
Chapter 7
The Diffusion Equation

The diffusion equation is a partial differential equation which describes density fluc-
tuations in a material undergoing diffusion. The equation can be written as:

∂u(r, t)
∂ t

= ∇ ·
(

D(u(r,t), r)∇u(r,t)
)

, (7.1)

whereu(r, t) is the density of the diffusing material at locationr = (x,y,z) and time
t. D(u(r, t), r) denotes the collectivediffusion coefficientfor densityu at locationr.
If the diffusion coefficient doesn’t depend on the density, i.e.,D is constant, then
Eq. (7.1) reduces to the following linear equation:

∂u(r,t)
∂ t

= D∇2u(r,t) . (7.2)

Equation (7.2) is also calledthe heat equationand also describes the distribution of
a heat in a given region over time.

Equation (7.2) can be derived in a straightforward way from thecontinuity equa-
tion, which states that a change in density in any part of the system is due to inflow
and outflow of material into and out of that part of the system.Effectively, no mate-
rial is created or destroyed:

∂u
∂ t

+ ∇ ·Γ = 0,

whereΓ is the flux of the diffusing material. Equation (7.2) can be obtained easily
from the last equation when combined with the phenomenological Fick’s first law,
which assumes that the flux of the diffusing material in any part of the system is
proportional to the local density gradient:

Γ = −D∇u(r,t) .
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7.1 The Diffusion Equation in 1D

Consider an IVP for the diffusion equation in one dimension:

∂u(x,t)
∂ t

= D
∂ 2u(x,t)

∂x2 (7.3)

on the intervalx∈ [0, L] with initial condition

u(x, 0) = f (x), ∀x∈ [0, L] (7.4)

and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0 ∀t > 0. (7.5)

7.1.1 Analytical Solution

Let us attempt to find a nontrivial solution of (7.3) satisfying the boundary condi-
tions (7.5) using separation of variables [4], i.e.,

u(x,t) = X(x)T(t) .

Substitutingu back into Eq. (7.3) one obtains:

1
D

T ′(t)
T(t)

=
X′′(x)
X(x)

.

Since the right hand side depends only onx and the left hand side only ont, both
sides are equal to some constant value−λ (− sign is taken for convenience reasons).
Hence, one can rewrite the last equation as a system of two ODE’s:

X′′(x)+ λX(x) = 0, (7.6)

T ′(t)+DλT(t) = 0. (7.7)

Let us consider the first equation forX(x). Taking into account the boundary condi-
tions (7.5) one obtains (T(t) 6= 0 as we are loocking for nontrivial solutions)

u(0, t) = X(0)T(t) = 0 ⇒ X(0) = 0,

u(L, t) = X(L)T(t) = 0 ⇒ X(L) = 0.

That is, the problem of finding of the solution of (7.3) reduces to the solving of
linear ODE and consideration of three different cases with respect to the sign ofλ :

1. λ < 0:
X(x) = C1e

√
−λx +C2e−

√
−λx .



Taking into account the boundary conditions one getsC1 = C2 = 0, so forλ < 0
only the trivial solution exists.

2. λ = 0:
X(x) = C1x+C2

Again, due to the boundary conditions, one gets only trivialsolution of the prob-
lem (C1 = C2 = 0).

3. λ > 0:
X(x) = C1 cos(

√
λx)+C2 sin(

√
λx) .

Substituting of the boundary conditions leads to the following equations for the
constantsC1 andC2:

X(0) = C1 = 0,

X(L) = C2sin(
√

λL) = 0⇒ sin(
√

λL) = 0⇒ λn =

(

πn
L

)2

, n = 1,2, . . . .

Hence,

X(t) = Cnsin

(

πn
L

x

)

.

That is, the second equation for the functionT(t) takes the form:

T ′(t)+D

(

πn
L

)

T(t) = 0⇒ T(t) = Bn exp

(

−D

(

πn
L

)2

t

)

,

whereBn is constant.
Altogether, the general solution of the problem (7.3) can bewritten as

u(x, t) =
∞

∑
n=1

Ansin

(

πn
L

x

)

exp

(

−D

(

πn
L

)2

t

)

, An = const.

In order to findAn one can use the initial condition (7.4). Indeed, if we write the
function f (x) as a Fourier series, we obtain:

f (x) =
∞

∑
n=1

Fnsin
(πn

L
x
)

=
∞

∑
n=1

Ansin
(πn

L
x
)

,

An = Fn =
2
L

∫ L

0
f (ξ )sin

(πn
L

ξ
)

dξ .

Hence, the genetal solution of Eq. (7.3) reads:

u(x, t) =
∞

∑
n=1

(

2
L

∫ L

0
f (ξ )sin

(

πn
L

ξ
)

dξ
)

sin

(

πn
L

x

)

exp

(

−D
(πn

L

)2
t

)

. (7.8)



Fig. 7.1 Schematical repre-
sentation of the FTCS finite
difference scheme (7.9) for
solving the 1-d diffusion
equation (7.3).
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7.1.2 Numerical Treatment

The FTCS Explicit Method

Consider Eq. (7.3) with the initial condition (7.4). The first simple idea is an explicit
forward in time, central in space (FTCS) method [28, 22] (seeFig. (7.1)):

u j+1
i −u j

i

△t
= D

u j
i+1−2u j

i +u j
i−1

△x2 ,

or, with α = D △t
△x2

u j+1
i = (1−2α)u j

i + α (u j
i+1 +u j

i−1) . (7.9)

In order to check the stability of the schema (7.9) we apply again the ansatz (1.21)
(see Sec. 1.3), considering a single Fourier mode inx space and obtain the following
equation for the amplification factorg(k):

g2 = (1−2α)g+2gα cos(k△x) ,

from which

g(k) = 1−4α sin2 k△x
2

.

The stability condition for the method (7.9) reads

|g(k)| ≤ 1 ∀k ⇔ α ≤ 1
2
⇔ △t ≤ 1

2
△x2

D
. (7.10)

Although the method (7.9) is conditionally stable, the derived stability condi-
tion (7.10), however, hides an uncomfortable property: A doubling of the spatial
resolution△x requires a simultaneous reduction in the time-step△t by a factor of
four in order to maintain numerical stability. Certainly, the above constraint limits
us to absurdly small time-steps in high resolution calculations.

The next point to emphasize is the numerical dispersion. Indeed, let us compare
the exact dispersion relation for Eq. (7.3) and relation, obtained by means of the
schema (7.9). If we consider the perturbations in form exp(ikx− iωt) the dispersion



Fig. 7.2 Dispersion relation
by means of the schema (7.9)
for different values ofα ,
compared with the exact dis-
persion relation for Eq. (7.3).
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relation for Eq. (7.3) reads
iω = Dk2 .

On the other hand, the FTCS schema (7.3) leads to the following relation

eiω△t = 1−4α sin2
(

k△x
2

)

,

or, in other words

iω△t = − ln

(

1−4α sin2
(

k△x
2

))

.

The comparison between exact and numerical disperion relations is shown on
Fig. (7.2). One can see, that both relations are in good agreement only fork△x≪ 1.
For α > 0.25 the method is stable, but the values ofω can be complex, i.e., the
Fourier modes drops off, performing damped oscillations (see Fig. (7.2) forα = 0.3
andα = 0.4). Now, if we try to make the time step smaler, in the limit△t → 0 (or
α → 0) we obtain

iω△t ≈ 4α sin2
(

k△x
2

)

= k2D△t
sin2

(

k△x
2

)

(

k△x
2

)2 ,

i.e., we get the correct dispersion relation only if the space step△x is small enougth
too.



The Richardson Method

The first idea to improve the approximation order of the schema is to use the central
diferences for the time derivative of Eq. (7.3), namely [28]

u j+1
i −u j−1

i

2△t
= D

u j
i+1−2u j

i +u j
i−1

△x2 ,

or, with α = D△t/△x2

u j+1
i = u j−1

i +2α
(

u j
i+1−2u j

i +u j
i−1

)

. (7.11)

Unfortunately, one can show that the schema (7.11) is unconditional unstable. In-
deed, amplification factorg(k) in this case fulfilles the following equation:

g2 +2βg−1= 0, β = 4α sin2 k△x
2

,

giving
g1,2 = −β ±

√

β 2 +1.

Since|g2(k)| > 1 for all values ofk, the schema (7.11) is absolut unstable.

The DuFort-Frankel Method

Let us consider one of many alternative algorithms which have been designed to
overcome the stability problems of the simple FTCS and Richardson methods. We
modify Eq. (7.9) as (see Fig. (7.3)) [28]

u j+1
i −u j−1

i

2△t
= D

u j
i+1−2

u j+1
i +u j−1

i
2 +u j

i−1

△x2 ,

which can be solved explicitly foru j+1
i :

u j+1
i =

1−α
1+ α

u j−1
i +

α
1+ α

(

u j
i+1+u j

i−1

)

, (7.12)

whereα = 2D△t/△x. When the usual von Neumann stability analysis is applied
to the method (7.12), the amplification factorg(k) can be found from

(1+ α)g2−2gα cos(k△x)+ (α −1) = 0.

It can be easily shown, that stability condition is fulfilledfor all values ofα, so the
method (7.12) is unconditionally stable. However, this does not imply that△x and
△t can be made indefinitely large; we must still worry about the accuracy of the



Fig. 7.3 Schematical rep-
resentation of the DuFort-
Frankel method (7.12). t j−1
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Fig. 7.4 Schematical rep-
resentation of the implicit
BTCS method (7.13).

e uu

u

6

t j
Q

Q
Q

Qk

�
�

�
�3

t j+1

method. Indeed, consider the Taylor expansion for Eq. (7.3)by means of (7.12):

u j+1
i −u j−1

i

2△t
= D

u j
i+1−u j+1

i −u j−1
i +u j

i−1

△x2 ⇔

ut −
△x2

3!
uttt + . . . =

D
△x2

(

△x2uxx+
2△x4

4!
uxxxx−△t2utt −

2△t4

4!
utttt + . . .

)

⇔

ut +O(△t2) = Duxx+O(△x2)−D

(△t2

△x2

)

utt +O

(△t4

△x2

)

.

In other words, the method (7.12) has order of accuracy

O

(

△t2, △x2,
△t2

△x2

)

.

For cosistency,△t/△x→ 0 as△t → 0 and△x→ 0, so (7.12) is inconsistent. This
constitutes an effective restriction on△t. For large△t, however, the scheme (7.12)
is consistent withanotherequation of the form

Dutt +ut = Duxx.

7.1.2.1 The BTCS Implicit Method

One can try to overcome problems, described above by introducing an implicit
method. The simplest example is a BTCS (backward in time, central in space)
method (see Fig. 7.4) [29]. The differential schema reads:

u j+1
i −u j

i

△t
= D

u j+1
i+1 −2u j+1

i +u j+1
i−1

△x2 +O(△t,△x2) ,



Fig. 7.5 Schematical rep-
resentation of the Crank-
Nicolson method (7.14). t j−1
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or, with α = D△t/△x2

−u j
i = αu j+1

i+1 − (1+2α)u j+1
i + αu j+1

i−1 . (7.13)

In this case the amplification factorg(k) is given by

g(k) =

(

1+4α sin2 k△x2

2

)−1

.

That is, the schema (7.13) is unconditionally stable. However, the method has order
of accuracyO(△t, △x2), i.e., first order in time, and second in space. Is it possible
to improve it? The answer to is given below.

The Crank-Nicolson Method

An implicit scheme, introduced by J. Crank and P. Nicolson in1947 [6] is based on
the central approximation of Eq. (7.3) at the point(xi , t j +

1
2△t) (see Fig. (7.5)):

u j+1
i −u j

i

2△t
2

= D
u

j+ 1
2

i+1 −2u
j+ 1

2
i +u

j+ 1
2

i−1

△x2 .

The approximation used for the space derivative is just an average of approxima-
tions in points(xi , t j) and(xi , t j+1):

un+1
i −un

i

△t
= D

(un+1
i+1 −2un+1

i +un+1
i−1 )+ (un

i+1−2un
i +un

i−1)

2△x2 .

Introducingα = D△t/△x2 one can rewrite the last equation as

−αu j+1
i+1 +2(1+ α)u j+1

i −αu j+1
i−1 = αun

j+1+2(1−α)u j
i + αun

j−1 . (7.14)

All terms on the right-hand side of Eq. (7.14) are known. Hence, the equations
in (7.14) form a tridiagonal linear system

Au = b .



Fig. 7.6 Contour plot of the
heat distribution after the time
T = 30, calculated with the
FTCS method (7.9). x
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The amplification factor for Eq. (7.14) reads

g(k) =
1−α(1−cosk△x)
1+ α(1−cosk△x)

.

Sinceα and 1− cosk△x are positive, the denominator of the last expression is
always greater than the numerator. That is, the absolute value ofg is less than one,
i.e., the method (7.14) is unconditionaly stable.

7.1.3 Examples

Example 1

Use the FTCS explicit method (7.9) to solve the one-dimensional heat equation

ut = uxx,

on the intervalx ∈ [0, L], if the initial heat distribution is given byu(x,0) = f (x),
and the temperature on both ends of the interval isu(0,t) = Tl , u(L,t) = Tr . Other
parameters are choosen according to the table below:

Space interval L = 1
Amount of space points M = 10
Amount of time steps T = 30
Boundary conditions Tl = Tr = 0
Initial heat distribution f (x) = 4x(1−x)

The result of the calculation is shown on Fig 7.6.



Fig. 7.7 Contour plot of the
diffusion of the initial Gauss
pulse, calculated with the
BTCS implicit method (7.13). x
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Example 2

Use the implicit BTCS method (7.13) to solve the one-dimensional diffusion equa-
tion

ut = uxx,

on the intervalx ∈ [−L, L], if the initial distribution is a Gauss pulse of the
form u(x,0) = exp(−x2) and the density on both ends of the interval is given as
ux(−L, t) = ux(L, t) = 0. For the other parameters see the table below:

Space interval L = 5
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 200

Solution of the problem is shown on Fig. (7.7).

Example 3

Use the Crank-Nicolson method (7.14) to solve the one-dimensional heat equation

ut = 1.44uxx,

on the intervalx∈ [0, L], if the initial heat distribution isu(x,0) = f (x) and again,
the temperature on both ends of the interval is given asu(0,t) = Tl , u(L,t) = Tr .
Other parameters are choosen as:

Space interval L=1
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 15
Boundary conditions Tl = 2, Tr = 0.5
Initial heat distribution f (x) = 2−1.5x+sin(πx)



Fig. 7.8 Contour plot of the
heat distribution, calculated
with the Crank-Nicolson
method (7.14). x
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Numerical solution of the problem in question is shown on Fig. (7.8).

7.2 The Diffusion Equation in 2D

Let us consider the solution of the diffusion equation (7.2)in two dimensions

∂u
∂ t

= D

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

, (7.15)

whereu = u(x, y, t), x ∈ [ax, bx], y ∈ [ay, by]. Suppose, that the inittial condition is
given and functionu satisfies boundary conditions in bothx- and iny-directions.
As before, we discretize in time on the uniform gridtn = t0 + n△t, n = 0,1,2, . . ..
Futhermore, in the bothx- andy-directions, we use the uniform grid

xi = x0 + i△x, i = 0, · · · , M , △x =
bx−ax

M +1
,

y j = y0 + j△y, j = 0, · · · , N , △y =
by−ay

N+1
.

7.2.1 Numerical Treatment

The FTCS Method in 2D

In the case of two dimensions the explicit FTCS scheme reads

un+1
i j −un

i j

△t
= D

(

un
i+1 j −2un

i j +un
i−1 j

△x2 +
un

i j+1−2un
i j +un

i j−1

△y2

)

,



or, with α = D△t/△x2 andβ = D△t/△y2

un+1
i j = α(un

i+1 j +un
i−1 j)+ β (un

i j+1+un
i j−1)+ (1−2α −2β )un

i j . (7.16)

The ansatz
εn

i j = gnei(kxxi+kyxj )

leads to the following relation for the amplification factorg(k)

g(k) = 1−4α sin2
(

kx△x
2

)

−4β sin2
(

ky△y
2

)

.

In this case the stability condition reads

α + β ≤ 1
2

. (7.17)

This stability condition imposes a limit on the time step:

△t ≤ △x2△y2

2D(△x2 +△y2)
.

In particular, for the case△x = △y we have

△t ≤ △x2

4D
,

which is even more restrictive, than in the one-dimensionalcase.

The BTCS Method in 2D

To overcome the stability restriction of the FTCS method (7.16), we can use an
implicit BTCS schema in the two-dimensional case. The schema reads:

un+1
i j −un

i j

△t
= D

(

un+1
i+1 j −2un+1

i j +un+1
i−1 j

△x2 +
un+1

i j+1−2un+1
i j +un+1

i j−1

△y2

)

,

or

−α(un+1
i+1 j +un+1

i−1 j)+ (1+2α +2β )un+1
i j −β (un+1

i j+1+un+1
i j−1) = un

i j . (7.18)

Let us consider the approximation (7.18) on the 5× 5 grid, i.e., i = j = 0, . . . ,4.
Moreover, suppose that Dirichlet boundary conditions are given, that is, all values
u0 j , u4 j , ui0, ui4 are known. Suppose also thatn = 1 and defineγ = 1+ 2α + 2β .
Then the approximation above leads to the neun algebraic equations:



−αu2
21+ γu2

11−βu2
12 = u1

11+ αu2
01+ βu2

10,

−αu2
22+ γu2

12−β (u2
13+u2

11) = u1
12+ αu2

02,

−αu2
23+ γu2

13−βu2
12 = u1

13+ αu2
03+ βu2

14,

−α(u2
31+u2

11)+ γu2
21−βu2

22 = u1
21+ βu2

20,

−α(u2
32+u2

12)+ γu2
22−β (u2

23+u2
21) = u1

22,

−αu2
21+ γu2

31−βu2
32 = u1

31+ αu2
41+ βu2

30,

−αu2
22+ γu2

32−β (u2
33+u2

31) = u1
32+ αu1

42,

−αu2
23+ γu2

33−βu2
32 = u1

33+ αu2
44+ βu2

34.

Formally, one can rewrite the system above to the matrix formAu = b, i.e.,





























γ −β 0 −α 0 0 0 0 0
−β γ −β 0 −α 0 0 0 0
0 −β γ 0 0 −α 0 0 0

−α 0 0 γ −β 0 −α 0 0
0 −α 0 −β γ −β 0 −α 0
0 0 −α 0 −β γ 0 0 −α
0 0 0 −α 0 0 γ −β 0
0 0 0 0 −α 0 −β γ −β
0 0 0 0 0 −α 0 −β γ

























































u2
11

u2
12

u2
13

u2
21

u2
22

u2
23

u2
31

u2
32

u2
33





























=





























u1
11+ αu2

01+ βu2
10

u1
12+ αu2

02
u1

13+ αu2
03+ βu2

14
u1

21+ βu2
20

u1
22

u1
23+ βu2

24
u1

31+ αu2
41+ βu2

30
u1

32+ αu2
42

u1
33+ αu1

44+ βu2
34





























The matrixA is a five-band matrix. Nevertheless, despite of the fact thatthe schema
is absolute stable, two of five bands are desposed so far apartfrom the main diagonal,
that simpleO(n) algorithms like TDMA are difficult or even impossible to apply.

The ADI Method

The idea of the ADI-method (alternating direction implicit) is to alternate direction
and thus solve two one-dimensional problem at each time step[17]. The first step
keepsy-direction fixed:

un+1/2
i j −un

i j

△t/2
= D

(

un+1/2
i+1 j −2un+1/2

i j +un+1/2
i−1 j

△x2 +
un

i j+1−2un
i j +un

i j−1

△y2

)

.

In the second step we keepx-direction fixed:

un+1
i j −un+1/2

i j

△t/2
= D

(

un+1/2
i+1 j −2un+1/2

i j +un+1/2
i−1 j

△x2 +
un+1

i j+1−2un+1
i j +un+1

i j−1

△y2

)

.

Both equations can be written in a triadiagonal form. Define

α =
D△t
2△x2 , β =

D△t
2△y2 .



Than we get:

−αun+1/2
i+1 j +(1+2α)un+1/2

i j −αun+1/2
i−1 j = βun

i j+1+(1−2β )un
i j + βun

i j−1(7.19)

−βun+1
i j+1+(1+2β )un+1

i j −βun+1
i j−1 = αun+1/2

i+1 j +(1−2α)un+1/2
i j + αun+1/2

i+1 j .

Instead of five-band matrix in BTCS method (7.18), here each time step can be
obtained in two sweeps. Each sweep can be done by solving a tridiagonal system
of equations. The ADI-method is second order in time and space and is absolute
stable [11] (however, the ADI method in 3D is conditional stable only).

7.2.2 Examples

Use the ADI method (7.19) to solve the two-dimensional diffusion equation

∂tu(r, t) = △u(r, t) ,

whereu = u(r, t), r ⊆ R
2 on the intervalr ∈ [0, L]× [0, L], if the initial distribution

is a Gauss pulse of the formu(x,0) = exp(−20(x− L/2)2 − 20(y− L/2)2) and
the density on both ends of the interval is given asur(0, t) = ur(L, t) = 0. Other
parameters are choosen according to the table below.

Space interval L = 1
Amount of points M = 100, (△x = △y)
Time discretization step △t = 0.001
Amount of time steps T = 40

Solution of the problem is shown on Fig. (7.9).
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Fig. 7.9 Numerical solution of the two-dimensional diffusion equation 7.2 by means of the ADI
method (7.19), calculated at four different time moments: (a) t=0; (b) t=10; (c) t=20; (d) t=40.


