
Chapter 5
Sine-Gordon Equation

The sine-Gordon equation is a nonlinear hyperbolic partialdifferential equation in-
volving the d’Alembert operator and the sine of the unknown function. The equa-
tion, as well as several solution techniques, were known in the nineteenth century
in the course of study of various problems of differential geometry. The equation
grew greatly in importance in the 1970s, when it was realizedthat it led tosolitons
(so-called ”kink“ and ”antikink“). The sine-Gordon equation appears in a number of
physical applications [14, 7, 27], including applicationsin relativistic field theory,
Josephson junctions [21] or mechanical trasmission lines [24, 21].
The equation reads

utt −uxx +sinu = 0, (5.1)

whereu = u(x, t). In the case of mechanical trasmission line,u(x, t) describes an
angle of rotation of the pendulums. Note that in the low-amplitude case (sinu ≈ u)
Eq. (5.1) reduces to the Klein-Gordon equation

utt −uxx + u = 0,

admiting solutions in the form

u(x, t) = u0 cos(k x−ω t) , ω =
√

1+ k2 .

Here we are interested in large amplitude solutions of Eq. (5.1).

5.1 Kink and antikink solitons

Let us look for travelling wave solutions of the sine-Gordonequation (5.1) of the
form

u(ξ ) := u(x− ct) ,
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Fig. 5.1 Representation of
the kink (blue) and antikink
(red) solutions (5.4) -3 -2 -1 0 1 2 3
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wherec is an arbitrary velocity of propagation andu → 0, uξ → 0, whenξ →
±∞ [21, 27]. In the co-moving frame Eq. (5.1) reads

(1− c2)uξ ξ = sinu .

Multiplying both sides of the last equation byuξ and integrating yields

1
2

u2
ξ (1− c2) = −cosu + c1 , (5.2)

wherec1 is an arbitrary constant of integration. Notice that we lookfor solutions for
which u → 0 anduξ → 0 whenξ → ±∞, soc1 = 1. Now we can rewrite the last
equation as

d u
sin u

2

= ± 2√
1− c2

d ξ . (5.3)

Integrating Eq. (5.3) yields

± 2√
1− c2

(ξ − ξ0) = 2 ln

(

tan
u
4

)

,

or

u(ξ ) = 4 arctan

(

exp

(

± ξ − ξ0√
1− c2

))

.

That is, the solution of Eq. (5.1) becomes

u(x, t) = 4 arctan

(

exp

(

± x− x0− ct√
1− c2

))

. (5.4)

Equation (5.4) represents a localized solitary wave, travelling at any velocity|c|< 1.
The± signs correspond to localized solutions which are calledkink andantikink,
respectively. For the mechanical transmission line, whenc increases from−∞ to+∞
the pendlums rotate from 0 to 2π for the kink and from 0 to−2π for the antikink.
(see Fig. 5.1)

One can show [14, 21], that Eq. (5.1) admits more solutions ofthe form

u(x, t) = 4 arctan

(

F(x)
G(t)

)

.



Fig. 5.2 The kink-kink col-
lision, calculated at three
different times: Att = −7
(red curve) both kinks propa-
gate with opposite velocities
c =±0.5; At t = 0 they collide
at the origin (green curve); At
t = 10 (blue curve) they move
away from the origin with
velocitiesc = ∓0.5.
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whereF andG are arbitrary functions. Namely, one distinguishes the kink-kink and
the kink-antikink collisions as well as the breather solution. Thekink-kink collision
solution reads

u(x,t) = 4 arctan

(c sinh
(

x√
1−c2

)

cosh
(

ct√
1−c2

)

)

(5.5)

and describes the collision between two kinks with respective velocitiesc and−c
and approaching the origin fromt →−∞ and moving away from it with velocities
±c for t → ∞ (see Fig. 5.2). In a similar way, one can construct solution,corre-
sponding to thekink-antikink collision. The solution has the form:

u(x,t) = 4 arctan

( sinh
(

ct√
1−c2

)

c ·cosh
(

x√
1−c2

)

)

(5.6)

The breather soliton solution, which is also called abreather mode or breather
soliton [21], is given by

uB(x,t) = 4 arctan

(
√

1−ω2 sin(ω t)

ω cosh(
√

1−ω2x)

)

(5.7)

which is periodic for frequenciesω < 1 and decays exponentially when moving
away fromx = 0. Now we are in the good position to look for numerical solutions

Fig. 5.3 The breather so-
lution, oscillating with the
frequencyω = 0.2 , calcu-
lated for three different times
t = 0 (red curve),t = 5 (green
curve) andt = 10 (blue curve).
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of Eq. (5.1).



5.2 Numerical treatment

A numerical scheme

Consider an IVP for the sine-Gordon equation (5.1):

utt −uxx +sin(u) = 0

on the intervalx ∈ [a, b] with initial conditions

u(x,0) = f (x), ut(x,0) = g(x) , (5.8)

and with, e.g., no-flux boundary conditions

∂u
∂x

∣

∣

∣

∣

x=a,b
= 0.

Let us try to apply a simple explicit scheme (4.9) to Eq. (5.1). The discretization
scheme reads

u j+1
i = −u j−1

i +2(1−α2)u j
i + α2(u j

i+1 + u j
i−1)−△t2 sin(u j

i ) (5.9)

with α = △t/△x, i = 0, . . . ,M andt = 0, . . . ,T . To the implementation of the sec-
ond initial condition one needs again the virtual pointu−1

i ,

ut(xi,0) = g(xi) =
u1

i −u−1
i

2△t
+O(△t2) .

Hence, one can rewrite the last expression as

u−1
i = u1

i −2△tg(xi)+O(△t2) ,

and the second time rowu1
i can be calculated as

u1
i =△t g(xi)+(1−α2) f (xi)+

1
2

α2( f (xi−1)+ f (xi+1))−
△t2

2
sin( f (xi)) . (5.10)

In addition, no-flux boundary conditions lead to the following expressions for two
virtual space pointsu j

−1 andu j
M+1:

∂u
∂x

∣

∣

∣

∣

x=a
= 0⇔

u j
1−u j

−1

2△x
= 0⇔ u j

−1 = u j
1 ,

∂u
∂x

∣

∣

∣

∣

x=b
= 0⇔

u j
M −u j

M+1

2△x
= 0⇔ u j

M+1 = u j
M .



One can try to rewrite the differential scheme to more general matrix form. In matrix
notation the second time-row is given by

u1 = △tγ1 + Au0− △t2

2
β1, (5.11)

where

γ1 =
(

g(a),g(x1),g(x2), . . . ,g(xM−1),g(b)
)T

and

β1 =
(

sin(u0
0),sin(u0

1), . . . ,sin(u0
M−1),sin(u0

M)
)T

areM + 1-dimensional vectors andA is a tridiagonal squareM + 1×M + 1 matrix
of the form

A =















1−α2 α2 0 . . .0
α2/2 1−α2 α2/2 . . .0

0 α2/2 1−α2 . . .0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . α2 1−α2















The boxed elements indicate the influence of boundary conditions. Other time rows
can also be written in the matrix form as

u j+1 = −u j−1 + Bu j −△t2β , j = 1, . . . ,T −1 (5.12)

Here
β =

(

sin(u j
0),sin(u j

1), . . . ,sin(u j
M−1),sin(u j

M)
)T

is aM +1-dimensional vector andB is a square matrix, defined by an equation

B = 2A.

Now we can apply the explicit scheme (5.9) described above toEq. (5.1). Let us
solve it on the interval[−L, L] with no-flux boundary conditions using the following
parameters set:

Space interval L=20
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 1800
Velocity of the kink c = 0.2

We start with the numerical representation of kink and antikink solutions. The initial
condition for the kink is



f (x) = 4 arctan

(

exp

(

x√
1− c2

))

,

g(x) = −2
c√

1− c2
sech

(

x√
1− c2

)

.

Figure 5.4 (a) shows the space-time plot of the numerical kink solution. For the
antikink the initial condition reads

f (x) = 4arctan

(

exp

(

− x√
1− c2

))

,

g(x) = −2
c√

1− c2
sech

(

x√
1− c2

)

.

Numerical solutions is shown on Fig. 5.4 (b).

(a) (b)

Fig. 5.4 Numerical solution of Eq. (5.1), calculated with the scheme(5.9) for the case of (a) the
kink and (b) antikink solitons, moving with the velocityc = 0.2. Space-time information is shown.

Now we are in position to find numerical solutions, corresponding to kink-kink
and kink-antikink collisions. For the kink-kink collisionwe choose

f (x) = 4 arctan

(

exp

(

x + L/2√
1− c2

))

+4 arctan

(

exp

(

x−L/2√
1− c2

))

,

g(x) = −2
c√

1− c2
sech

(

x + L/2√
1− c2

)

+2
c√

1− c2
sech

(

x−L/2√
1− c2

)

,

whereas for the kink-antikink collision the initial conditions are

f (x) = 4 arctan

(

exp

(

x + L/2√
1− c2

))

+4 arctan

(

exp

(

− x−L/2√
1− c2

))

,

g(x) = −2
c√

1− c2
sech

(

x + L/2√
1− c2

)

−2
c√

1− c2
sech

(

x−L/2√
1− c2

)

.



Numerical solutions, corresponding to both cases is presented on Fig. 5.5 (a)-(b),
respectively. Finally, for the case of breather we choose

(a) (b)

Fig. 5.5 Space-time representation of the numerical solution of Eq.(5.1) for (a) kink-kink collision
and (b) kink-antikink collision.

f (x) = 0,

g(x) = 4
√

1− c2sech

(

x
√

1− c2

)

.

Corresponding numerical solution is presented on Fig. 5.6.

Fig. 5.6 Space-time plot
of the numerical breather
solution, oscillating with the
frequencyω = 0.2.


