Example 1.

Use the standart five-point explicit method to solve a two-dimansional wave equation

$\displaystyle u_{t,t}=c^2(u_{xx}+u_{yy}),\quad u=u(x,y,t)
$

on the rectangular domain $ [0, L]\times[0, L]$ with Dirichlet boundary conditions. Other parameters are:
Space interval $ L$ =1
Space discretization step $ \triangle x=\triangle y=0.01$
Time discretization step $ \triangle t=0.0025$
Amount of time steps $ T=2000$
Initial condition $ u(x,y,0)=4x^2y(1-x)(1-y)$
Solution for two different times can be seen on Fig. ([*]).

Figure: Numerical solution of the two-dimensional wave equation, shown on two different times.
\begin{figure}\begin{tabular}{cc}
$t=0$&$t=500$\\
\epsfig{file=2dwave.eps, widt...
...th} & \epsfig{file=2dwave_1.eps, width=0.4\textwidth}
\end{tabular}
\end{figure}



Gurevich_Svetlana 2008-11-12