Excited states of the QCD flux tube

Bastian Brandt

Forschungsseminar Quantenfeldtheorie

19.11.2007

Results

Contents

- Why flux tubes?
- Plux tubes and Wilson loops
- Iffective stringtheories
 - Nambu-Goto
 - Lüscher-Weisz
 - Polchinski-Strominger
- Uüscher-Weisz algorithm
- Sesults

1. Why flux tubes?

Introduction

• When QCD came up there was one big question:

Where are the quarks?

Introduction

• When QCD came up there was one big question:

Where are the quarks?

• No isolated color non-singlets are seen in nature.

Introduction

• When QCD came up there was one big question:

Where are the quarks?

- No isolated color non-singlets are seen in nature.
- Color confinement:

There are no isolated particles in nature, corresponding to a color non-singlet!

Results

Introduction

• When QCD came up there was one big question:

Where are the quarks?

- No isolated color non-singlets are seen in nature.
- Color confinement:

There are no isolated particles in nature, corresponding to a color non-singlet!

• The exact mechanism of color confinement is still unknown!

Results

• When QCD came up there was one big question:

Where are the quarks?

- No isolated color non-singlets are seen in nature.
- Color confinement:

There are no isolated particles in nature, corresponding to a color non-singlet!

- The exact mechanism of color confinement is still unknown!
- Important question:

What is the nature of the confining force?

Regge trajectories in the hadron spectrum:

Regge trajectories in the hadron spectrum:

G. Bali: hep-ph/0001312

 Hadronic bound states can be classified by lines with almost equal slope α when spin s is plotted against m², the so called Regge trajectories.

Regge trajectories in the hadron spectrum:

G. Bali: hep-ph/0001312

 Hadronic bound states can be classified by lines with almost equal slope α when spin s is plotted against m², the so called Regge trajectories.

• Simple model:

Quarks connected with a straight tube-like object, with a constant energy density $\sigma = \frac{1}{2\pi \ \alpha}.$

 \longrightarrow Flux-tube

System rotates with almost speed of light.

Regge trajectories in the hadron spectrum:

G. Bali: hep-ph/0001312

 Hadronic bound states can be classified by lines with almost equal slope α when spin s is plotted against m², the so called Regge trajectories.

• Simple model:

Quarks connected with a straight tube-like object, with a constant energy density $\sigma = \frac{1}{2\pi \ \alpha}.$

\longrightarrow Flux-tube

System rotates with almost speed of light.

• More realistic:

Also allow fluctuations of the flux tube.

Regge trajectories in the hadron spectrum:

G. Bali: hep-ph/0001312

 Hadronic bound states can be classified by lines with almost equal slope α when spin s is plotted against m², the so called Regge trajectories.

• Simple model:

Quarks connected with a straight tube-like object, with a constant energy density $\sigma = \frac{1}{2\pi \ \alpha}.$

\longrightarrow Flux-tube

System rotates with almost speed of light.

• More realistic:

Also allow fluctuations of the flux tube.

• Large distance *R* between quarks:

Ratio thickness to length of the flux-tube is going to 0.

 \longrightarrow Effective string models

2. Flux tubes and Wilson loops

Can flux tubes appear in QCD?

Can flux tubes appear in QCD?

• Yes, if for some reason the field lines of the gluonic field are concentrated in a tube-like volume.

Can flux tubes appear in QCD?

- Yes, if for some reason the field lines of the gluonic field are concentrated in a tube-like volume.
- This effect may be explained with the self interactions of the gluons. But:

No derivation from first principles!

Can flux tubes appear in QCD?

- Yes, if for some reason the field lines of the gluonic field are concentrated in a tube-like volume.
- This effect may be explained with the self interactions of the gluons. But:

No derivation from first principles!

 \longrightarrow Look at the flux tubes in lattice calculations

In order to do this we need an operator corresponding to the flux tube.

The correlation function for a flux tube in quenched QCD

We now look at quenched QCD!

The correlation function for a flux tube in quenched QCD

We now look at quenched QCD!

Correlation function

$$\langle \mathcal{Q}(R,0) \mathcal{Q}^+(R,T) \rangle = rac{1}{Z_E} \int \mathcal{D}A \, \mathcal{D}q \, \mathcal{D}\bar{q} \, \mathcal{Q}(R,0) \, \mathcal{Q}^+(R,T) \, e^{-S_{YM}^E}$$

Operator for a flux tube at time τ :

$$\hat{\mathcal{Q}}(R,\tau) \equiv \bar{q}(\underline{x}_1,\tau) \left(\prod_{\underline{y},j\in\mathcal{V}(\tau)} U_j(\underline{y},\tau)\right) q(\underline{x}_2,\tau)$$

The correlation function for a flux tube in quenched QCD

We now look at quenched QCD!

Correlation function

$$\langle \mathcal{Q}(R,0) \mathcal{Q}^+(R,T) \rangle = rac{1}{Z_E} \int \mathcal{D}A \, \mathcal{D}q \, \mathcal{D}\bar{q} \, \mathcal{Q}(R,0) \, \mathcal{Q}^+(R,T) \, e^{-S_{YM}^E}$$

Operator for a flux tube at time τ :

$$\hat{\mathcal{Q}}(R,\tau) \equiv \bar{q}(\underline{x}_1,\tau) \left(\prod_{\underline{y},j\in\mathcal{V}(\tau)} U_j(\underline{y},\tau)\right) q(\underline{x}_2,\tau)$$

Spectral representation:

$$\langle \mathcal{Q}(R,0) \mathcal{Q}^+(R,T) \rangle = \alpha(R) e^{-E_0(R) T} \left(1 + \sum_{k=1}^{\infty} \beta_k(R) e^{-\Delta E_k(R) T} \right)$$

with

$$\begin{aligned} \alpha(R) &= \eta(R) |\langle \mathcal{Q}(R,0) \mid 0 \rangle|^2, \ \beta_k(R) &= \frac{1}{\alpha} |\langle \mathcal{Q}(R,0) \mid k \rangle|^2 \\ \text{and} \quad \Delta E_k(R) &= E_k(R) - E_0(R) \end{aligned}$$

From flux tubes to Wilson loops

Integrate out the static quarks:

From flux tubes to Wilson loops

Integrate out the static quarks:

3. Effective string theories

Consider the Wilson loop as the world sheet $X^{\mu}(\kappa, \tau)$ of a bosonic string. (κ : spatial parameter; τ : time parameter)

Consider the Wilson loop as the world sheet $X^{\mu}(\kappa, \tau)$ of a bosonic string. (κ : spatial parameter; τ : time parameter)

Like in the case of the relativistic point particle: The action should be proportional to the area of the worldsheet.

Results

Nambu string theory

Consider the Wilson loop as the world sheet $X^{\mu}(\kappa, \tau)$ of a bosonic string. (κ : spatial parameter; τ : time parameter)

Like in the case of the relativistic point particle: The action should be proportional to the area of the worldsheet.

 \longrightarrow Nambu-Goto action:

$$S_{NG}=-rac{1}{2\pi \ lpha} \ \int d au \ \int_{0}^{\pi} d\kappa \ \sqrt{\left(\dot{X}^{\mu}X^{\prime}_{\mu}
ight)^{2}-\left(\dot{X}^{\mu}
ight)^{2} \ \left(X^{\prime\mu}
ight)^{2}}$$

Consider the Wilson loop as the world sheet $X^{\mu}(\kappa, \tau)$ of a bosonic string. (κ : spatial parameter; τ : time parameter)

Like in the case of the relativistic point particle: The action should be proportional to the area of the worldsheet.

 \longrightarrow Nambu-Goto action:

$$\mathcal{S}_{NG} = -rac{1}{2\pi \ lpha} \ \int d au \ \int_0^\pi d\kappa \ \sqrt{\left(\dot{X}^\mu X'_\mu
ight)^2 - \left(\dot{X}^\mu
ight)^2 \ \left(X'^\mu
ight)^2}$$

Search for a solution with the boundary conditions:

$$\begin{aligned} X^{1}(\pi,\tau) &= R, \quad X^{1}(0,\tau) = X^{i}(0,\tau) = X^{i}(\pi,\tau) = 0 \quad \forall \, \tau \in \mathbb{R} \\ \text{and} \qquad X^{0}(0,\tau) = X^{0}(\pi,\tau) = p^{0} \, \tau \end{aligned}$$

Energies in formal canonical quantization:

$$E_n = \sigma R \sqrt{1 + \frac{2\pi}{\sigma R^2} \left(n - \frac{1}{24} \left(d - 2\right)\right)}$$

Energies in formal canonical quantization:

$$E_n = \sigma R \sqrt{1 + \frac{2\pi}{\sigma R^2} \left(n - \frac{1}{24} \left(d - 2\right)\right)}$$

But:

The quantisation is only consistent with the Lorentz algebra for

$$d=26$$
 and $\sigma=rac{1}{2\pi}.$

Weyl anomaly

Results

Nambu string theory

Energies in formal canonical quantization:

$$E_n = \sigma R \sqrt{1 + \frac{2\pi}{\sigma R^2} \left(n - \frac{1}{24} \left(d - 2\right)\right)}$$

But:

The quantisation is only consistent with the Lorentz algebra for

$$d = 26$$
 and $\sigma = \frac{1}{2\pi}$.

Weyl anomaly

 \longrightarrow We need other effective stringtheories for the Wilson loop in 4 dimensions.

Effective string theory for the partition function of Polyakov loop correlators.

Effective string theory for the partition function of Polyakov loop correlators.

Open-closed duality

The Polyakov loop can also wind around a compactified spatial dimension.

Effective string theory for the partition function of Polyakov loop correlators.

Open-closed duality

The Polyakov loop can also wind around a compactified spatial dimension.

 \longrightarrow The partition function corresponds to a closed string, winding around the compactified dimension.

Effective string theory for the partition function of Polyakov loop correlators.

Open-closed duality

The Polyakov loop can also wind around a compactified spatial dimension.

 \longrightarrow The partition function corresponds to a closed string, winding around the compactified dimension.

Duality and Nambu string theory

Duality holds excactly for Nambu string theory. The energies of the closed string are:

$$ilde{E}_n = \sigma \ T \ \sqrt{1 + rac{8\pi}{\sigma \ T^2}} \ \left(n - rac{1}{24} \ (d-2)\right)$$
Results

Lüscher-Weisz effective string theory

The effective action consists of all terms that are consistent with locality and conformal invariance.

$$S_{LW} = \frac{1}{2} \int d\tau d\kappa \left[\partial_{a} X^{i} \partial_{a} X_{i} \right] \\ + \frac{1}{4} b \int d\tau \left[\partial_{\kappa} X^{i} \partial_{\kappa} X_{i} \Big|_{\kappa=0} + \partial_{\kappa} X^{i} \partial_{\kappa} X_{i} \Big|_{\kappa=R} \right] \\ + \frac{1}{4} \int d\tau d\kappa \left[c_{1} \partial_{a} X^{i} \partial_{a} X_{i} \partial_{b} X^{j} \partial_{b} X_{j} + c_{2} \partial_{a} X^{i} \partial_{b} X_{i} \partial_{a} X^{j} \partial_{b} X_{j} \right]$$

Lüscher-Weisz effective string theory

The effective action consists of all terms that are consistent with locality and conformal invariance.

$$S_{LW} = \frac{1}{2} \int d\tau d\kappa \left[\partial_a X^i \partial_a X_i \right] \\ + \frac{1}{4} b \int d\tau \left[\partial_\kappa X^i \partial_\kappa X_i \Big|_{\kappa=0} + \partial_\kappa X^i \partial_\kappa X_i \Big|_{\kappa=R} \right] \\ + \frac{1}{4} \int d\tau d\kappa \left[c_1 \partial_a X^i \partial_a X_i \partial_b X^j \partial_b X_j + c_2 \partial_a X^i \partial_b X_i \partial_a X^j \partial_b X_j \right]$$

Open closed duality for S_{LW}

Demands for the coupling constants:

$$b = 0$$
 and $(d-2) c_1 + c_2 = rac{d-4}{2 \sigma}$

Lüscher-Weisz effective string theory

Resulting energies:

$$\begin{split} E_{n,l} &= E_n^0 + \frac{\pi^2}{R^3} \, c_1 \, \left[n \, \left(\frac{1}{12} \, (d-2) - n \right) + \alpha_{n,l} \, (c_2 + 2 \, c_1) \right] \\ &+ \left(\frac{\pi}{24} \right)^2 \, \frac{d-2}{2 \, R^3} \, \left[2 \, c_1 + (d-1) \, c_2 \right] \end{split}$$

Lüscher-Weisz effective string theory

Resulting energies:

$$\begin{split} E_{n,l} &= E_n^0 + \frac{\pi^2}{R^3} \, c_1 \, \left[n \, \left(\frac{1}{12} \, (d-2) - n \right) + \alpha_{n,l} \, (c_2 + 2 \, c_1) \right] \\ &+ \left(\frac{\pi}{24} \right)^2 \, \frac{d-2}{2 \, R^3} \, \left[2 \, c_1 + (d-1) \, c_2 \right] \end{split}$$

Especially for d = 3:

$$E_{n} = \sigma R + \frac{\pi}{R} \left(n - \frac{1}{24} \right) - \frac{\pi^{2}}{2 \sigma R^{3}} \left(n - \frac{1}{24} \right)^{2} + \mathcal{O} \left(\frac{1}{R^{5}} \right)$$
$$= \sigma R \sqrt{1 + \frac{2 \pi}{\sigma R^{2}}} \left(n - \frac{1}{24} (d - 2) \right) + \mathcal{O}(1/R^{6})}$$

Results

Lüscher-Weisz effective string theory

Resulting energies:

$$\begin{split} E_{n,l} &= E_n^0 + \frac{\pi^2}{R^3} \, c_1 \, \left[n \, \left(\frac{1}{12} \, (d-2) - n \right) + \alpha_{n,l} \, (c_2 + 2 \, c_1) \right] \\ &+ \left(\frac{\pi}{24} \right)^2 \, \frac{d-2}{2 \, R^3} \, \left[2 \, c_1 + (d-1) \, c_2 \right] \end{split}$$

Especially for d = 3:

$$E_{n} = \sigma R + \frac{\pi}{R} \left(n - \frac{1}{24} \right) - \frac{\pi^{2}}{2 \sigma R^{3}} \left(n - \frac{1}{24} \right)^{2} + \mathcal{O} \left(\frac{1}{R^{5}} \right)$$
$$= \sigma R \sqrt{1 + \frac{2 \pi}{\sigma R^{2}}} \left(n - \frac{1}{24} (d - 2) \right) + \mathcal{O}(1/R^{6})}$$

Agrees with Nambu up to $\mathcal{O}(1/R^5)!$

Consider the string theory as a conformal field theory on the world sheet $X^\mu(\kappa^+,\kappa^-)$ of the string.

(We work with light-cone coordinates κ^{\pm} and in radial quantisation)

The action consists of all terms in powers of 1/R that avoid the Weyl anomaly.

Consider the string theory as a conformal field theory on the world sheet $X^{\mu}(\kappa^+, \kappa^-)$ of the string.

(We work with light-cone coordinates κ^{\pm} and in radial quantisation)

The action consists of all terms in powers of 1/R that avoid the Weyl anomaly.

Polchinski-Strominger_action

$$S_{PS} = \frac{1}{2\pi \alpha} \int d\kappa^+ d\kappa^- \left[H + \alpha \beta \frac{\partial^2_+ X^\mu \partial_- X_\mu \partial_+ X^\nu \partial^2_- X_\nu}{H^2} \right]$$

with $\alpha = \frac{1}{2\pi \sigma}$ and $H \equiv \partial_+ X^\mu \partial_- X_\mu$

Consider the string theory as a conformal field theory on the world sheet $X^{\mu}(\kappa^+, \kappa^-)$ of the string.

(We work with light-cone coordinates κ^{\pm} and in radial quantisation)

The action consists of all terms in powers of 1/R that avoid the Weyl anomaly.

Polchinski-Strominger_action

$$S_{PS} = \frac{1}{2\pi \alpha} \int d\kappa^{+} d\kappa^{-} \left[H + \alpha \beta \frac{\partial_{+}^{2} X^{\mu} \partial_{-} X_{\mu} \partial_{+} X^{\nu} \partial_{-}^{2} X_{\nu}}{H^{2}} \right]$$

with $\alpha = \frac{1}{2\pi \sigma}$ and $H \equiv \partial_{+} X^{\mu} \partial_{-} X_{\mu}$

Expand around the classical solution X_{cl}^{μ} of a closed string, wrapped around the compactified dimension x^1 with length R:

$$Y^{\mu} \equiv X^{\mu} - X^{\mu}_{cl}$$
 with $X^{\mu}_{cl} = e^{\mu}_{+} \frac{R}{2\pi} \kappa^{+} + e^{\mu}_{-} \frac{R}{2\pi} \kappa^{-}$

After a long calculation one arrives at the energies:

$$E_n = \sigma R \sqrt{1 + \frac{8 \pi}{\sigma R^2} \left(n - \frac{1}{24} \left(d - 2\right)\right) + \mathcal{O}(1/R^6)}$$

It agrees with the closed string case of Nambu string theory up to $\mathcal{O}(1/R^5)!$

4. Lüscher-Weisz algorithm

How to compare effective string theories with QCD?

 \longrightarrow Use computer simulations of lattice QCD and compare the results with the predictions of the effective string models.

How to compare effective string theories with QCD?

 \longrightarrow Use computer simulations of lattice QCD and compare the results with the predictions of the effective string models.

• Use standard Monte-Carlo methods with the ordenary plaquette action.

How to compare effective string theories with QCD?

 \longrightarrow Use computer simulations of lattice QCD and compare the results with the predictions of the effective string models.

- Use standard Monte-Carlo methods with the ordenary plaquette action.
- Use special operators for the spatial line of the Wilson loops to couple to the excited string states.

How to compare effective string theories with QCD?

 \longrightarrow Use computer simulations of lattice QCD and compare the results with the predictions of the effective string models.

- Use standard Monte-Carlo methods with the ordenary plaquette action.
- Use special operators for the spatial line of the Wilson loops to couple to the excited string states.

• Looking at the excited string states, we see that the ground states of the four (*C*, *P*) channels corresponds to the groundstate and the three lowest excited states.

Calculating the eigenstates of the correlation matrix we find:

(<i>C</i> , <i>P</i>)	superposition	energy
(+,+)	$S_1 + S_2 + S_3 + S_4$	E ₀
(+, -)	$S_1 + S_2 - S_3 - S_4$	E_1
(-, -)	$S_1 - S_2 - S_3 + S_4$	E_2
(-,+)	$-S_1 + S_2 - S_3 + S_4$	E ₃

Calculating the eigenstates of the correlation matrix we find:

(<i>C</i> , <i>P</i>)	superposition	energy
(+,+)	$S_1 + S_2 + S_3 + S_4$	E ₀
(+, -)	$S_1 + S_2 - S_3 - S_4$	E_1
(-, -)	$S_1 - S_2 - S_3 + S_4$	E_2
(-,+)	$-S_1 + S_2 - S_3 + S_4$	E ₃

Problem: We need to take loops with large time T and space R extends. \rightarrow Very small signal to noise ratio!

(Area law for wilson loops)

Consider pure gauge theory on the lattice with the regular plaquette action.

- local
- gauge freedom

Consider pure gauge theory on the lattice with the regular plaquette action.

- local
- gauge freedom

Idea: Use the gauge freedom to keep all spatial links in some time slices fixed.

(We are not allowed to fix two links of one time-like plaquette!)

Consider pure gauge theory on the lattice with the regular plaquette action.

- local
- gauge freedom

Idea: Use the gauge freedom to keep all spatial links in some time slices fixed.

(We are not allowed to fix two links of one time-like plaquette!)

The physics in the sublattices, separated by the fixed time-slices is independent of each other because of the locality!

Factorization of the action:

$$S^{G}[U] = \beta \operatorname{Tr}\left(\sum_{P} \left[1 - \frac{1}{2N} \left(U_{P} + U_{P}^{+}\right)\right]\right) = S^{G}_{sub,1} + S^{G}_{sub,2} + \dots$$

with $S^{G}_{sub,i} = \beta \operatorname{Tr}\left(\sum_{P_{i}} \left[1 - \frac{1}{2N} \left(U_{P_{i}} + U_{P_{i}}^{+}\right)\right]\right)$

Factorization of the action:

$$S^{G}[U] = \beta \operatorname{Tr}\left(\sum_{P} \left[1 - \frac{1}{2N} \left(U_{P} + U_{P}^{+}\right)\right]\right) = S^{G}_{sub,1} + S^{G}_{sub,2} + \dots$$

with $S^{G}_{sub,i} = \beta \operatorname{Tr}\left(\sum_{P_{i}} \left[1 - \frac{1}{2N} \left(U_{P_{i}} + U_{P_{i}}^{+}\right)\right]\right)$

 \longrightarrow Factorization of path integrals:

$$\begin{array}{lcl} \langle O \rangle & = & \frac{1}{Z} \int \mathcal{D}U \ O[U] \ e^{-S^G}[U] \\ & = & \prod_i \left[\frac{1}{Z_{sub,i}} \int \mathcal{D}U_{sub,i} \ O_{sub,i}[U] \ e^{-S^G_{sub,i}[U]} \right] \\ & \equiv & \prod_i \left\langle O_{sub,i} \right\rangle_{sub,i} \\ & \text{ with } & O[U] = \hat{\mathcal{P}} \left(\prod_i O_{sub,i}[U] \right) \end{array}$$

We are interested in Wilson loops:

Newer version of the algorithm: The spatial lines of the Wilson loops lie in the middle of the sublattice.

Wilson loop W(R, T)

We are interested in Wilson loops:

Newer version of the algorithm: The spatial lines of the Wilson loops lie in the middle of the sublattice.

Decompose the loop in the operators:

Wilson loop W(R, T)

We are interested in Wilson loops:

Newer version of the algorithm: The spatial lines of the Wilson loops lie in the middle of the sublattice.

Wilson loop W(R, T)

Decompose the loop in the operators:

 $\mathcal{S}^{sub,i}$ is a tensor of rank 2, $\mathcal{T}^{sub,i}$ is a tensor of rank 4.

We are interested in Wilson loops:

Newer version of the algorithm: The spatial lines of the Wilson loops lie in the middle of the sublattice.

Decompose the loop in the operators:

 $\mathcal{S}^{sub,i}$ is a tensor of rank 2, $\mathcal{T}^{sub,i}$ is a tensor of rank 4.

We have to use the right multiplication to get a path-ordered Wilson loop from these operators!

Wilson loop W(R, T)

Multiplication for two T^i :

$$\left[\mathcal{T}^{i}\circ\mathcal{T}^{i+1}
ight]_{abcd}=\mathcal{T}^{i}_{a\mu c
u}\,\mathcal{T}^{i+1}_{\mu b
u d}$$

Multiplication for two T^i :

$$\left[\mathcal{T}^{i}\circ\mathcal{T}^{i+1}
ight]_{abcd}=\mathcal{T}^{i}_{a\mu c
u}\ \mathcal{T}^{i+1}_{\mu b
u d}$$

Multiplication for the Wilson loop (on M sublattices):

$$\langle W(R,T) \rangle = S_{ac}^{1+} \left[T^2 \circ T^3 \circ \cdots \circ T^{M-1} \right]_{abcd} S_{bd}^M$$

We have used the abbreviations:

$$\mathcal{T}^{i} \equiv \left\langle \mathcal{T}^{\textit{sub},i}
ight
angle_{\textit{sub},i}$$
 and $\mathcal{S}^{i} \equiv \left\langle \mathcal{S}^{\textit{sub},i}
ight
angle_{\textit{sub},i}$

• Take a thermalized lattice.

- Take a thermalized lattice.
- Divide the lattice in M sublattices.

- Take a thermalized lattice.
- Divide the lattice in M sublattices.
- Do sublattice updates for these parts and calculate the expectation value of the operators for them.

- Take a thermalized lattice.
- Divide the lattice in M sublattices.
- Do sublattice updates for these parts and calculate the expectation value of the operators for them.
- Multiply the expectation values to get one measurement of the desired operator.

(Careful: You are not allowed to take the expectation value over all spatial positions of the operators in the different slices while doing the sublattice updates!)

- Take a thermalized lattice.
- Divide the lattice in M sublattices.
- Do sublattice updates for these parts and calculate the expectation value of the operators for them.
- Multiply the expectation values to get one measurement of the desired operator.

(Careful: You are not allowed to take the expectation value over all spatial positions of the operators in the different slices while doing the sublattice updates!)

• Do some update steps for the whole lattice and then go back to the beginning.

- Take a thermalized lattice.
- Divide the lattice in M sublattices.
- Do sublattice updates for these parts and calculate the expectation value of the operators for them.
- Multiply the expectation values to get one measurement of the desired operator.

(Careful: You are not allowed to take the expectation value over all spatial positions of the operators in the different slices while doing the sublattice updates!)

• Do some update steps for the whole lattice and then go back to the beginning.

The algorithm might be used iteratively.

Tune the parameters of the algorithm in a way, that the combination of error and computations time is optimized.

- Take a thermalized lattice.
- Divide the lattice in M sublattices.
- Do sublattice updates for these parts and calculate the expectation value of the operators for them.
- Multiply the expectation values to get one measurement of the desired operator.

(Careful: You are not allowed to take the expectation value over all spatial positions of the operators in the different slices while doing the sublattice updates!)

• Do some update steps for the whole lattice and then go back to the beginning.

The algorithm might be used iteratively.

Tune the parameters of the algorithm in a way, that the combination of error and computations time is optimized.

Algorithm leads to an exponential error reduction!

5. Results

Background of the calculations

To get enough statistics we work with SU(2) in 3-dimensions, which is very cheap.
Background of the calculations

To get enough statistics we work with SU(2) in 3-dimensions, which is very cheap.

We use the algorithm with only one level.

Background of the calculations

To get enough statistics we work with SU(2) in 3-dimensions, which is very cheap.

We use the algorithm with only one level.

Our parameters are:

	Т	NL	subupdates	meas
$\beta = 5$	4	24	12000:1000	2000
R = 4 - 9	6	24	12000:1500	
tsic = 2	8	24	12000:2000	
	12	24	12000:2500	
$\beta = 5$	4	48	24000:1000	2000
R = 10 - 12	6	48	24000:2000	
tsic = 2	8	48	24000:6000	
	12	48	24000:12000	
$\beta = 7.5$	6	38	36000:1500	4400
R = 7 - 20	10	40	36000:3000	
tsic = 4	14	42	36000:9000	
	18	38	36000:18000	

Observables

Naive energies:

$$ar{E}_n(R) = -rac{1}{T_2 - T_1} \, \ln\left[rac{W_n(R, T_2)}{W_n(R, T_1)}
ight]$$

Results

Observables

Naive energies:

$$\bar{E}_n(R) = -\frac{1}{T_2 - T_1} \ln \left[\frac{W_n(R, T_2)}{W_n(R, T_1)} \right]$$

They have some contributions from higher energy-states in the channels. Use fits to get rid of these contributions:

Results

Observables

Naive energies:

$$\bar{E}_n(R) = -\frac{1}{T_2 - T_1} \ln \left[\frac{W_n(R, T_2)}{W_n(R, T_1)} \right]$$

They have some contributions from higher energy-states in the channels. Use fits to get rid of these contributions:

Energies:

$$\bar{E}_n(R) = -\frac{1}{T_2 - T_1} \ln \left[\frac{W_n(R, T_2)}{W_n(R, T_1)} \right] - \frac{1}{T_2 - T_1} \left[a \, e^{-b \, T_1} \, \left(1 - e^{-b \, (T_2 - T_1)} \right) \right]$$

Results

Observables

Naive energies:

$$ar{E}_n(R) = -rac{1}{T_2 - T_1} \, \ln\left[rac{W_n(R,T_2)}{W_n(R,T_1)}
ight]$$

They have some contributions from higher energy-states in the channels. Use fits to get rid of these contributions:

Energies:

$$\bar{E}_n(R) = -\frac{1}{T_2 - T_1} \ln \left[\frac{W_n(R, T_2)}{W_n(R, T_1)} \right] - \frac{1}{T_2 - T_1} \left[a \, e^{-b \, T_1} \, \left(1 - e^{-b \, (T_2 - T_1)} \right) \right]$$

Energy differences:

$$\Delta \bar{E}_{n0} = -\frac{1}{T_2 - T_1} \ln \left[\frac{W_n(R, T_2) W_0(R, T_1)}{W_n(R, T_1) W_0(R, T_2)} \right] - \frac{1}{T_2 - T_1} b e^{-c T_1} \left(1 - e^{-c (T_2 - T_1)} \right)$$

Energies and comparison to Nambu string theory $\beta = 5$

Comparison between $\beta = 5$ and $\beta = 7.5$

Energy differences and comparison to Nambu string theory

Energy differences and comparison to Nambu string theory

Energy differences and comparison to Nambu string theory

What about Polchinski-Strominger?

Fit for $\beta = 5$ to the form:

$$\Delta E_{10}(R) = R \left[\sqrt{1 + \frac{6.021}{R^2}} - \sqrt{1 - \frac{0.2618}{R^2}} + \frac{a}{R^6} \right]$$

What about Polchinski-Strominger?

Fit for $\beta = 5$ to the form:

What about Polchinski-Strominger?

Conclusions

- Found an algorithm which has an error reduction that is sufficient to take a look at the excited states of the QCD flux tube.
- The results show good agreement with Nambu string theory.
- But:

We work in quenched QCD, where no string breaking appears!

• The runs for the continuum limit are on the run and we hope to have the results in the new year.