Gluelumps and Hybrid Mesons

Janine Hütig

Institut für Theoretische Physik
WWU Münster

17th December 2007
Outline

1. Introduction
 - Motivation
 - Representations of SU(N)

2. Gluelump Spectrum
 - How to obtain the Potential?
 - Hybrid Potentials

3. Determination of the Bottom Quark Mass
 - NRQCD
 - Bottom Quark Mass

4. Outlook
What is a Gluelump?

Abbildung: Gluelump http://www.hanisauland.de/zoom/hihu1
Hybrid Mesons and Gluelumps

Definition

Hybrid mesons are states consisting of a quark-antiquark pair bound by an excited gluon field.

Definition

A system containing a valence gluon connected by an adjoint string to an adjoint source is called *gluelump*.

- adjoint source \sim infinitely heavy gluon \rightarrow Gluino?
- no physical object, cannot be measured experimentally
- resemblance to glueballs and heavy-light mesons
Why to consider Gluelumps?

- Gluelump masses define decay of field strength correlators in QCD vacuum

 \[G^{\text{gluelump}}(x, y) \leftrightarrow \left\langle F_{\mu\nu}^a(x)F_{\lambda\sigma}^b(y) \right\rangle \]

- Inverse mass of lowest gluelump equals the gluon correlation length \(T_g \)

- Testing ground for models of low energy QCD (MIT bag model, flux tube model)

- Needed for getting insights in non-perturbative features of QCD (heavy quarkonia) → idealized system
Definitions of representation

A **representation** is a specific realization of the multiplication of the group elements by matrices.

1. **fundamental (defining) representation** $SU(3) \Rightarrow$ quarks, antiquarks
2. **adjoint (regular) representation** $SU(3) \Rightarrow$ gluons

Remember $SU(2)$ Spin-systems:

$$ |j, m; j_1; j_2\rangle = \sum_{m_1+m_2=m} C(j_1, m_1; j_2, m_2 | j, m; j_1; j_2 \rangle | j_1, m_1; j_2, m_2 \rangle. $$
Fundamental Representation

- complete set of hermitian traceless 3×3 matrices
 \[\lambda_k, \quad k = 1, \ldots, 3^2 - 1 \]

\[\lambda_k = \lambda_k^\dagger, \quad Tr(\lambda_k) = 0, \quad Tr(\lambda_k \lambda_l) = 2\delta_{kl} \]

- fulfil

\[[\lambda_k, \lambda_l] = 2if_{klm}\lambda_m \]

where f_{klm} totally antisymmetric structure constants of the group

- fundamental representation:

\[t_k = \frac{1}{2}\lambda_k, \quad k = 1, \ldots, 8 \]

- exponential parameterization

\[U = e^{i\alpha_k t_k}, \quad U \in SU(3) \]
Adjoint Representation

- changing between representations \rightarrow arbitrary unitary transformation
- adjoint representation R, carried by generators

\[U^\dagger t_k U = R_{kl} t_l, \quad U \in SU(3) \]

- explicit representation in terms of group elements

\[R_{kl} = 2 \text{Tr}(U^\dagger t_k U t_l) \]

- in terms of parameters α^k

\[U(y) = e^{i y \alpha^p t_p}, \quad R_{kl} = 2 \text{Tr}(U^\dagger(y) t_k U(y) t_l) \]
Adjjoint Representation

- consider derivative

\[
\frac{\partial}{\partial y} R_{kl} = -i \alpha^p 2 \text{Tr}(U^\dagger(y)[t_p, t_k]U(y)t_l) = i \alpha^p (F_p)_{kn} R_{nl}
\]

where \((F_p)_{mn} \equiv -i f_{pmn}\)

- in matrix-notation:

\[
\frac{\partial}{\partial y} R(y) = i \alpha^p F_p R(y)
\]

\(R(y) = e^{i \alpha^p F_p}, \quad \text{using} \quad R(0) = 1\)

\(\Rightarrow F_p\) are the generators in the adjoint representation.

\(\Rightarrow\) The structure constants generate the adjoint representation.
Mass Determination

Extract ground state mass of a meson state with quantum numbers α, denote $O_\alpha \equiv \overline{\Psi}_\alpha S \Psi_\alpha$:

1. consider vacuum expectation value

$$C_\alpha = \langle 0 | O_\alpha(t, x) O_\alpha(0, x) | 0 \rangle$$

2. time development (Eucl.): $O(\tau) = e^{H\tau} O e^{-H\tau}$

3. insert complete set of eigenstates of the Hamiltonian:

$$C_\alpha(\tau) = \sum_n \left| \langle 0 | O_\alpha | n_\alpha \rangle \right|^2 e^{-(E_\alpha^n - E_\alpha^0)\tau}$$

$$\tau \to \infty \quad e^{-(E_1^\alpha - E_0^\alpha)\tau} \left| \langle 0 | O_\alpha | 1_\alpha \rangle \right|^2$$

- \Rightarrow lowest energy eigenstate dominates sum, when states have good overlap with each other
- otherwise change $O \Rightarrow$ smearing techniques
The Problem

- Hybrid meson \(\cong\) meson with excited 'constituent' glue
 \(\rightarrow\) exotic quantum numbers
- What is 'constituent' glue? \(\Rightarrow\) *QCD does not distinguish*
- even quenched approximation cannot neglect 'sea' gluons
- distinguish between hybrids and standard quark model states
 \(\Rightarrow\) bag models, strong coupling lattice model or flux tube model

P. Hasenfratz and J. Kuti: Quark Bag Model

Lowest non-trivial graph in the strong-coupling expansion

G. Münster, I. Montvay
large separation $d \rightarrow$ Nambu-Goto string

Cornell potential:
$$V(r) = -\frac{e}{r} + \sigma r \quad e = \frac{4}{3} \alpha_s$$

for $d \rightarrow 0$ gluelumps

system rotationally invariant
$$\Rightarrow J^{PC}$$ quantum numbers

distinction between hybrid meson and ordinary meson not well defined

hybrid potential clearly distinct from ground state potential Σ^+_g or its radial excitations

\Rightarrow need hybrid potential
Wilson Loop

\[W(C) = Tr\left\{ P\left[\exp\left(i \int_{\delta C} dx_{\mu} A_{\mu}(x) \right) \right] \right\} = Tr\left(\prod_{(x, \mu) \in \delta C} U_{x, \mu} \right) \]

- definition in fundamental representation
- require Wilson loop in adjoint representation
- use relation: \[A_{x, \mu}^{ab}[U_{x, \mu}] = \frac{1}{2} Tr(\sigma^a U_{x, \mu} \sigma^b U_{x, \mu}^\dagger) \]
notion of static quarks \leftrightarrow behaviour of states under gauge transformation

Yang-Mills action (Minkowski): $S = -\frac{1}{4} \int d^4 x F_{\mu\nu}^a F^{\mu\nu a}$

canonically conjugated momentum:
$$\pi_i^a = \frac{\delta S}{\delta (\partial_4 A_i^a)} = \frac{1}{g^2} F_{4i}^a = -\frac{1}{g} E_i^a$$

temporal gauge: $A_4^a = 0 \quad \Rightarrow \quad \pi_\mu^a = -i \frac{\partial}{\partial \mu}$$

construct Hamiltonian (acts onto $\Psi[A_\mu]$):

$$H = \int d^3 x \left(\pi_\mu^a \partial_4 A_\mu^a - \frac{1}{4g^2} F_{\mu\nu}^a F^{\mu\nu a} \right) = \frac{1}{2} \int d^3 x \left(E_i^a E_i^a - B_i^a B_i^a \right)$$
Consider time independent gauge transformation $\Lambda(x)$, represented by operator $R(\Lambda)$:

$$(R(\Lambda)\psi)[A_\mu] = \psi[\Lambda^{-1}A_\mu\Lambda + \Lambda^{-1}\partial_\mu\Lambda]$$

For infinitesimal gauge transformation $\Lambda = 1 + i\omega^a T_a$ one obtains

$$R(\Lambda) = 1 - i\omega^a \frac{1}{g} D^i E^a_i + O(\omega^2).$$

$\Rightarrow D^i E^a_i$ generator of local gauge transformations

- Remember **Gauß law** $D^i E^a_i = 0$

<table>
<thead>
<tr>
<th>Gauß law</th>
<th>\Leftrightarrow</th>
<th>gauge invariance of wave functional</th>
</tr>
</thead>
<tbody>
<tr>
<td>external charges</td>
<td>\Leftrightarrow</td>
<td>consider non-invariant wave functionals</td>
</tr>
</tbody>
</table>
external charge: $D^i E_i^a \psi = -g \delta^3(r) T^a \psi$

with definition of static quark potential $V(R) \equiv E_0$ we obtain

$$\langle \psi | e^{-TH} | \psi \rangle = \sum_n |\langle \psi^{(n)} | \psi \rangle|^2 e^{-TE_n}$$

$$T \to \infty \quad |\langle \psi^{(0)} | \psi \rangle|^2 e^{-TV(R)}$$
Introduction

Gluelump Spectrum

Determination of the Bottom Quark Mass

Outlook

How to obtain the Potential?

Hybrid Potentials

- **external charge:** $D^i E^a_i \Psi = -g \delta^3(r) T^a \Psi$

- with definition of static quark potential $V(R) \equiv E_0$ we obtain

$$\langle \Psi | e^{-TH} | \Psi \rangle = \sum_n |\langle \Psi^{(n)} | \Psi \rangle|^2 e^{-TE_n}$$

$$\lim_{T \to \infty} \langle \Psi^{(0)} | \Psi \rangle^2 e^{-TV(R)}$$

- taking adjoint Wilson loop $W_{adj} = |W(R, T)|^2 - 1$ results in

Adjoint Potential and String Tension

$$V^{(adj)}(R) \equiv - \lim_{T \to \infty} \frac{1}{T} \ln W_{adj}(R, T)$$

$$\sigma^{(adj)} \equiv - \lim_{R \to \infty} V^{(adj)}(R)$$

$$= - \lim_{R, T \to \infty} \frac{1}{RT} \ln W_{adj}(R, T)$$

Janine Hütig

Gluelumps and Hybrid Mesons
Hybrid Potentials

- classify as excitations of homonuclear diatomic molecules: heavy quarks ⇒ nuclei, gluon field ⇒ electrons
- cylindrical symmetry group $D_{\infty h} = D_{\infty} \times Z_2$
- angular momentum $\Lambda \hat{r}$ about molecular axis ⇒ $\Lambda = 0, 1, 2.. = \Sigma, \Pi, \Delta..$
- state might transform evenly (g) or oddly (u) ⇒ qn η
- $\Lambda = 0$: additional qn σ_v parity index
- determine energy-levels of the gluon field as function of $Q \bar{Q}$ separation r: adiabatic potentials $V_{Qg\bar{Q}}(r)$
- solving Schrödinger equation for each potential leads to possible hybrid charmonia and bottomonia levels
total spin $J = K + S$, where $K = L + S_g$
rotationally symmetric potential: $\psi_{nll_3}(\mathbf{x}) = \frac{u_{nl}(r)}{r} Y_{l_3}(\theta, \phi)$
Schrödinger equation:

$$\left(\frac{\mathbf{p}^2}{2\mu_R} + V_{Qg\bar{Q}}(r) \right) \psi_{nll_3}(\mathbf{x}) = E_{nl} \psi_{nll_3}(\mathbf{x})$$

leads to radial Schrödinger equation:

$$u''_{nl}(r) + 2\mu_R \left[E_{nl} - V_{Qg\bar{Q}}(r) - \frac{1}{2\mu_R r^2} \left(k(k+1) - 2\Lambda^2 + \langle S^2_g \rangle \right) \right] u_{nl}(r) = 0$$

where $\langle S^2_g \rangle = 0$ for Σ_{g}^+ and $\langle S^2_g \rangle = 2$ for Π_u and Σ_u^-
Hybrid Excitations of Static SU(3) Potential

C. J. Morningstar, K. J. Juge, J. Kuti, 1999
Singlet and Octet States

- consider limit $r \to 0$: full rotational group $D_{\infty h} \subset O(3) \otimes C$
- classify states as singlets and octets according to their local gauge transformation properties:
 - **singlet state** decouples from temporal transporters within $r = 0$ 'Wilson loop'
 - **octet state** couples to temporal Schwinger line in adjoint representation
- in limit $m \to \infty$ spin can be neglected
 \Rightarrow temporal transporter \cong static gluino propagator

| singlet state | \Leftrightarrow | glueball |
| octet state | \Leftrightarrow | glueballino/gluelump |
start with correlation function

\[C(t) = \frac{1}{2N} \langle H_0^a [U_0^A(t)]^{ab} H_0^b \rangle \]

rewrite in fundamental representation using completeness relation

\[2 \sum_a T_{\alpha\beta}^a T_{\gamma\delta}^a = \delta_{\alpha\beta} \delta_{\beta\gamma} - \frac{1}{N} \delta_{\alpha\beta} \delta_{\gamma\delta} \]

and identity:

\[C(t) = \langle \text{Tr}_F [H_0, t U_0(t) H_{0,0}^{F,\dagger} U_0^{\dagger}(t)] \rangle \]

'hybrid' Wilson loop in \(\lim r \to 0 \)

factorise into singlet and octet components

\[\langle W_\psi(r, t) \rangle = c_1 e^{-m_{gl}(a)t} + c_2 e^{-(m_{gb} + V_{\Sigma_g}^+(r, a))t} + \ldots \quad (r \to 0) \]
Gluelump Masses

\[\langle W_{\psi}(r, t) \rangle = c_1 e^{-m_{gl}(a)t} + c_2 e^{-(m_{gb} + V_{\Sigma^+}(r, a))t} + \ldots \]

- on the lattice: \(V_{\Sigma^+}(0, a) = V_{\Sigma^+}(0) + V_{\text{self}}(a) = 0 \)
- \(r \gg a \): \(V_{\Sigma^+}(r) \) approaches continuum potential
- assume mass of lightest gluelump within sector of allowed \(J^{PC} \) \(qn \) that have overlap with \(\Psi^\dagger \)
- gluelump mass will contain a finite and a self-energy contribution
 \[m_{gl}(a) = m_{\text{finite}} + m_{\text{self}}(a) \]

\[
m_{\text{self}}(a) = \frac{C_A}{C_F} \frac{V_{\text{self}}(a)}{2} = \frac{N^2}{N^2 - 1} V_{\text{self}}(a) > V_{\text{self}}(a)
\]
Spectra

The lowest six gluelump states
M. Foster and C. Michael

The glueball spectrum of SU(3) gauge theory
C. J. Morningstar and M. Peardon

Janine Hütig
Gluelumps and Hybrid Mesons
Short Review

1. defined gluelump
2. know how to determine masses in general
3. derived hybrid potential by using Wilson loop
4. computed gluelump mass

What can we do with this exactly?
Determine bottom quark mass!
Motivation of NRQCD

- heavy mesons not computable in full QCD
- heavy quark systems have characterising scale: \(m_Q \) is much larger than any dynamical scale in the problem
 \[\Rightarrow \text{use effective field theory (EFT)} \]
- afterwards: matching to QCD (Foldy-Wouthuysen-Trafo, renormalon ambiguities, tree-level of S-matrix elements,..)
- heavy-light sector: Heavy quark effective theory (HQET)
- heavy-heavy sector: Non-relativistic QCD (NRQCD) and potential non-relativistic QCD (pNRQCD)
- derive and solve QCD Schrödinger - like equation
The Method

Definition of heavy quark: \(m \gg \Lambda_{QCD} \)

Characterising scales:

1. hard scale: mass \(m \) of heavy quark
2. soft scale: relative momentum of heavy quark-antiquark
 \[|\mathbf{p}| \equiv p \sim mv, \quad v \ll 1 \]
3. ultra soft scale: typical kinetic energy \(E \sim mv^2 \) of heavy quark and antiquark

where \(E, p, \Lambda_{QCD} \ll m \).

Integrating out hard scale \(m \to \text{NRQCD} \)

\[\Rightarrow \text{Expand the Lagrangian of QCD in powers of } 1/m! \]
pNRQCD

- still problems with NRQCD (power counting, perturbative calculations)
- solution: potential NRQCD: containing only degrees of freedom (DOF) relevant for Q-\bar{Q} systems
- namely: integrate out soft scale

\[
\mathcal{L}_{pNRQCD} = \Phi^\dagger(r) \left(i\partial_0 - \frac{p^2}{2m} - V^{(0)}(r) \right) \Phi(r)
\]

where $V^{(0)}$ are the static potentials (singlet and octet), used as matching coefficients.
Bottom Quark Mass from $\Upsilon(1S)$ System

- consider \mathcal{L}_{pNRQCD}
- compute heavy quarkonium spectrum

$$M = 2m + \sum_m A^m \alpha_s^m + \delta M$$

- δM contains gluonic correlator (cannot use perturbation theory, need non-perturbative non-local condensate)
- A. Pineda obtained (2001)

$$m_{b,\overline{MS}}(m_{b,\overline{MS}}) = 4\,210^{+90}_{-90} \text{(theory)}^{+25}_{-25} \alpha_s \text{MeV}$$
Two point correlation function of the QCD field strength tensor $F_{\mu\nu}^a(x)$ in the adjoint representation

\[D_{\mu\nu\lambda\omega}(z) \equiv \langle 0| T \left\{ F_{\mu\nu}^a(y) \mathcal{P} e^{g f^{abc} z^\tau \int_0^1 d\sigma A^c_{\tau}(x+\sigma z)} F_{\lambda\omega}^b(x) \right\} |0\rangle \]

where $F_{\mu\nu}^a = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$ and $z = y - x$.

- important role in non-perturbative approaches to QCD
- basic quantity in the stochastic model of the QCD vacuum
- spectrum of heavy quark bound states: governs effect of gluon condensate on level splittings
- useful for determination of spin dependent parts in heavy quark potential
Field Strength Correlator

Lorentz structure: parametrise correlator in terms of two scalar functions $D(z^2)$ and $D_1(z^2)$

$$D_{\mu\nu\lambda\omega}(z) = \left[g_{\mu\lambda}g_{\nu\omega} - g_{\mu\omega}g_{\nu\lambda} \right] (D(z^2) + D_1(z^2))$$

$$+ \left[g_{\mu\lambda}z_\nu z_\omega - g_{\mu\omega}z_\nu z_\lambda - g_{\nu\lambda}z_\mu z_\omega + g_{\nu\omega}z_\mu z_\lambda \right] \frac{\partial D_1(z^2)}{\partial z^2}$$

Leading order:

next-to-leading order:
Consider two-point correlator of hybrid current \((h^a F^a_{\mu\nu})(x)\):

\[
\tilde{D}_{\mu\nu\lambda\omega}(z) \equiv \langle 0 | T \{ (h^a F^a_{\mu\nu})(y)(\bar{h}^b F^b_{\lambda\omega})(x) \} | 0 \rangle
\]

where \(h^a(x)\) is an octet of heavy quark fields (in adjoint representation)

\Rightarrow \text{gluelumps}

Retransformation using path integral representation

\[
\tilde{D}_{\mu\nu\lambda\omega}(z) = S(z) D_{\mu\nu\lambda\omega}
\]

where \(S(z)\) coordinate space propagator of a heavy quark field defined by

\[
T \{ h^a(y) \bar{h}^b(x) \} = \delta^{ab} S(z).
\]
Future Work

- QCD-FSC calculated in perturbation theory by M. Eidemüller and M. Jamin, 1997
- QCD-FSC calculated on lattice by A. Di Giacomo, E. Meggiolaro, H. Panagopoulos and M. D’Elia, 1997
- Direct comparison difficult: $m_{self}(a)$ divergent, dependent on cut-off \Rightarrow need relation between the two schemes: $m_{self}(a) \leftrightarrow m_{self}(\overline{MS})$

A Perturbative calculation in the lattice regularisation scheme is required.
Inroduction
Gluelump Spectrum
Determination of the Bottom Quark Mass
Outlook

...and a happy New Year!

Janine Hütig
Gluelumps and Hybrid Mesons