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1 Introduction

In 1922 the german physicists Otto Stern and Walter Gerlach showed in their experiment
that the electron has a spin. This experiment involves sending a beam of particles through
an inhomogeneous magnetic �eld and observing their de�ection.

Figure 1: Stern-Gerlach experiment[3]

The particles they used in 1922 were silver atoms. At this time phyisicists knew that
the quantum number l of the 5s electron is equal to zero and that the atom is electrical
neutral. So the expectation was to only see one path. But as shown in Figure 1 this
beam has been divided into two parts. The explanation was that the electron possesses
an intrinsic angular momentum called "spin", which is similar to the angular momentum
of a classically spinning object. It only takes certain quantized values, which is ~

2 for an
electron.
Based on these considerations there has to be an equation describing the spin mathe-
matically and it is called the "Dirac equation".

2 Relativistic theory of the electron

The Dirac equation is a linearization of the relativistic engergy momentum theorem:

E2 = c2~p2 +m2
ec

4,

where ~p is the relativistic momentum and me the mass of a free electron:

~p = γme~v γ =

(
1− v2

c2

)− 1
2

,

where ~v is the velocity of an electron and c the speed of light.
With the aid of the correspondic principle, the following connections are known:

~p→ ~
i
∇; E → i~

∂

∂t
.
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This quantization should be equal in all reference systems. In other words it should
be invariant under Lorentz-Transformation. Therefore the classical relativistic energy
momentum theorem can be written as:

pµpµ = mec
2. (1)

pµ is the contravariant momentum operator in four dimensions:

pµ =

(
γme~v, i

E

c

)
.

Accordingly the contravariant gradient is given by:

∂µ =

(
−∇, i

c

∂

∂t

)
,

so under the condition of the correspondic principle, the momentum operator is promoted
to this four dimensional gradient:

pµ → i~∂µ. (2)

Along with the relativistic correspondic principle the squared norm of the momentum
operator (1) we receive:

pµpµ → −~2∂µ∂µ = ~2�. (3)

� is called the d'Alembert-opereator,

� = ∆− 1

c2
∂2

∂t2
(∆ : Laplace−Operator).

In quantum mechanics we want to know how an operator changes the state of a physical
particle, which is in this case the electron. Thus it appears that the state is given by a
four dimensional wavefuction |ψ(~r, t)〉 and this wavefunction depends on the contravariant
space vector xµ ≡ (x, y, z, ict). Mathematically we get:(

∆− 1

c2
∂2

∂t2
− mec

2

~2

)
|ψ(~r, t〉 = 0. (4)

In this form the equation is called Klein-Gordon-Equation. But there are some problems
with this equation:

1. It only describes particles without spin.

2. It is a di�erential equation in second order.

3. It may have a negative probability density in some cases.

4. The solution also involves negative energies.
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However, Dirac's idea was to linearize the relativisitic energy momentum theorem (1) in
the following way:(

E − c
∑
i

α̂ipi − β̂mec
2

)E + c
∑
j

α̂jpj + β̂mec
2

 = 0, i, j ∈ (x, y, z). (5)

By expanding equation (5), we realize that the new elements α̂,β̂ have to full�l the
following relations:

[α̂i, α̂j ]+ = 2δijidn, (6)

[α̂i, β̂]+ = 0 β̂2 = idn. (7)

The Pauli spin matrices are given by:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

The anticommutator for two di�erent components of the Pauli matrices look simmilar to
(6):

[σi, σj ]+ = 2δijid2. (8)

α̂ and β̂ should be at least 4x4-matrices. They might look like:

α =

(
0 ~σ
~σ 0

)
β̂ =

(
id2 0
0 −id2

)
.

3 Dirac equation

3.1 Dirac equation for the free electron

Every solution of the equation:(
E ∓ c

∑
i

α̂ipi ∓ β̂mec
2

)
= 0 (9)

is a solution for (5). With the aid of the correspondic principle the linearization can be
written as (

i~
∂

∂t
+ i~cα̂ · ∇ − β̂mec

2

)
|ψ(~r, t)〉 = 0 (10)

and it is called the Dirac equation for the free electron. In its free form it describes
all spin-12 massive particles for which parity is a symmetry such as elctrons and quarks.[4]
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In order to get the old structure of the nonrelativistic Schrödinger equation we introduce
the Dirac-operator:

H
(0)
D = cα̂ · ~p+ β̂mec

2. (11)

Then the Dirac equation can be written in a time dependent and a time independent
form:

1. time dependent: i~ ∂
∂t |ψ(~r, t)〉 = H

(0)
D |ψ(~r, t)〉

2. time independet: E |ψ(~r, t)〉 = H
(0)
D |ψ(~r, t)〉.

The relativistic theory involves the equality of space and time coordinates. So the
Schrödinger equation should be symmetric in space and time coordinates, in other words
it has to be a di�erential equation in �rst order, which is realized by the Dirac equation.

3.2 Dirac equation for an electron in a magnetic �eld

As we saw in the experiment of Stern-Gerlach, there is a connection between this intrinsic
angular momentum and a magnectic �eld. Therefore we take the usual substitution:

~p→ ~p+ e ~A; E → E + eφ,

where ~A is a vector potential and φ is a scalar potential. In contravariant form the
potential looks like:

pµ → pµ + eAµ; Aµ =

(
~A,
i

c
φ

)
. (12)

Then the Dirac equation for an electron in a magnetic �eld is given by:[
i~
∂

∂t
− cα̂ ·

(
~
i

+ e ~A(~r, t)

)
− β̂mec

2 + eφ(~r, t)

]
|ψ(~r, t)〉 = 0 (13)

and the Dirac-operator for an electron in a magnetic �eld looks like:

Hem
D = cα̂ · (~p+ e ~A) + β̂mec

2 − eφ. (14)

3.3 Dirac equation in its covariant form

For this equation we do not use the bra-ket-form anymore. We switch to ψ and ψ∗. The
�rst step to get the covariant formula is to multiply the Dirac Equation

i~∂tψ =
~
i
cα̂∇ψ + β̂mec

2ψ (15)

with 1
c β̂ and due to β̂2 = id4 we get

i~[β̂∂0 + β̂α̂∇]ψ −mecψ = 0. (16)
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We can write this equation in a short form, if we use the new matrices γµ:

γ0 := β̂ γk := β̂αk, (k = 1, 2, 3). (17)

So the Dirac equation in its covariant form is

(~γµ∂µ −mec)ψ = 0. (18)

However, this equation is not really covariant because the γµ are not components of a
vector in four dimensions but they are constant matrices. In the absence of these 'real'
covariance the transformation into another reference system is not given by:

γ′µ = Λµνγ
ν .

3.4 Probability density

The de�nition of the conjugated transposed wavefunction is

ψ† := (ψ∗1, ψ
∗
2, ψ

∗
3, ψ

∗
4) = (ψ∗)T . (19)

Then we multiply the Dirac equation (10) with ψ† and get

i~ψ†ψ̇ =
~
i
cψ†α̂ · ∇ψ +mec

2ψ†βψ. (20)

The next step is to do the same thing with the Dirac equation in conjugated form

−i~ψ̇† = −~
i
c(∇ψ†)α̂ψ +mec

2β̂ψ (21)

and multiply (21) with ψ:

−i~ψ̇†ψ = −~
i
c(∇ψ†)αψ +mec

2ψ†β̂ψ. (22)

Now we calculate the di�erence between (20) and (22):

∂

∂t
(ψ†ψ) = −c∇(ψ†α̂ψ) (23)

and we get the continuity equation:

∂

∂t
ρ+∇~j = 0, (24)

where the probability density is always postive,

ρ = ψ†ψ =

4∑
i

ψ∗i ψi (25)

and ~j = cψ†α̂ψ is the current density. The thing with the negative probability density
is solved. However the dilemma with the occuring negative energies hasn't been solved
yet. Therefore we have to look at the eigenvalue problem.
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4 Solutions for the free Dirac equation

The eigenvalue problem is given by

det(H
(0)
D − E · id4) = 0, (26)

where the solutions are

E± = ±
√
c2~p2 +m2

ec
4. (27)

The positive energy is the classical relativistic energy momentum theorem. But there is
also a negative solution. In the Klein-Gordon equation the negative energy was a solution
for an antiparticle without spin. But are there antiparticles for particles with spin?
The ansatz for the Dirac equation is a four dimensional plane wave:

|ψ(~r, t)〉 = ~a · e
i
~p
µxµ = ~ae

i
~ (~p~r−Et), (28)

where |ψ(~r, t)〉 or ~a is a Dirac-Spinor. For both eigenvalues there are two eigenspinors
~a1,2:

â
(+)
1 = d


1
0

cpz/Ê

cp+/Ê

 â
(+)
2 = d


0
1

cp−/Ê

−cpz/Ê

 (29)

â
(−)
1 = d


−cpz/Ê
−cp+/Ê

1
0

 â
(−)
2 = d


−cp−/Ê
cpz/Ê

0
1

 , (30)

where Ê = E+ +mec
2 and p± = p1± ip2. d is a constant which we get from the squared

norm:

d =
mec

2 + E+√
(mec2 + E+)2 + c2~p2

=
1√

1 + c2~p2

Ê2

v � c−−−→ 1. (31)

Every linear combination of (29) and (30) is a solution for the free Dirac equation.

4.1 Dirac sea

Dirac's idea to solve the dilemma with the negative energy eigenvalues was to introduce
a concept where the states with E− are fully sta�ed with electrons.
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Figure 2: Dirac Sea[2]

So the transition for an electron with E+ to the state with E− is forbidden. For example
a fully occupied state in an atom does not allow an extra particle in this state, too. At
this time the Pauli principle already exists.
But a photon can transfer an electron with negative Energy E− to a state with positive
Energy E+.

Figure 3: Transition from E− to E+[2]

Then there is left a hole with the same mass as an electron but with a positive charge.
So this can not be a proton because mproton � me. In 1930 Carl D. Anderson located
this particle called positron in an experiment.
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