use the first few terms of the Taylor series of a functionF(s) in the vicinity of a
suspected root, i.e.,

F(sn +h) = F(sn)+F ′(sn)h+O(h2) .

wheresn is a n’th approximation of the root. Now if one insertsh = s− sn, one
obtains

F(s) = F(sn)+F ′(sn)(s−sn) .

As the next approximationsn+1 to the root we choose the zero of this function, i.e.,

F(sn+1) = F(sn)+F ′(sn)(sn+1−sn) = 0 ⇒ sn+1 = sn−
F(sn)

F ′(sn)
. (3.8)

The derivativeF ′(sn) can be calculated using the forward difference formula

F ′(sn) =
F(sn + δ s)−F(sn)

δ s

whereδ s is small. Notice that this procedure can be unstable near a horizontal
asymptote or a local extremum.

Example 1

Consider a simple nonlinear BVP [10]

x′′(t) =
3
2

x(t)2
, (3.9)

x(0) = 4, x(1) = 1

over the intervalt ∈ [0, 1] and let us solve it numerically with the single shooting
method discussed above. First of all we define a corresponding IVP

x′′(t) =
3
2

x(t)2 x(0) = 4, x′(0) = s

overt ∈ [0, 1] and solve it for different values ofs, e.g.,s∈ [−100, 0] with the clas-
sical RK4 method. The result of calculation is presented on Fig. 3.2 (a). One can
see, that the functionF(s) = x(t, s)−1 admits two zeros, depicted on Fig. 3.2 (a)
as green points. In order to find them we use the Newton’s method, discussed
above. The method gives an approximation to both zeros of thefunction F(s):
s = {−35.8,−8.0}, which give the right slopex′(0). Both solutions, correspond-
ing to two different values ofsare presented on Fig. 3.2 (b).
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Fig. 3.2 Numerical solution of BVP (3.9) with single shooting method. (a) The FunctionF(s) =
x(t, s)−1 is presented. Green points depict two zeros of this function, which can be found with
Newton’s method. (b) Two solutions of (3.9) corresponding to two different values of parameters
(the red line corresponds tos= −35.8, whereas the blue one – tos= −8.0).

Example 2

Let us consider a linear eigenvalue problem of the form

x′′ + λ x = 0, x(0) = x(1) = 0, x′(0) = 1 (3.10)

overt ∈ [0, 1] with the simple shooting method. The exact solution is

λ = n2 π2
, n∈ N .

In order to apply the simple shooting method we consider a corresponding IVP of
the first order with additional equation for the unknown function λ (t):

x′ = y, y′ = −λ x, λ ′ = 0

with
x(0) = 0, x′(0) = 1, λ (0) = s.

wheres is a free shooting parameter. Here we chooses= {0.5, 50, 100}. Results of
the shooting with these initial parameters are shown on Fig.3.3. One can see, that
numerical solutions correspond to first three eigenvaluesλ = {π2

,(2π)2
,(3π)2}.

Example 3

Consider a nonlinear BVP of the fourth order [8]



Fig. 3.3 Numerical solu-
tions of Eq. (3.10) over
the interval[0, 1] by sin-
gle shooting method. First
three eigenfunctions, cor-
responding to eigenvalues
λ = {π2

, (2π)2
, (3π)2} are

presented.
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λ=50
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x(4)(t)− (1+ t2)x′′(t)2 +5x(t)2 = 0, t ∈ [0, 1] (3.11)

with
x(0) = 1, x′(0) = 0, x′′(1) = −2, x′′′(1) = −3.

Our goal is to solve this equation with the simple shooting method. To this end, first
we rewrite the equation as a system of four ODE’s of the first order:

x′1 = x2 ,

x′2 = x3 , x1(0) = 1, x3(1) = −2,

x′3 = x4 , x2(0) = 0, x4(1) = −3,

x′4 = (1+ t2)x2
3−5x2

1 .

As the second step we consider correspondig IVP

x′1 = x2 ,

x′2 = x3 , x1(0) = 1, x3(1) = p,

x′3 = x4 , x2(0) = 0, x4(1) = q,

x′4 = (1+ t2)x2
3−5x2

1

with two free shooting parametersp andq. The solution of this IVP fulfilles follow-
ing two requirements:

F1(p, q) : = x3(1, p, q)+2= 0,

F2(p, q) : = x4(1, p, q)+3= 0.

That is, a system of nonlinear algebraic equations should besolved to find(p, q).
The zeros of the system can be found with the Newton’s method (3.8). In this case
the iteration step reads



Fig. 3.4 Numerical solutions
of (3.11) over the interval
[0, 1] by single shooting
method. Parameters are:∆ p=
∆q = 0.05, the time step
h = 0.025, initial shooting
parameters(p0 ,q0) = (0, 0).
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si+1 = si −
F(si)

DF(si)

wheres= (p, q)T , F = (F1, F2)
T and

DF(si) =

( ∂F1
∂ p

∂F1
∂q

∂F2
∂ p

∂F2
∂q

)

is a Jacobian of the system and

∂Fi

∂ p
=

Fi(p+ ∆ p, q)−Fi(p, q)

∆ p
,

∂Fi

∂q
=

Fi(p, q+ ∆q)−Fi(p, q)

∆q
,

wherei = 1, 2 and∆ p, ∆q are given values. Numerical solution of the problem in
question is presented on Fig. 3.4.

3.2 Finite difference Method

One way to solve a given BVP over the time intervalt ∈ [a, b] numerically is to
approximate the problem in question byfinite differences[8, 10, 6]. We form a
partition of the domain[a, b] usingmesh points a= t0,t1, . . . ,tN = b, where

ti = a+ ih , h =
b−a

N
, i = 0, 1, . . . N .

Difference quotient approximations for derivatives can beused to solve BVP in
question [10, 6]. In particular, using a Taylor expansion inthe vicinity of the point



t j , for the first derivative one obtainsa forward difference

x′(ti) =
x(ti+1)−x(ti)

h
+O(h) . (3.12)

In a similar way one getsa backward difference

x′(ti) =
x(ti)−x(ti−1)

h
+O(h) . (3.13)

We can combine these two approaches and derivea central difference, which yields
a more accurate approximation:

x′(ti) =
x(ti+1)−x(ti−1)

2h
+O(h2) . (3.14)

The second derivativex′′(ti) can be found in the same way using the linear combi-
nation of different Taylor expansions. For example, a central difference reads

x′′(ti) =
x(ti+1)−2x(ti)+x(ti−1)

h2 +O(h2) . (3.15)

3.2.1 Finite Difference for linear BVP

Let us consider a linear BVP of the second order (3.3)

x′′ = p(t)x′(t)+q(t)x(t)+ r(t) , t ∈ [a, b] , x(a) = α , x(b) = β .

and introduce the notationx(ti) = xi , p(ti) = pi , q(ti) = qi andr(ti) = r i . Then, using
Eq. (3.14) and Eq. (3.15) one can rewrite Eq. (3.3) asa difference equation

x0 = α ,

xi+1−2xi +xi−1

h2 = pi
xi+1−xi−1

2h
+qi xi + r i , i = 1, . . . , N−1,

xN = β .

Now we can multiply both sides of the second equation withh2 and collect terms,
involving xi−1, xi andxi+1. As result we get a system of linear equations
(

1+
h
2

pi

)

xi−1− (2+h2qi)xi +

(

1−
h
2

pi

)

xi+1 = h2 r i , i = 1, 2, . . . N−1.

or, in matrix notation
Ax = b, (3.16)

or, more precisely



















−(2+h2q1) 1− h
2 p1 0 . . . . . . 0

1+ h
2 p2 −(2+h2q2) 1− h

2 p2 0 . . . 0
0 1+ h

2 p3 −(2+h2q3) 1− h
2 p3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1− h
2 pN−2

0 . . . . . . 0 1+ h
2 pN−1 −(2+h2qN−1)

































x1

x2

x3

·
·

xN−1

















=

















h2 r1− γ1

h2 r2

h2 r3

·
·

h2 rN−1− γN

















,

where

γ1 = α
(

h
2

p1 +1

)

, γN = β
(

1−
h
2

pN−1

)

.

Our goal is to find unknown vectorx. To this end we should invert the matrixA.
This matrix has a band structure and istridiagonal. For matrices of this kind a
tridiagonal matrix algorithm (TDMA), also known alsThomas algorithmcan be
used (see Appendix A for details).

Example

Solve a linear BVP [8]

−x′′(t)− (1+ t2)x(t) = 1, (3.17)

x(−1) = x(1) = 0

over t ∈ [−1, 1] with finite difference method. First we introduce discrete set of
nodesti = −1+ ih with given time steph. According to notations used in previ-
ous section,p(t) = 0, q(t) = −(1+ t2), r(t) = −1, α = β = 0. Hence, the linear
system (3.16) we are interested in reads

















−(2+h2q1) 1 0 . . . . . . 0
1 −(2+h2q2) 1 0 . . . 0
0 1 −(2+h2q3) 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0 . . . . . . 0 1 −(2+h2qN−1)

































x1

x2

x3

·
·

xN−1

















=−

















h2

h2

h2

·
·

h2

















.

The numerical solution of the problem in question is presented on Fig. 3.5.

3.2.2 Finite difference for linear eigenvalue problems

Consider a Sturm-Liouville problem of the form

−x′′(t)+q(t)x(t) = λ v(t)x(t) , (3.18)

overt ∈ [a, b] with



Fig. 3.5 Numerical solutions
of (3.17) over the interval
[−1, 1] by finite difference
method.
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x(a) = 0, x(b) = 0.

Introducing notationxi := x(ti), qi := q(ti), vi := v(ti), we can write down a differ-
ence equation for Eq. (3.18)

x0 = 0

−
xi+1−2xi +xi−1

h2 +qi xi −λ vi xi = 0, i = 1, . . . N−1,

xN = 0.

If vi 6= 0 for all i we can rewrite the difference equation above as an eigenvalue
problem

(A−λ I)x = 0 (3.19)

for a tridiagonal matrixA

A =





















2
h2 v1

+ q1
v1

−1
h2v1

0 . . . . . . 0
−1

h2v2

2
h2 v2

+ q2
v2

−1
h2v2

. . . . . . 0

0 −1
h2v3

2
h2 v3

+ q3
v3

−1
h2 v3

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1
h2vN−2

0 . . . . . . 0 −1
h2vN−1

2
h2 vN−1

+ q3
vN−1





















and a vectorx = (x1, x2, . . . , xN−1)
T .


