Chapter 7
The Diffusion Equation

The diffusion equation is a partial differential equatiolnieh describes density fluc-
tuations in a material undergoing diffusion. The equatian be written as:

ou(r,t)

S =0 (D(u(r,),n0u(r b)), (7.1)

whereu(r,t) is the density of the diffusing material at locatioe- (x,y,z) and time
t. D(u(r,t),r) denotes the collectiveiffusion coefficientor densityu at locationr.
If the diffusion coefficient doesn’'t depend on the density,, D is constant, then
Eq. (7.1) reduces to the following linear equation:

ou(r,t)
ot

Equation (7.2) is also calldtie heat equatioand also describes the distribution of
a heat in a given region over time.

Equation (7.2) can be derived in a straightforward way frbecbntinuity equa-
tion, which states that a change in density in any part of the syselue to inflow
and outflow of material into and out of that part of the systEffectively, no mate-
rial is created or destroyed:

= DO2u(r,t). (7.2)

Jdu
—4+0.r=0
at " ’

wherel™ is the flux of the diffusing material. Equation (7.2) can béaited easily
from the last equation when combined with the phenomencébgiick’s first law,
which assumes that the flux of the diffusing material in angt pathe system is
proportional to the local density gradient:

[ =—-D0u(r,t).
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7.1 The Diffusion Equation in 1D

Consider an IVP for the diffusion equation in one dimension:

augt(,t) b azgg,t) 73)
on the intervak € [0, L] with initial condition
u(x, 0) = f(x), vx e [0, L] (7.4)
and Dirichlet boundary conditions
u,t)=u(L,t)=0  Vt>O0. (7.5)

7.1.1 Analytical Solution

Let us attempt to find a nontrivial solution of (7.3) satisfyithe boundary condi-
tions (7.5) using separation of variables [4], i.e.,

u(x,t) = X(X)T(t).
Substitutingu back into Eq. (7.3) one obtains:

1Tt X'(%)
DT(t) XX

Since the right hand side depends only>oand the left hand side only dnboth
sides are equal to some constant valle(— sign is taken for convenience reasons).
Hence, one can rewrite the last equation as a system of twd<ODE

X" (x) +AX(x)
T'(t)+DAT(t)

=0, (7.6)
=0. (7.7)

Let us consider the first equation f(x). Taking into account the boundary condi-
tions (7.5) one obtaing(t) # 0 as we are loocking for nontrivial solutions)

u(0,t) =X(0)T(t) =0 = X(0) =0,

u(L,t) =X(L)T(t)=0= X(L)=0.
That is, the problem of finding of the solution of (7.3) redsi¢e the solving of
linear ODE and consideration of three different cases vasipect to the sign of:

1.A<0:
X(X) = Cre¥ A+ Cre VX,



Taking into account the boundary conditions one @gts- C, = 0, so forA <0
only the trivial solution exists.
2. A=0:
X(x) =Ci1x+Cz

Again, due to the boundary conditions, one gets only trisidilition of the prob-
lem C, =C,=0).
3.A>0:
X(X) = Cy cog VAX) +C; sin(vVAX).

Substituting of the boundary conditions leads to the follmpequations for the
constant€; andCs;:

X(L) = Cosin(VAL) = 0= sin(vVAL) = 0= Ap = (?)2 n=12....

X(t) Cnsin<? ) .

That is, the second equation for the functibft) takes the form:

T'(t) + D(%)T(t) —0= T(t) =B, exp(—D(?)zt) ,

whereB,, is constant.
Altogether, the general solution of the problem (7.3) cawliten as

o 2
X t) = ZAnSin<?x> exp<—D<?> t), A, = const
n=1

In order to findA, one can use the initial condition (7.4). Indeed, if we wrhe t
function f (x) as a Fourier series, we obtain:

Hence,

Z Fnsin( Ex Z Aqsin( —x)

An—Fr— [/O f(E)sin(?E) de .

Hence, the genetal solution of Eq. (7.3) reads:

</f sm( )dE)sin<?x)exp<D(?)2t). (7.8)




Fig. 7.1 Schematical repre-
sentation of the FTCS finite t
j

difference scheme (7.9) for
solving the 1-d diffusion
equation (7.3).

7.1.2 Numerical Treatment

The FTCS Explicit Method

Consider Eq. (7.3) with the initial condition (7.4). The fisgmple idea is an explicit
forward in time, central in space (FTCS) method [28, 22] (See (7.1)):

yttodl 5 u o —2u) +ul_,
At AX2 ’
L AL
or,witha = D2
=12 ol Ul ). (7.9)

In order to check the stability of the schema (7.9) we appairathe ansatz (1.21)
(see Sec. 1.3), considering a single Fourier modesjpace and obtain the following
equation for the amplification factgrk):

o = (1—2a)g+ 2gacogkAX)

from which

ko
5

The stability condition for the method (7.9) reads

g(k) = 1—4asir?

1
9| <1 Vkea<s e A< (7.10)

Although the method (7.9) is conditionally stable, the dedi stability condi-
tion (7.10), however, hides an uncomfortable property: Aildimg of the spatial
resolution/AX requires a simultaneous reduction in the time-stefoy a factor of
four in order to maintain numerical stability. Certainlgetabove constraint limits
us to absurdly small time-steps in high resolution caldoihes.

The next point to emphasize is the numerical dispersioredddlet us compare
the exact dispersion relation for Eq. (7.3) and relatiortamed by means of the
schema (7.9). If we consider the perturbations in form(#xp- iwt) the dispersion
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Fig. 7.2 Dispersion relation S
by means of the schema (7.9)
for different values ofa, 0

compared with the exact dis- 0
persion relation for Eq. (7.3).

relation for Eq. (7.3) reads
iw=DK.

On the other hand, the FTCS schema (7.3) leads to the folipreilation

UM —1_14qa sin2<%(),

or, in other words

At = In<14asin2<%(>) :

The comparison between exact and numerical disperioniaetais shown on
Fig. (7.2). One can see, that both relations are in good agreeonly fork Ax < 1.
For a > 0.25 the method is stable, but the valuescottan be complex, i.e., the
Fourier modes drops off, performing damped oscillatioee (Sig. (7.2) forr = 0.3
anda = 0.4). Now, if we try to make the time step smaler, in the lichit — O (or
o — 0) we obtain

: kAX
, -5 ((kAX 2 5|n2< 2 >
i/t z4asm2 — )=k Dﬂti,
2 2
kAX
2

i.e., we get the correct dispersion relation only if the gpstep/Ax is small enougth
too.



TheRichardson Method

The first idea to improve the approximation order of the sciento use the central
diferences for the time derivative of Eq. (7.3), namely [28]

i+1 -1 j i1y
u" —uf -D U — 20+l
2/t Ax2 ’
or, with a = D At/ AxX?
ut=u Tt 2a (Ul 204Ul )). (7.11)

Unfortunately, one can show that the schema (7.11) is uritondl unstable. In-
deed, amplification factag(k) in this case fulfilles the following equation:

. o KA
9’ +2Bg—1=0, B:4asszX,
giving

gi2=-B+VB3+1.
Since|gz(K)| > 1 for all values ok, the schema (7.11) is absolut unstable.

The DuFort-Frankel Method

Let us consider one of many alternative algorithms whichehlagen designed to
overcome the stability problems of the simple FTCS and Ritten methods. We
modify Eq. (7.9) as (see Fig. (7.3)) [28]

. . . 41, -1 .
j+1 -1 | L A i
U U U2t Uy

2At AX2 ’

which can be solved explicitly far' "™

jr1_l-a 1 @

i 1+aul +1+a(uij+l+uijfl)’

(7.12)

wherea = 2D At/Ax. When the usual von Neumann stability analysis is applied
to the method (7.12), the amplification factiik) can be found from

(1+ a)g®— 2ga cogkAx) 4 (a — 1) = 0.

It can be easily shown, that stability condition is fulfilléat all values ofa, so the
method (7.12) is unconditionally stable. However, thissloet imply thatAx and
At can be made indefinitely large; we must still worry about tbeusacy of the



Fig. 7.3 Schematical rep-
resentation of the DuFort-
Frankel method (7.12).

Fig. 7.4 Schematical rep-
resentation of the implicit
BTCS method (7.13).

method. Indeed, consider the Taylor expansion for Eq. @y3heans of (7.12):

" - : 1 - .
u -yl :Duij+1fuij+ -yl
2/t AX2
NG D 5 2/x4 2 2At4
Ut_?Uttt‘f‘--- = E(AX Uxx+TUxxxx—At Uit — a1 L'tttt+---) 4

At? At
2 2

In other words, the method (7.12) has order of accuracy

At?
2 A2
ﬁ(At , AXE, x2>'

For cosistency/At/Ax — 0 asAt — 0 andAx — 0, so (7.12) is inconsistent. This
constitutes an effective restriction dxt. For large/\t, however, the scheme (7.12)
is consistent wittanotherequation of the form

DUt + U = D Uxx.

7.1.2.1 TheBTCS Implicit Method

One can try to overcome problems, described above by intinduan implicit
method. The simplest example is a BTCS (backward in timetrakin space)
method (see Fig. 7.4) [29]. The differential schema reads:
j+1 j j+1 j+1 j+1
u—ul _D s — 20Ty
At X2

+O(Lt, X,



Fig. 7.5 Schematical rep- i+3

resentation of the Crank-

Nicolson method (7.14). P P P tj 1
Xi—1 Xi Xi+1

or, with a = DAt/ AX?

+1_

S (14 20)u T aul ] (7.13)

—ul =au

In this case the amplification factg(k) is given by

1
g(k) = (1+4asin2 mzx?) .

That is, the schema (7.13) is unconditionally stable. H@xehe method has order
of accuracy?(At, Ax?), i.e., first order in time, and second in space. Is it possible
to improve it? The answer to is given below.

The Crank-Nicolson M ethod

An implicit scheme, introduced by J. Crank and P. Nicolsoh9A7 [6] is based on
the central approximation of Eq. (7.3) at the paint tj + %At) (see Fig. (7.5)):

. . 1 i1 1
i+ +3 5 )2 I+5
U —U _p Ug =20 °+ U g
2Lt AX2 '
2

The approximation used for the space derivative is just @name of approxima-
tions in points(x;, tj) and(x;, tj;+1):

nl_

Yi

W 20t + (W - 20 )

At VNG

Introducinga = DAt /Ax? one can rewrite the last equation as

j+1
—aui,

+2(1+a)u !t —ad = aul +2(1-a)ul +adl .| (7.14)

All terms on the right-hand side of Eq. (7.14) are known. Hgrtbe equations
in (7.14) form a tridiagonal linear system

Au=Db.
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Fig. 7.6 Contour plot of the
heat distribution after the time 0

T = 30, calculated with the
FTCS method (7.9).

The amplification factor for Eq. (7.14) reads

(K) = 1— a(1—cokAXx)
9o=17 a(1—coskAXx)

Sincea and 1- cosk/AXx are positive, the denominator of the last expression is
always greater than the numerator. That is, the absolute b is less than one,
i.e., the method (7.14) is unconditionaly stable.

7.1.3 Examples

Example 1

Use the FTCS explicit method (7.9) to solve the one-dimeradibeat equation
Ut = Uxx,

on the intervak € [0, L], if the initial heat distribution is given bu(x,0) = f(x),

and the temperature on both ends of the interval@st) = Tj, u(L,t) = T,. Other
parameters are choosen according to the table below:

Space interval L=1
Amount of space points M =10
Amount of time steps T=30
Boundary conditions TT=T=0

Initial heat distribution|f(x)=4x(1-x)

The result of the calculation is shown on Fig 7.6.
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Fig. 7.7 Contour plot of the
diffusion of the initial Gauss 0

pulse, calculated with the -5 0 5
BTCS implicit method (7.13). X

Example 2

Use the implicit BTCS method (7.13) to solve the one-dimemai diffusion equa-
tion
Ut = uXX7

on the intervalx € [—L, L], if the initial distribution is a Gauss pulse of the
form u(x,0) = exp(—x?) and the density on both ends of the interval is given as
ux(—L,t) = ux(L,t) = 0. For the other parameters see the table below:

Space i nterval L=5
Space discretization step|Ax=0.1
Time discretization step [|[At=0.05
Amount of tine steps T =200

Solution of the problem is shown on Fig. (7.7).

Example 3

Use the Crank-Nicolson method (7.14) to solve the one-d#io@al heat equation
U[ == 1.44UX)(,

on the intervak € [0, L], if the initial heat distribution isi(x,0) = f(x) and again,
the temperature on both ends of the interval is given(@st) = T, u(L,t) = T;.
Other parameters are choosen as:

Space i nterval L=1

Space discretization step|Ax=0.1

Time discretization step [|[At=0.05

Amount of tine steps T=15

Boundary conditions T=2T=05
Initial heat distributionff(x)=2-15x+sinmx)
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Fig. 7.8 Contour plot of the
heat distribution, calculated 0 05
with the Crank-Nicolson 0 0.5 1 '
method (7.14). X

Numerical solution of the problem in question is shown on Eigg8).

7.2 The Diffusion Equation in 2D

Let us consider the solution of the diffusion equation (h2jvo dimensions

du d%u 4%
E:D<W+ﬁ—yz) , (7.15)

whereu = u(x, y, t), X € [ax, by], y € [ay, by]. Suppose, that the inittial condition is
given and function satisfies boundary conditions in bothand iny-directions.

As before, we discretize in time on the uniform gtid=to + nAt, n=0,1,2,....
Futhermore, in the botk andy-directions, we use the uniform grid

. . by — ax
= A =0,---,M, Ax=
Xi =X +iAx, i=0,---,M, X M1’
L - . _by—a
Yi=Yo+]jAy, j=0,---,N, Ay= NT1

7.2.1 Numerical Treatment

TheFTCS Method in 2D

In the case of two dimensions the explicit FTCS scheme reads

n+1 n n n n n n n
Uij ™ — Ujj D<Ui+1j2Uij+Uilj Uij+12Uij+Uij1)
- b

At AX2 Ay?




or, with @ = DAt/ Ax? andB = DAt/ Ay?

Uttt = a (Ul g+ Ul gj) + B(Up+ Ul _g) + (1— 20 —2B)ul} . (7.16)

The ansatz _
eirj] — gnel(kxxi+kyxj)

leads to the following relation for the amplification factgk)

g(k) = 1— 4asir? ( kXZAX) _ 4Bsir? (ky—zﬁy) .

In this case the stability condition reads

a+[3§%. (7.17)

This stability condition imposes a limit on the time step:

2 2
A< BXDY
2D(LX2 + Ay?)

In particular, for the casé\x = Ay we have

AX?

At < ——
_4D)

which is even more restrictive, than in the one-dimensiocaaé.

TheBTCSMethod in 2D

To overcome the stability restriction of the FTCS method 7, we can use an
implicit BTCS schema in the two-dimensional case. The seherads:

i i ij+1
At AX2 Ay

n+1 n n+1 n+1 n+1 n+1 n+1 n+1
Ui~ — U _D<ui+11-2uij +ui71j+u —2uij +uijl)
- )

or

—a (Ul Ut + (1+ 20+ 2B) Uit — BU S + Uit = Ul (7.18)

Let us consider the approximation (7.18) on the 5 grid, i.e.,i=j =0,...,4.
Moreover, suppose that Dirichlet boundary conditions averyg that is, all values
Uoj, Usj, Uio, Uis are known. Suppose also that= 1 and definey = 1+ 2a + 2f3.
Then the approximation above leads to the neun algebra&tieqs:



2 2 2 1 2 2
—QU3; + Yuf; — BUf, = Ugp + aUg; + BUig,
2 > > 2 1 2
—QUz;+ yupp — B(Uiz+U7q) = U+ aUgy,
2 ) > 1 2 )
—QU53+ Yuj3— BUiy = Urs+ QUgg+ Buiys,
—a(Ugy + Udy) + U3, — Bus, = Uy + Busy,
2 2 2 2 2 1
—0(Ugp+ Ugp) + YU, — B(Uz3+U3) = Uy,
2 2 2 1 2 2
—QUu5; + Yu3; — BU3p = Ugy + Uy + BUgo,
2 2 > 2 1 1
—aUZ,+ YUz, — B(Ug3+ Ugy) = Ugp+ Uy,
— 33+ yui3 — BU3, = Usz+ AU, + Bus,.

Formally, one can rewrite the system above to the matrix faus= b, i.e.,

y -B 0]-a 0 0|0 0 O u2; ul, + aud, + Bu?,
By -B/0 -a 0|0 0 O uz, ul,+ aud,

0 -By|0 0 -a/0 0 0 |]|uf ub, + aud, + BuZ,
—a 0 Oy BO0|-a0 0 |]|u ud, + Bus,

0 -a 0-By —-Bl0 -a0 us, | = ul,

0 0-a/0 B y|0 0 —a]]|usg uds+ Bu3,

0 0 O[-a 0 Oy -BO u3, Uz, + aug; + Bug,
0 0 0|0 —a 0|-B vy —B|[]|us ud, + aud,

0 0 0/0 O -a|0 —B vy g, ul;+ aug,+ Bu3,

The matrixA is a five-band matrix. Nevertheless, despite of the factttifaschema
is absolute stable, two of five bands are desposed so farffegrarthe main diagonal,
that simpled'(n) algorithms like TDMA are difficult or even impossible to appl

The ADI Method

The idea of the ADI-methodafternating direction implici} is to alternate direction
and thus solve two one-dimensional problem at each time[$§pThe first step
keepsy-direction fixed:

n+1/2 n+1/2 n+1/2

Ujj — U] b g " — 20 T+ Uy +u{}+1—2u{}+u{]-71
At/2 AX2 Ay?
In the second step we kegglirection fixed:
1 n+1/2 n+1/2 n+1/2 n+1/2 +1 +1 +1
U — ey =20 +u{}+l—2uir} +uity
At/2 X2 Ay? '

Both equations can be written in a triadiagonal form. Define

g DAt g Dot
2Ax2 C2Ay2



Than we get:

—au 4 (L 20 Y2 - au P = pull g + (1 2B)ul) + Bul) 7.19)
1/2 1/2 1/2
—Bulty + (1+2B)ultt — Buft = auin;rlj/ +(1-2a)u;" /24 aui”flj/

Instead of five-band matrix in BTCS method (7.18), here ebuh step can be
obtained in two sweeps. Each sweep can be done by solvindiagmnal system
of equations. The ADI-method is second order in time and sax is absolute
stable [11] (however, the ADI method in 3D is conditionakdésonly).

7.2.2 Examples

Use the ADI method (7.19) to solve the two-dimensional diffitn equation
au(r,t) = Au(r, 1),

whereu = u(r, t), r C R? on the interval € [0, L] x [0, L], if the initial distribution
is a Gauss pulse of the form(x,0) = exp(—20(x — L/2)? — 20(y — L/2)?) and
the density on both ends of the interval is givenug®, t) = ur(L,t) = 0. Other
parameters are choosen according to the table below.

Space i nterval L=1

Anmount of points M =100, Ax= Ay)
Ti me discretization step||At=0.001
Amount of time steps T=40

Solution of the problem is shown on Fig. (7.9).
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Fig. 7.9 Numerical solution of the two-dimensional diffusion edaat7.2 by means of the ADI
method (7.19), calculated at four different time momera¥1£0; (b) t=10; (c) t=20; (d) t=40.



