Chapter 1

MATHEMATISCHE VORBEMERKUNGEN

Literatur:

S. Grossmann; Ein mathematischer Einführungskurs in die Physik

Gerthsen; Physik, (D. Meschede), (Springer 2002), Weltbild-Verlag

M. Wagner; Elemente der theoretischen Physik

Nolting; Grundkurs: Theoretische Physik Band I
1.1 Skalare

1.2 Vektoren

1.2.1 Definition:
Grafische Definition der Vektor-Addition
Grafische Definition der Vektor-Subtraktion
Gruppeneigenschaften
Grafische Definition der Multiplikation mit reellen Zahlen
Linearer Vektorraum

1.2.2 Komponenten-Darstellung der Vektoren
Einheitsvektoren, Dreibein
Komponentendarstellung eines beliebigen Vektors
Addition von Vektoren
Einheitsvektor
Multiplikation mit c-Zahl

1.2.3 Skalarprodukt
Definition in Koordinatendarstellung
Allgemeine Definition eines Skalarproduktes in einem Vektorraum
Länge, Norm eines Vektors
Schwarzsche Ungleichung
Orthogonale Vektoren
Projektion

1.2.4 Vektorprodukt
Grafische Definition
Eigenschaften des Vektorproduktes
Definition des Vektorproduktes in Komponenten
Der vollständig antisymmetrische Tensor dritter Stufe
Mehrfaches Vektorprodukt
Gemischte Produkte
1.3 Matrizen und Koordinatendrehungen

1.3.1 Drehung in zwei Dimensionen
1.3.2 Drehmatrix
1.3.3 Zweidimensionale Matrizen
Matrizenmultiplikation
Symmetrische Matrizen
Unitäre Matrizen
Inverse Matrizen
1.3.4 Zweidimensionale Matrizen, Spur, Determinante
Lineares Gleichungssystem
Determinante einer Matrix
Spur einer Matrix

1.4 Ableitung von Funktionen

1.4.1 Ableitungen
Differentialquotient
Höhere Ableitungen
Produktregel
Quotientenregel
Kettenregel
Ableitung einer Inversen Funktion

1.5 Integration
Riemann-Summe
Integration-Differentiation
Partielle Integration

1.6 Taylorreihe

1.7 Vektorwertige Funktionen
Ableitung eines Vektors
Ableitungen von Produkten von Vektoren
1.8 Partielle Ableitungen

Definition

Nabla-Operator

Gradient

Divergenz

Rotation

Laplace-Operator
Chapter 2

Dynamik des Massenpunktes

2.1 Kinematische Beschreibung
2.1.1 Bahnkurve, Trajektorie des Massenpunktes
2.1.2 Geschwindigkeit des Massenpunktes
2.1.3 Beschleunigung des Massenpunktes
2.1.4 Die Kreisbewegung
2.1.5 Einfache kinematische Aufgaben
 Vorgegebene Bahnkurve $r(t)$
 Vorgegeben: Geschwindigkeit
 Vorgegeben: Beschleunigung

2.2 Die Newtonschen Axiome
2.2.1 Kraft, Masse und Impuls
2.2.2 Das erste Axiom: Das Trägheitsgesetz
2.2.3 Das zweite Axiom: Das Bewegungsgesetz
2.2.4 Das dritte Axiom: $Actio = Reactio$
2.2.5 Inertialsysteme
2.3 Eindimensionale Bewegungen

2.3.1 Der freie Fall
2.3.2 Der harmonische Oszillator
2.3.3 Das mathematische Pendel
2.3.4 Arbeit, Leistung
2.3.5 Zeitunabhängige, Kräfte, Energiesatz

Der harmonische Oszillator
Mathematisches Pendel

2.3.6 Mathematische Zwischenbemerkung: Differentialgleichung 1. Ordnung
2.3.7 Allgemeine Integration der eindimensionalen Bewegung im konservativen Kraftfeld

Das mathematische Pendel

2.3.8 Der Phasenraum für die eindimensionale Bewegung