Chapter 3
Boundary Value Problem

A boundary value problem (BVP) is a problem, typically an O@ta PDE, which
has values assigned on the physical boundary of the domavhith the problem
is specified. Let us consider a genearal ODE of the form

X(n) = f(tv X, X/a Xl’v e 7X(nil))a te [av b] (31)
At t = aandt = b the solution is supposed to satisfy

ri(x(@x(a), --- ,x"Y(a), x(b)x'(b), --- ,x(" V(b)) =0, (3.2)

rm(x(@x(a), --- ,x"Y(a), x.(b) X' (b), -+ ,x("D(b)) = 0.

The resulting problem (3.1)—(3.2) is calledwo point boundary value problef8].

In order to be useful in applications, a BVP (3.1)—(3.2) dtddae well posed This
means that given the input to the problem there exists a ensglution, which
depends continuously on the input. However, questionsiefence and uniqueness
for BVPs are much more difficult than for IVPs and there is noagal theory.

3.1 Single shooting methods

3.1.1 Linear shooting method

Consider a linear two-point second-order BVP of the form
X'(t) = p(t)X () +at)x(t) +r(t), telab] (3.3)

with

x(@=a, x(b) =p.
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The main idea of the method is to reduce the solution of the B/®) to the solution
of an initial value problem [10, 6]. Namely, let us consideotspecial IVPs for two
functionsu(t) andv(t). Suppose thai(t) is a solution of the IVP

() = pOUM) +atut) +rt),  u@=a, U(@)=0
andv(t) is the unique solution to the IVP
V() =pt)V(t)+qt)v(t), v(@=0, V(a)=1.
Then the linear combination
X(t) = u(t) +cvut), c=const (3.4)

is a solution to BVP (3.3). The unknown constarmian be found from the boundary
condition on the right end of the time interval, i.e.,

B—u(b)
v(b)

That s, ifv(b) # 0 the unique solution of (3.3) reads
B—u(b)

x(b) =u(b) +cvib)=B =c=

X(t) = u(t) + V(o) (t).
Example 1
Let us solve a BVP [6]
X'(t) = 1itt2x’(t)—ﬁx(t)+l, (3.5)

x(0) = 1.25, X(1) = —0.95.

over the time interval € [0, 4] using the linear shooting method (3.4).
According to Eq. (3.4) the solution of this equation has threrf

mw=wu—$§§$ﬂwm

whereu(t) andv(t) are solutions of two IVPs

/! 2t / 2 /
u’(t) = mu (t)+mu(t)+1, u(0) = 1.25, u(0)=0
and ot 5
V/(t) = 1+t2\/(t)jL 1+t2v(t), v(0) =0, V(0)=1.
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Fig. 3.1 Numerical solution
of Eq. (3.5) over the interval L L el
[0, 4] by the linear shooting °© 05 1 15 2 25 3 35 4
method (3.4).

Numerical solution of the problem 3.5 as well as both dumgtig(t) andv(t) are
presented on Fig. 3.1

3.1.2 Single shooting for general BVP

For a general BVP for a second-order ODE, the simple shoatigttod is stated as
follows: Let

X'(t) = f(t, x(t),X (1)), tela b (3.6)
x(a) = a, x(b)=B.

be the BVP in question and Ig(t, s) denote the solution of the IVP

X'(t) = f(t, x(t),X (1)), tela b (3.7)

x(@) = a, X(a)=s,

wheresis a parameter that can be varied. The IVP (3.7) is solveddiftbrent val-
ues ofswith, e.g., RK4 method till the boundary condition on thentigidex(b) = 3
becomes fulfilled. As mentioned above, the solutin s) of (3.7) depends on the
parametes. Let us define a function

F(s) :=x(b,s)— .

If the BVP (3.6) has a solution, then the functiB(s) has a root, which is just the
value of the slope!(a) giving the solutiorx(t) of the BVP in question. The zeros
of F(s) can be found with, e.gNewton’s metho7].

The Newton’s method is probably the best known method foriritnchumerical
approximations to the zeroes of a real-valued function. iflea of the method is



to use the first few terms of the Taylor series of a funcidg) in the vicinity of a
suspected root, i.e.,

F(sh+h) =F () +F'(s))h+ & (hP).

wheres, is an'th approximation of the root. Now if one inserts= s— s,, one
obtains

F(s) =F(sn)+F'(sn) (s—n).
As the next approximatios, 1 to the root we choose the zero of this function, i.e.,

F(sn)
F/(sn)

The derivativeF’(sy) can be calculated using the forward difference formula

F(sni1) =F(s) +F'(s0) (1 —s) =0 =1 = — (3.8)

where ds is small. Notice that this procedure can be unstable nearriadmbal
asymptote or a local extremum.

Example 1

Consider a simple nonlinear BVP [10]

W®:5mﬁ (3.9)

over the intervat € [0, 1] and let us solve it numerically with the single shooting
method discussed above. First of all we define a correspgiidin

overt € [0, 1] and solve it for different values af e.g.,s € [-100, 0] with the clas-
sical RK4 method. The result of calculation is presented ign &2 (a). One can
see, that the functioR (s) = x(t, s) — 1 admits two zeros, depicted on Fig. 3.2 (a)
as green points. In order to find them we use the Newton’s rdettiiscussed
above. The method gives an approximation to both zeros ofithetion F(s):
s= {—35.8, —8.0}, which give the right slop&’(0). Both solutions, correspond-
ing to two different values of are presented on Fig. 3.2 (b).
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Fig. 3.2 Numerical solution of BVP (3.9) with single shooting meth¢al) The FunctiorF(s) =
X(t,s) — 1 is presented. Green points depict two zeros of this fungctidhich can be found with
Newton’s method. (b) Two solutions of (3.9) correspondiagwio different values of parametsr
(the red line corresponds 3= —35.8, whereas the blue one —$e= —8.0).

Example 2

Let us consider a linear eigenvalue problem of the form
X'+Ax=0, x0)=x(1)=0, X(0)=1 (3.10)
overt € [0, 1] with the simple shooting method. The exact solution is
A=n’m?, neN.

In order to apply the simple shooting method we consider sesponding IVP of
the first order with additional equation for the unknown fiime A (t):

X =y, y=-Ax, A =0

with
x(0)=0, X(0)=1, A(0)=s.

wheresis a free shooting parameter. Here we chaose{0.5, 50, 100}. Results of
the shooting with these initial parameters are shown on3:R).One can see, that
numerical solutions correspond to first three eigenvalues{, (2m)?, (31)2}.

Example 3

Consider a nonlinear BVP of the fourth order [8]



—A\=0.5
—A=50

041 x=100

0.3f

0.2f

Fig. 3.3 Numerical solu- o1r
tions of Eq. (3.10) over

the interval [0, 1] by sin- of
gle shooting method. First | |
three eigenfunctions, cor- o

responding to eigenvalues

A= {7'[2,(27T)2,(37T)2} are 0 02 04 . 06 08 1
presented.

XD (1) - (1+t3)X'(1)2 +5x(1)2=0, te]o,1] (3.11)
with

x(0)=1, ¥X(0)=0, ¥'(1)=-2, x"(1)=-3.

Our goal is to solve this equation with the simple shootinghrad. To this end, first
we rewrite the equation as a system of four ODE’s of the firdear

X = X2,
Xy = X3, x1(0) =1, X3(1) = -2,
X,3 = X4, XZ(O):Ov )(4(1):*?%

X, = (1+1t3)x2—5x2.

As the second step we consider correspondig IVP

X/l == X2,
X = X3, x1(0)=1,  x3(1)=p,
Xg = X4, x(0)=0, x(1)=q,

X = (1+1%)x6 -5

with two free shooting parametepsandg. The solution of this IVP fulfilles follow-
ing two requirements:

Fi(p,q): = x3(1,p,q)+2=0,
F2(p.0) 1 = x4(1, p, ) +3=0.
That is, a system of nonlinear algebraic equations shoukbheed to find(p, g).

The zeros of the system can be found with the Newton's metB@].(In this case
the iteration step reads
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Fig. 3.4 Numerical solutions

of (3.11) over the interval |

[0, 1] by single shooting 0.861
method. Parameters ar®p = 0.84f
Aq = 0.05, the time step

h = 0.025, initial shooting 0 0z 04 o o :
parametergpo,go) = (0, 0).

S+1=S—

wheres= (p,q)T, F = (F1, F2)" and

is a Jacobian of the system and

dF  F(p+Ap,q) —F(p,q)

ap Ap ’
9F _ Fi(p,a+4q)—Fi(p, )
aq Aq ’

wherei = 1, 2 andAp, Aq are given values. Numerical solution of the problem in
question is presented on Fig. 3.4.

3.2 Finitedifference Method

One way to solve a given BVP over the time interval [a, b] numerically is to
approximate the problem in question fbiyite differenced8, 10, 6]. We form a
partition of the domairia, b] usingmesh points a tg,t1,...,tn = b, where

_b-a

tt=a+ih, h N

i=0,1,...N.

Difference quotient approximations for derivatives canused to solve BVP in
question [10, 6]. In particular, using a Taylor expansiothia vicinity of the point



tj, for the first derivative one obtairssforward difference

X’(ti) — Mr:merﬁ(h) (3.12)

In a similar way one geta backward difference

X(t) — X(ti—1)

X(t) = P

+0(h). (3.13)
We can combine these two approaches and dersentral differencewhich yields
a more accurate approximation:

X(tit1) —X(ti-1)

X(t) = >h

+0(h?). (3.14)
The second derivative'(t;) can be found in the same way using the linear combi-
nation of different Taylor expansions. For example, a @dwlifference reads

B X(ti+1) — 2X(t) +x(ti—1)

X'(t) = > +0(h?). (3.15)

3.2.1 Finite Differencefor linear BVP

Let us consider a linear BVP of the second order (3.3)
X'=pO)X () +qt)x(t) +r(t), telabl, x@=a, xb)=B.

and introduce the notatiotit;) = x;, p(ti)) = pi, q(t)) = gi andr (t;) =r;. Then, using
Eq. (3.14) and Eq. (3.15) one can rewrite Eg. (3.3} difference equation

Xo =0,
Xit1 — 2Xi 4+ Xi—1 Xiy1—Xi-1 )
h2 = pi >h +aiX +ri, i=1,...,N—-1,
XN :ﬁ.

Now we can multiply both sides of the second equation Wwftland collect terms,
involving x;_1, X; andx;; 1. As result we get a system of linear equations

h h .
(1+ > pi)xal 2+ hzqi)xi + (1 > pi)><a+1 = h?r; , i=1,2,...N—1.

or, in matrix notation
Ax=bh, (3.16)

or, more precisely



—(2+h%g) 1-8p 0 0 X1
1+83p —(2+hPq) 1-0p 0 0 X2

0 1+5ps —(2+h%g3) 1-5ps ... 0 X3
..................................................... 1fgpN,2

0 0 1+0py_1 —(2+Man-1)/ \Xn-1

h h
V10<§p1+1), )'NB(lEION1>-

Our goal is to find unknown vectot. To this end we should invert the matrix
This matrix has a band structure andtiigliagonal. For matrices of this kind a
tridiagonal matrix algorithm (TDMA), also known alBhomas algorithntan be
used (see Appendix A for details).

Example

Solve a linear BVP [8]

—X'(t) — (L+t?)x(t) = 1, (3.17)

overt € [—1, 1] with finite difference method. First we introduce discregt sf
nodest; = —1+ih with given time steph. According to notations used in previ-
ous sectionp(t) =0, q(t) = —(1+12), r(t) = —1, a = B = 0. Hence, the linear
system (3.16) we are interested in reads

—(2+0y) 1 0o ... 0 X1 h?
1 —(2 + hqu) 1 o ... 0 X2 h?
0 1 —(24hMg) 1 ... 0 x3 | _ | h?
......................................... 1 : :
0 e e 0 1 -—(24—h2qN,l) XN—1 h?

The numerical solution of the problem in question is preseéioin Fig. 3.5.

3.2.2 Finite difference for linear eigenvalue problems

Consider a Sturm-Liouville problem of the form
—X"(t) +q(t)x(t) = A v(t) x(t), (3.18)

overt € [a, b] with

h2ri—y
h2r2
h2r3

h2rn-—1— W
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Fig. 3.5 Numerical solutions 0t
of (3.17) over the interval 0 ‘ ‘ ‘
[—1, 1] by finite difference -t 05 9 05 !
method.

x(a) =0, x(b) =0.

Introducing notations := x(t;), g := q(ti), vi := v(ti), we can write down a differ-
ence equation for Eq. (3.18)

X =0
Xit1— 2% + X .
_%‘f’cﬁxi_/\wxi:o, i=1,...N-1,
xn = 0.

If v # 0 for all i we can rewrite the difference equation above as an eigesvalu
problem

(A=Al)x=0 (3.19)
for a tridiagonal matrixA
2 4o 1
Pu v v 0 0
—1 2 + 7] —1 0
h2V2 "?Tz Vo h2V2 N e
0 -1 2 4+ 8B =1 0
A — h2V3 h2V3 V3 h2V3 e
............................................ RRREE
...................................... T
0 0 =1 2 . B

hZVN,l hZVN,l VN-1



