Direct Numerical Simulation of Turbulent Flows

Michael Wilczek

Institute for Theoretical Physics, University of Münster

22.07.09

Engineering: conceptually yes

- (depends on the complexity of your problem)
- relevant scenarios are computationally accessible

Engineering: conceptually yes

- (depends on the complexity of your problem)
- relevant scenarios are computationally accessible

Physics: no

- statistical description from first principles is missing
- mon-equilibrium thermodynamics?

Engineering: conceptually yes

- (depends on the complexity of your problem)
- relevant scenarios are computationally accessible

Physics: no

- statistical description from first principles is missing
- → non-equilibrium thermodynamics?

Mathematics: no

boundedness of solutions with smooth inital conditions?

Introduction

Problem: turbulence ...

- is described by nonlinear equations
- exhibits spatio-temporal chaos
- involves large space- and time-scales



Introduction

Problem: turbulence . . .

- is described by nonlinear equations
- exhibits spatio-temporal chaos
- involves large space- and time-scales

Possible solutions:

- understanding of structures
- formulating a statistical theory

Introduction

Problem: turbulence ...

- is described by nonlinear equations
- exhibits spatio-temporal chaos
- involves large space- and time-scales

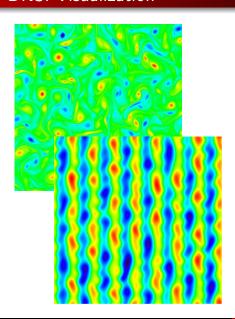
Possible solutions:

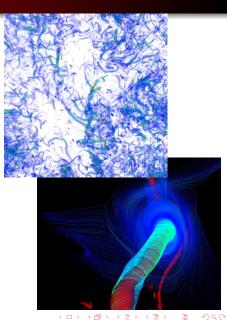
- understanding of structures
- formulating a statistical theory

Tools:

- any kind of mathematics, that will do
- computer simulations

DNS





DNS: equations

Navier-Stokes equations:

$$\frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x},t) + \boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla \boldsymbol{u}(\boldsymbol{x},t) = -\nabla p(\boldsymbol{x},t) + \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) + \hat{\boldsymbol{f}}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

DNS: equations

Navier-Stokes equations:

$$\frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x},t) + \boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla \boldsymbol{u}(\boldsymbol{x},t) = -\nabla p(\boldsymbol{x},t) + \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) + \hat{\boldsymbol{f}}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

Vorticity: $\boldsymbol{\omega}(\boldsymbol{x},t) = \nabla \times \boldsymbol{u}(\boldsymbol{x},t)$ Vorticity equation:

$$\frac{\partial \boldsymbol{\omega}}{\partial t}(\boldsymbol{x},t) = \nabla \times (\boldsymbol{u}(\boldsymbol{x},t) \times \boldsymbol{\omega}(\boldsymbol{x},t)) + \nu \Delta \boldsymbol{\omega}(\boldsymbol{x},t) + \boldsymbol{f}(\boldsymbol{x},t)$$

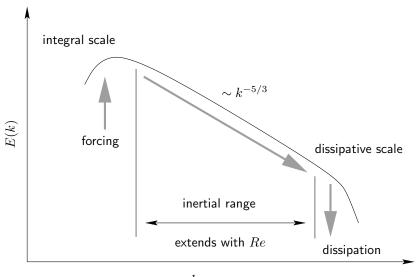
DNS: numerics I

- aim: forced (stationary) homogeneous, isotropic turbulence
- temporal discretization: RK3 TVD
- spatial discretization: box-length 2π , dim grid points, periodic boundary conditions
- pseudospectral code

DNS: numerics II

$$\frac{\partial \tilde{\boldsymbol{\omega}}}{\partial t}(\boldsymbol{k},t) + \nu k^2 \tilde{\boldsymbol{\omega}}(\boldsymbol{k},t) = i\boldsymbol{k} \times \mathcal{F}\{\boldsymbol{u}(\boldsymbol{x},t) \times \boldsymbol{\omega}(\boldsymbol{x},t)\} + \tilde{f}(\boldsymbol{k},t)$$

- adaptive time-stepping (Courant-Friedrichs-Levy criterion)
- pseudospectral: forward/backward FFT is computationally cheaper than convolution $(N \log N \text{ vs. } N^2)$
- aliasing: smooth Fourier filter
- viscosity is treated exactly (integrating factor)
- forcing: freezing of low modes
- code is MPI parallel



- forcing scale and dissipative scale should be well seperated
- ullet inertial range extends with increasing Re
- ullet size of smallest structures decreases with Re
- smallest structures should be well-resolved by the grid
- turbulent field should be accurately advanced in time

to be more precisely . . .

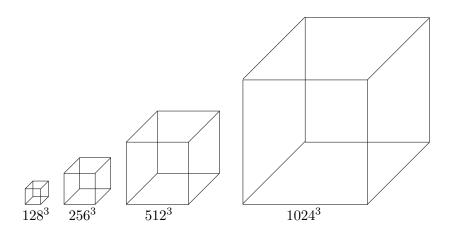
$$\eta = \left(\frac{uL}{\nu}\right)^{-3/4} L = Re^{-3/4}L$$

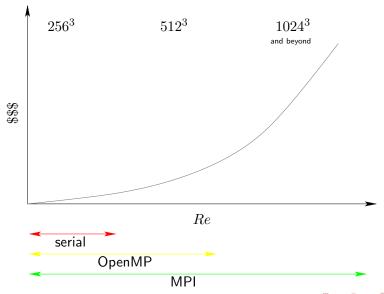
$$\Delta x \sim \eta$$

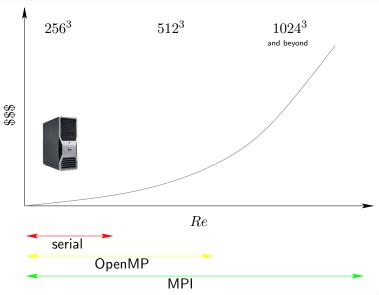
$$N_x \sim \left(\frac{2\pi}{\Delta x}\right)^3 \sim \left(\frac{2\pi}{L}\right)^3 Re^{9/4} \longrightarrow Re \sim \left(\frac{L}{2\pi}\right)^{4/3} N_x^{4/9}$$

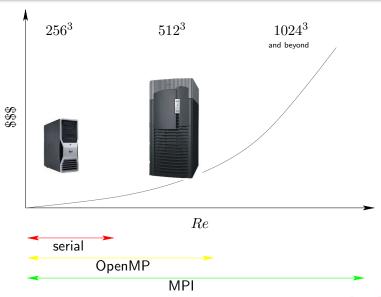
$$N_t \sim \frac{T}{\Delta t} \sim \frac{T}{\Delta x/u} \sim \frac{T}{l/u} Re^{3/4}$$

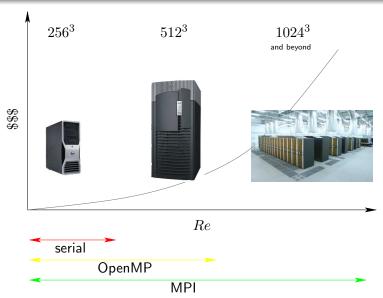
$$\$\$\$ \sim N_x N_t \sim \left(\frac{T}{l/u}\right) \left(\frac{2\pi}{l}\right)^3 Re^3$$











DNS: OpenMP vs. MPI

OpenMP

- "fork and join" principle
- easy
- incremental parallelization
- medium number of cores
- limited degree of scalability

MPI

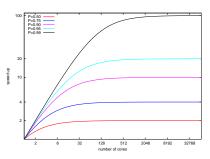
- decomposition of computational domain
- "communicate when necessary" principle
- broad range of application
- high scalability

Amdahl's Law

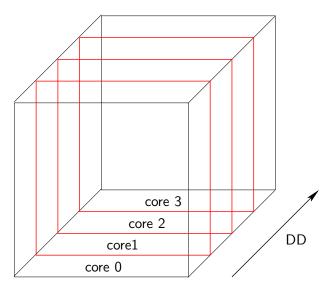
- consider serial code with runtime 1
- P denotes the parallelizable fraction of code
- runtime on n cores: $(1-P) + \frac{P}{N}$
- maximum expectable speed up $S(N) = \frac{1}{(1-P) + \frac{P}{N}}$

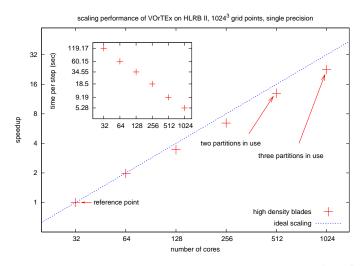
Amdahl's Law

- consider serial code with runtime 1
- P denotes the parallelizable fraction of code
- runtime on n cores: $(1-P) + \frac{P}{N}$
- maximum expectable speed up $S(N) = \frac{1}{(1-P) + \frac{P}{N}}$



DNS: parallelization via MPI





Demos

- Hello OpenMP/ MPI world
- HLRBII @ LRZ
- remote visualization