Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion

CHIRAL PERTURBATION THEORY

Kai Walter

July 5, 2010

< E

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion

1 INTRODUCTION

- Quantum Chromodynamics
- Effective Field Theories

2 CHIRAL PERTURBATION THEORY

- Symmetries in QCD
- Construction of an effective Lagrangian

3 APPLICATION

- Pion masses
- π - π -scattering

4 CONCLUSION

Outline	Introduction •••••	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Quantum (Chromodynamics			
QCD				

■ QCD is a SU(3)-gauge theory, which is very successful.

Problem: sometimes no analytical prediction is possible even if the theory is accurate.

Outline	Introduction •••••	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Quantum (Chromodynamics			
QCD				

- QCD is a SU(3)-gauge theory, which is very successful.
- Problem: sometimes no analytical prediction is possible even if the theory is accurate.

- \Rightarrow perturbative regime
- At low energy $\alpha(q)_s > 1$ \Rightarrow non-perturbativ regime
- Possibility to examine the non-perturbative regime:
 - Lattice QCD

P institut för theoretische physik

▲ 同 ▶ → 三 ▶

At low energy α(q)s > 1 ⇒ non-perturbativ regime

Possibility to examine the non-perturbative regime:

Lattice QCD

P institut för theoretische physik

- ● ● ●

- At low energy α(q)_s > 1 ⇒ non-perturbativ regime
- Possibility to examine the non-perturbative regime:
 - Lattice QCD

institut für theoretische physik

< ∃→

- At low energy α(q)_s > 1 ⇒ non-perturbativ regime
- Possibility to examine the non-perturbative regime:
 - Lattice QCD
 - Effective Field Theory

Pinstitut för theoretische physik

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Effective F	ield Theories			
IDEA (of EFT			

Effective Field Theory is a low-energy approximation of a field theory

IDEA

We do not need quantum gravity to understand the hydrogen atom.

Outline	$\begin{array}{c} \mathbf{Introduction} \\ \circ \circ \bullet \circ \circ \circ \end{array}$	Chiral perturbation theory	Application 000000000	Conclusion
Effective F	ield Theories			
IDEA (of EFT			

Effective Field Theory is a low-energy approximation of a field theory

IDEA

We do not need quantum gravity to understand the hydrogen atom. \Rightarrow Heavy degrees of freedom need not be included among the quantum fields of an EFT

Construct an effective Lagrangian so that heavy fields do not appear

1. Complete decoupling of heavy fields

The heavy fields with e.g. masses $> \Lambda$ are "integrated out" completely for $\ll \Lambda$: \mathcal{L} depends only on light fields Example: Fermi-Theory

Outline	Introduction ○○○○●○	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion	
Effective Field Theories					
EFT C	OF TYPE 2				

• 2. Partial decoupling of the heavy fields:

Application: HQET

Outline	Introduction ○○○○●○	Chiral perturbation theory	Application 000000000	Conclusion	
Effective Field Theories					
EFT (OF TYPE 2				

 2. Partial decoupling of the heavy fields: Heavy fields do not disappear completely from EFT but their high-momentum modes are integrated out

Application: HQET

Outline	Introduction ○○○○●○	Chiral perturbation theory	Application 000000000	Conclusion
Effective Fi	eld Theories			
EFT (OF TYPE 2			

 2. Partial decoupling of the heavy fields: Heavy fields do not disappear completely from EFT but their high-momentum modes are integrated out

Application: HQET

• 3. Spontaneous symmetry breaking:

- Goldstone Bosons
- Generally non-renormalizable
- Independent from specific physical realization (universality)

A⊒ ▶ < ∃ ▶

eoretische physik

• 3. Spontaneous symmetry breaking:

Goldstone Bosons

Generally non-renormalizable

Independent from specific physical realization (universality)

A⊒ ▶ < 3

■ 3. Spontaneous symmetry breaking:

- Goldstone Bosons
- Generally non-renormalizable
- Independent from specific physical realization (universality)

■ 3. Spontaneous symmetry breaking:

- Goldstone Bosons
- Generally non-renormalizable
- Independent from specific physical realization (universality)

- E

neoretische physik

• 3. Spontaneous symmetry breaking:

- Goldstone Bosons
- Generally non-renormalizable
- Independent from specific physical realization (universality)

Applications: In condensed matter physics Electroweak symmetry break down

Chiral perturbation theory

< E

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i\not D - m)q_f - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- $SU(3)_c$ gauge symmetry
- \blacksquare P-, C-, T--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

$$q_L := P_L q = \frac{1 - \gamma_5}{2} q$$
 $q_R := P_R q = \frac{1 + \gamma_5}{2} q$

$$\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\vec{D})q_{f,L} + \bar{q}_{f,R}(i\vec{D})q_{f,R} - \frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i\not D - m)q_f - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- $SU(3)_c$ gauge symmetry
- \square *P*-, *C*-, *T*--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

$$q_L := P_L q = \frac{1 - \gamma_5}{2} q$$
 $q_R := P_R q = \frac{1 + \gamma_5}{2} q$

$$\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\vec{D})q_{f,L} + \bar{q}_{f,R}(i\vec{D})q_{f,R} - \frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i\not D - m)q_f - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- $SU(3)_c$ gauge symmetry
- P-, C-, T--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

$$q_L := P_L q = \frac{1 - \gamma_5}{2} q$$
 $q_R := P_R q = \frac{1 + \gamma_5}{2} q$

$$\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\vec{D})q_{f,L} + \bar{q}_{f,R}(i\vec{D})q_{f,R} - \frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i\not D - m)q_f - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- *SU*(3)_c gauge symmetry
- \blacksquare P-, C-, T--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

$$q_L := P_L q = rac{1 - \gamma_5}{2} q \qquad q_R := P_R q = rac{1 + \gamma_5}{2} q$$

$$\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\vec{D})q_{f,L} + \bar{q}_{f,R}(i\vec{D})q_{f,R} - \frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i \not D - m) q_f - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- *SU*(3)_c gauge symmetry
- \blacksquare P-, C-, T--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

$$q_L := P_L q = rac{1-\gamma_5}{2} q \qquad q_R := P_R q = rac{1+\gamma_5}{2} q$$

$$\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\mathcal{D})q_{f,L} + \bar{q}_{f,R}(i\mathcal{D})q_{f,R} - \frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} - \bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

Symmetries of QCD in light quark section

$$\mathcal{L}_{QCD} = \bar{q}_f (i \not D - m) q_f - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} \qquad f = 1, 2, 3$$

Symmetries:

- *SU*(3)_c gauge symmetry
- \blacksquare P-, C-, T--symmetry
- $SU(3)_F$ global symmetry (for $m_u = m_d = m_s$)
- Chiral symmetry (for $m \rightarrow 0$)

Def: (with P_L and P_R as the projection operators)

$$q_L := P_L q = rac{1 - \gamma_5}{2} q$$
 $q_R := P_R q = rac{1 + \gamma_5}{2} q$

 $\mathcal{L}_{QCD} = \bar{q}_{f,L}(i\not\!\!D)q_{f,L} + \bar{q}_{f,R}(i\not\!\!D)q_{f,R} - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu}$ break chiral symmetry $\rightarrow -\bar{q}_{f,L}mq_{f,R} - \bar{q}_{f,R}mq_{f,L}$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

CHIRAL SYMMETRY IN QCD

Continuous symmetry of massless QCD

 $SU(3)_L \times SU(3)_R$ for $m \to 0$

• 16 conserved currents for m = 0With the Definition of the vector and axialvector currents $V^{\mu,a} = \bar{q}\gamma^{\mu}\frac{\lambda_a}{2}q$, $A^{\mu,a} = \bar{q}\gamma^{\mu}\gamma_5\frac{\lambda_a}{2}q$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Symmetries in QCD

CHIRAL SYMMETRY IN QCD

Continuous symmetry of massless QCD

$$SU(3)_L \times SU(3)_R$$
 for $m \to 0$

• 16 conserved currents for m = 0With the Definition of the vector and axialvector currents $V^{\mu,a} = \bar{q}\gamma^{\mu}\frac{\lambda_a}{2}q$, $A^{\mu,a} = \bar{q}\gamma^{\mu}\gamma_5\frac{\lambda_a}{2}q$

$$\partial_{\mu}V^{\mu,a} = i\bar{q}\left[M,\frac{\lambda_{a}}{2}\right]q \qquad \partial_{\mu}A^{\mu,a} = i\bar{q}\left\{M,\frac{\lambda_{a}}{2}\right\}\gamma_{5}q$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Symmetrie	s in QCD			
Gold	STONE BOS	ONS		

- For equal quark masses $m_u = m_d = m_s$ the eight vector currents are conserved.
- Axial symmetry is explicitly broken by the quark masses. \rightarrow 2 Coldstone because
 - \Rightarrow 8 Goldstone bosons

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Symmetries	in QCD			
GOLDS	STONE BOS	ONS		

- For equal quark masses $m_u = m_d = m_s$ the eight vector currents are conserved.
- Axial symmetry is explicitly broken by the quark masses.
 - \Rightarrow 8 Goldstone bosons

Introduction 000000 Chiral perturbation theory

Application 000000000

- **→** → **→**

Conclusion

Construction of an effective Lagrangian

CHIRAL PERTUBATION THEORY

S.WEINBERG: *Physica A* 96,327 (1979)

.. if one writes down the *most general possible* Lagrangian, including *all* terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to *any given order of perturbation theory*, the result will simply be the most general possible S-matrix consistent with analyticality, perturbative unitarity, cluster decomposition and the assumed symmetry principles. ..

- Poincar-invariant, C, P, T, isospin symmetry, chiral symmetry...
- Causality
- Conservation of the Properbility $(\sum |\langle f|S|i\rangle|^2 = 1)$
- local field theory

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

CHIRAL PERTUBATION THEORY

S.WEINBERG: *Physica A* 96,327 (1979)

.. if one writes down the *most general possible* Lagrangian, including *all* terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to *any given order of perturbation theory*, the result will simply be the most general possible S-matrix consistent with analyticality, perturbative unitarity, cluster decomposition and the assumed symmetry principles. ..

- Poincaré-invariant, C, P, T, isospin symmetry, chiral symmetry...
- Causality
- Conservation of the Properbility $(\sum |\langle f|S|i \rangle|^2 = 1)$
- local field theory

→ < ∃→

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

CHIRAL PERTUBATION THEORY

S.WEINBERG: *Physica A* 96,327 (1979)

.. if one writes down the *most general possible* Lagrangian, including *all* terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to *any given order of perturbation theory*, the result will simply be the most general possible S-matrix consistent with analyticality, perturbative unitarity, cluster decomposition and the assumed symmetry principles. ..

- Poincaré-invariant, C, P, T, isospin symmetry, chiral symmetry...
- Causality
- Conservation of the Properbility $(\sum |\langle f|S|i \rangle|^2 = 1)$
- local field theory

▶ ∢ ≣ ▶

Introduction 000000 Chiral perturbation theory

Application 000000000

▶ ∢ ≣

Conclusion

Construction of an effective Lagrangian

CHIRAL PERTUBATION THEORY

S.WEINBERG: *Physica A* **96**,327 (1979)

.. if one writes down the *most general possible* Lagrangian, including *all* terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to *any given order of perturbation theory*, the result will simply be the most general possible S-matrix consistent with analyticality, perturbative unitarity, cluster decomposition and the assumed symmetriy principles. ..

- Poincaré-invariant, C, P, T, isospin symmetry, chiral symmetry...
- Causality
- Conservation of the Probability $(\sum_{i} |\langle f|S|i\rangle|^2 = 1)$
- local field theory

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

CHIRAL PERTUBATION THEORY

S.WEINBERG: *Physica A* **96**,327 (1979)

.. if one writes down the *most general possible* Lagrangian, including *all* terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to *any given order of perturbation theory*, the result will simply be the most general possible S-matrix consistent with analyticality, perturbative unitarity, cluster decomposition and the assumed symmetry principles. ..

- Poincaré-invariant, C, P, T, isospin symmetry, chiral symmetry...
- Causality
- Conservation of the Probability $(\sum |\langle f|S|i\rangle|^2 = 1)$
- local field theory

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion
Constructio	n of an effective La	agrangian		
Conte	RUCT A χP	Т		

To construct an effective Lagrangian, we need

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms that break the chiral symmetry

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion
Construction of an effective Lagrangian				
Conti	ruct a $\chi \mathrm{P}$	Т		

To construct an effective Lagrangian, we need

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms that break the chiral symmetry
| Outline | Introduction
000000 | Chiral perturbation theory | Application
000000000 | Conclusion | | |
|---|------------------------|----------------------------|--------------------------|------------|--|--|
| Construction of an effective Lagrangian | | | | | | |
| Contruct a χPT | | | | | | |

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms that break the chiral symmetry

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion		
Construction of an effective Lagrangian						
Contruct a χPT						

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- \blacksquare Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms that break the chiral symmetry

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion		
Construction of an effective Lagrangian						
Contruct a χPT						

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- \blacksquare Invariance of Lagrangian under the chiral transformation for $m \to 0$
- Mass terms that break the chiral symmetry

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion		
Construction of an effective Lagrangian						
Contruct a χPT						

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- \blacksquare Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms, that break the chiral symmetry

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion		
Construction of an effective Lagrangian						
Pertu	JRBATIV PA	ARAMETER				

We need a small parameter to construct a perturbative theory

momentum, mass!

the most general effective Lagrangian in momentum dimension:

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\left. \begin{array}{c} g^{\mu\nu} p_{\mu} p_{\nu} \\ \epsilon^{\mu\nu\rho\sigma} p_{\mu} p_{\nu} p_{\rho} p_{\sigma} \end{array} \right\} \text{scalar} \left. \begin{array}{c} g^{\mu\nu} p_{\mu} p_{\nu} p_{\rho} \\ \epsilon^{\mu\nu\rho\sigma} p_{\mu} p_{\nu} p_{\rho} p_{\sigma} p_{\tau} \end{array} \right\} \text{vector} \dots$$

Outline	Introduction	\mathbf{Ch}

Construction of an effective Lagrangian

PERTURBATIV PARAMETER

We need a small parameter to construct a perturbative theory momentum, mass!

the most general effective Lagrangian in momentum dimension:

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\left. \begin{array}{c} g^{\mu\nu} p_{\mu} p_{\nu} \\ \epsilon^{\mu\nu\rho\sigma} p_{\mu} p_{\nu} p_{\rho} p_{\sigma} \end{array} \right\} \text{scalar} \left. \begin{array}{c} g^{\mu\nu} p_{\mu} p_{\nu} p_{\rho} \\ \epsilon^{\mu\nu\rho\sigma} p_{\mu} p_{\nu} p_{\rho} p_{\sigma} p_{\tau} \end{array} \right\} \text{vector} \dots$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion	
Construction of an effective Lagrangian					
Perturbativ parameter					

We need a small parameter to construct a perturbative theory

momentum, mass!

the most general effective Lagrangian in momentum dimension:

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\begin{array}{c}
g^{\mu\nu} P_{\mu} P_{\nu} \\
\epsilon^{\mu\nu\rho\sigma} P_{\mu} P_{\nu} P_{\rho} P_{\sigma}
\end{array} \\
\begin{array}{c}
\text{scalar} & g^{\mu\nu} P_{\mu} P_{\nu} P_{\rho} \\
\epsilon^{\mu\nu\rho\sigma} P_{\mu} P_{\nu} P_{\rho} P_{\sigma} P_{\tau}
\end{array} \\
\end{array} \\
\begin{array}{c}
\text{vector} \\
\text{total for theoretic the physical set of the set of the$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion	
Construction of an effective Lagrangian					
Perturbativ parameter					

We need a small parameter to construct a perturbative theory momentum, mass!

the most general effective Lagrangian in momentum dimension:

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\begin{cases} g^{\mu\nu}p_{\mu}p_{\nu}\\ \epsilon^{\mu\nu\rho\sigma}p_{\mu}p_{\nu}p_{\rho}p_{\sigma} \end{cases}$$
scalar $\begin{cases} g^{\mu\nu}p_{\mu}p_{\nu}p_{\rho}p_{\rho}\\ \epsilon^{\mu\nu\rho\sigma}p_{\mu}p_{\nu}p_{\rho}p_{\sigma}p_{\tau} \end{cases}$ vector ...

0				
		-		
	u	U		

Introduction

Chiral perturbation theory

 $\begin{array}{c} \mathbf{Application} \\ \texttt{0000000000} \end{array}$

Conclusion

Construction of an effective Lagrangian

Weinberg's counting <u>scheme</u>

Analysis of a given diagram under a linear rescaling of all external momenta $p_i \mapsto t \cdot p_i$

$$\Rightarrow M(tp_i) = t^D \cdot M(p_i)$$

with $D = 2 + \sum_{n=1}^{\infty} 2(n-1)N_{2n} + 2N_L$

 N_{2n} : Number of vertices in the order $\mathcal{O}(p^{2n})$ N_L : Number of loops

Kai Walter Chiral Perturbation Theory

- **→** → **→**

Chiral perturbation theory

 $\begin{array}{c} \mathbf{Application} \\ \texttt{000000000} \end{array}$

- **→** → **→**

Conclusion

Construction of an effective Lagrangian

WEINBERG'S COUNTING SCHEME

Analysis of a given diagram under a linear rescaling of all external momenta $p_i \mapsto t \cdot p_i$

$$\Rightarrow M(tp_i) = t^D \cdot M(p_i)$$

with $D = 2 + \sum_{n=1}^{\infty} 2(n-1)N_{2n} + 2N_L$

- N_{2n} : Number of vertices in the order $\mathcal{O}(p^{2n})$
- N_L : Number of loops

Introduction

Chiral perturbation theory

Application 000000000

Image: A image: A

Conclusion

Construction of an effective Lagrangian

DIAGRAM SORTATION VIA POWER COUNTING SCHEME

$$D = 2, \mathcal{O}(p^2) \qquad N_{2n} = 0, N_L = 0 \qquad \qquad \text{free propagator}$$

$$D = 4, \mathcal{O}(p^4) \qquad N_2 = 1, N_L = 1 \qquad \qquad \text{one loop} \qquad \text{one vertex } \mathcal{O}(p^2) \qquad \qquad \text{one vertex } \mathcal{O}(p^2) \qquad \qquad \text{no loop} \qquad \text{one vertex } \mathcal{O}(p^4)$$

Pinstitut för theoretische physik

-

Outline

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

DIAGRAM SORTATION VIA POWER COUNTING SCHEME

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion		
Construction of an effective Lagrangian						
Contruct a χPT						

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no more quarks.
- \blacksquare Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms, that break the chiral symmetry

• Expression of Lagrangian with the meson-fields $\phi_a = \begin{pmatrix} \pi^+ \\ \vdots \\ n \end{pmatrix}$

Problem: transformation matrix V_L and $V_R \in SU(3)$

Solution: parametrize the fields with Gell-Mann-matrices

$$\phi(x) = \sum_{a=1}^{8} \lambda_{a} \phi_{a}(x) = \begin{pmatrix} \pi^{0} + \frac{1}{\sqrt{3}} \eta & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{1}{\sqrt{3}} \eta & \sqrt{2}K^{0} \\ \sqrt{2}K^{-} & \sqrt{2}\overline{K}^{0} & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

- Expression of Lagrangian with the meson-fields $\phi_a = \begin{pmatrix} \pi^+ \\ \vdots \\ n \end{pmatrix}$
 - Problem: transformation matrix V_L and $V_R \in SU(3)$
- Solution: parametrize the fields with Gell-Mann-matrices

$$\phi(x) = \sum_{a=1}^{8} \lambda_a \phi_a(x) = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

Transformation of $\phi(x)$? \rightarrow nonlinear!

Solution: Definition of a new field matrix U(x)

- Expression of Lagrangian with the meson-fields $\phi_a = \begin{pmatrix} \pi^{\top} \\ \vdots \\ n \end{pmatrix}$
 - Problem: transformation matrix V_L and $V_R \in SU(3)$
- Solution: parametrize the fields with Gell-Mann-matrices

$$\phi(x) = \sum_{a=1}^{8} \lambda_a \phi_a(x) = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

- Transformation of $\phi(x)$? \rightarrow nonlinear!
- Solution: Definition of a new field matrix U(x)

$$U(x) = \exp\left(i\frac{\phi(x)}{F_0}\right)$$

Kai Walter Chiral Perturbation Theory

A⊒ ▶ < ∃ ▶

- Expression of Lagrangian with the meson-fields $\phi_a = \begin{pmatrix} \pi^{\top} \\ \vdots \\ n \end{pmatrix}$
 - Problem: transformation matrix V_L and $V_R \in SU(3)$
 - Solution: parametrize the fields with Gell-Mann-matrices

$$\phi(x) = \sum_{a=1}^{8} \lambda_a \phi_a(x) = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

- Transformation of $\phi(x)$? \rightarrow nonlinear!
- Solution: Definition of a new field matrix U(x)

$$U(x) = \exp\left(i\frac{\phi(x)}{F_0}\right)$$

Outline	Introduction	Chiral perturbation theory	Application 000000000	Conclusion			
Construction	Construction of an effective Lagrangian						

• Transformation of U(x):

$$U'(x) = V_R U(x) V_L^{\dagger}$$

linear!

This is a standard procedure for implementing a symmetry transformation on Goldstone fields.

Further reading: (Coleman *Phys.Rev.177:2239-2247,1969*) Further constituents in Lagrangian:

- $D_{\mu}U(x)$: Derivative of fields
- $f_{\mu\nu}^R$, $f_{\mu\nu}^L$: Field strength tensor of external fields
- $\chi = 2B \cdot \mathcal{M}$: Mass matrix with parameter B

Outline	Introduction	Chiral perturbation theory	Application	Conclusion		
	000000	000000000000000000000000000000000000000	00000000			
Construction of an effective Lagrangian						

• Transformation of U(x):

$$U'(x) = V_R U(x) V_L^{\dagger}$$

linear!

This is a standard procedure for implementing a symmetry transformation on Goldstone fields.

Further reading: (Coleman *Phys.Rev.177:2239-2247,1969*) Further constituents in Lagrangian:

- $D_{\mu}U(x)$: Derivative of fields
- $f_{\mu\nu}^R$, $f_{\mu\nu}^L$: Field strength tensor of external fields
- $\chi = 2B \cdot \mathcal{M}$: Mass matrix with parameter B

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion	
Construction of an effective Lagrangian					

• Transformation of U(x):

$$U'(x) = V_R U(x) V_L^{\dagger}$$

linear!

This is a standard procedure for implementing a symmetry transformation on Goldstone fields.

Further reading: (Coleman *Phys.Rev.177:2239-2247,1969*) Further constituents in Lagrangian:

- $D_{\mu}U(x)$: Derivative of fields
- $f_{\mu\nu}^R$, $f_{\mu\nu}^L$: Field strength tensor of external fields
- $\chi = 2B \cdot \mathcal{M}$: Mass matrix with parameter B

Outline

Introduction

Chiral perturbation theory

Application 000000000

▲ 同 ▶ ▲ 三 ▶

Conclusion

Construction of an effective Lagrangian

LEGO-BRICKS OF CHIRAL PERTURBATION THEORY

$$\begin{array}{l} \ensuremath{\overleftrightarrow{}} \ensuremath{\mathcal{O}}(x) = \mathcal{O}(p^0) \\ \ensuremath{\textcircled{}} \ensuremath{\bigotimes{}} \ensuremath{\mathcal{O}}_{\mu} \mathcal{U}(x) = \mathcal{O}(p) \\ \ensuremath{\textcircled{}} \ensuremath{\mathcal{O}}(p) \\ \ensuremath{\textcircled{}} \ensuremath{\mathcal{O}}(p^2) \\ \ensuremath{$$

Pinstitut för theoretische physik

-

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{ooooooooo} \end{array}$	Conclusion	
Construction of an effective Lagrangian					
Contruct a χPT					

- The most general effective Lagrangian
- Counting scheme for perturbative description of a general Lagrangian
- Expression of Lagrangian via pion fields because degrees of freedom are no longer quarks.
- Invariance of Lagrangian under the chiral transformation for $m \rightarrow 0$
- Mass terms, that break the chiral symmetry

Outline	$\frac{Introduction}{000000}$	Chiral perturbation theory	Application 000000000	Conclusion
Construction of an effective Lagrangian				

and we know how the theory looks like (Symmetries)

▶ < ≣ ▶

approximate!

Kai Walter Chiral Perturbation Theory

institut für Iheoretische physik

▶ ∢ ≣ ▶

Introduction

Chiral perturbation theory

Application

A⊒ ▶ < ∃ ▶

Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

Transformation of the pion-fields U(x) and $D_{\mu}U(x)$:

 $U'(x) = V_R U(x) V_L^{\dagger}$ $[D_{\mu} U(x)]' = V_R [D_{\mu} U(x)] V_L^{\dagger},$

of the external field

$$(f_{\mu\nu}^R)' = V_R f_{\mu\nu}^R V_R^{\dagger}, \qquad (f_{\mu\nu}^L)' = V_L f_{\mu\nu}^L V_L^{\dagger},$$

and of the mass matrix χ with spurion analysis:

$$\chi' = V_R \chi V_L^{\dagger}$$

Introduction

Chiral perturbation theory

Application 000000000

- **→** → **→**

Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

Transformation of the pion-fields U(x) and $D_{\mu}U(x)$:

 $U'(x) = V_R U(x) V_L^{\dagger}$ $[D_\mu U(x)]' = V_R [D_\mu U(x)] V_L^{\dagger}$, of the external field

$$(f^R_{\mu\nu})' = V_R f^R_{\mu\nu} V^{\dagger}_R, \qquad (f^L_{\mu\nu})' = V_L f^L_{\mu\nu} V^{\dagger}_L,$$

and of the mass matrix χ with spurion analysis:

$$\chi' = V_R \chi V_L^{\dagger}$$

Introduction

Chiral perturbation theory

Application

- **→** → **→**

Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

Transformation of the pion-fields U(x) and $D_{\mu}U(x)$:

 $U'(x) = V_R U(x) V_L^{\dagger}$ $[D_{\mu} U(x)]' = V_R [D_{\mu} U(x)] V_L^{\dagger},$

of the external field

$$(f_{\mu\nu}^R)' = V_R f_{\mu\nu}^R V_R^{\dagger}, \qquad (f_{\mu\nu}^L)' = V_L f_{\mu\nu}^L V_L^{\dagger},$$

and of the mass matrix χ with spurion analysis:

$$\chi' = V_R \chi V_L^{\dagger}$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^\dagger$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f^L_{\mu\nu}$	$V_L f^L_{\mu u} V^{\dagger}_L$	$-(f^R_{\mu u})^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Tr (UU^{\dagger}) , Tr (UU^{\dagger}) Tr (UU^{\dagger}) ...,

 $= \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}), \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\operatorname{Tr}(D_{\nu}U(D^{\nu}U)^{\dagger})...$

- Tr (χU^{\dagger}) , Tr $(U\chi^{\dagger})$, ...
- $\blacksquare \operatorname{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^\dagger$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f_{\mu\nu}^L$	$V_L f_{\mu\nu}^L V_L^{\dagger}$	$-(f_{\mu\nu}^R)^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Possible combination

- $\operatorname{Tr}(UU^{\dagger}), \operatorname{Tr}(UU^{\dagger})\operatorname{Tr}(UU^{\dagger})\dots,$
- Tr $(D_{\mu}U(D^{\mu}U)^{\dagger})$, Tr $(D_{\mu}U(D^{\mu}U)^{\dagger})$ Tr $(D_{\nu}U(D^{\nu}U)^{\dagger})$...
- Tr $(\chi U^{\dagger}), \operatorname{Tr}(U\chi^{\dagger}), \ldots$
- $\blacksquare \operatorname{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^\dagger$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f_{\mu\nu}^L$	$V_L f_{\mu\nu}^L V_L^{\dagger}$	$-(f_{\mu\nu}^R)^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Possible combination

- $\operatorname{Tr}(UU^{\dagger}), \operatorname{Tr}(UU^{\dagger})\operatorname{Tr}(UU^{\dagger})...,$ $\operatorname{Tr}(U'U'^{\dagger}) = \operatorname{Tr}(V_RUV_L^{\dagger}V_LU^{\dagger}V_R^{\dagger}) = \operatorname{Tr}(UU^{\dagger})$
- $= \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}), \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\operatorname{Tr}(D_{\nu}U(D^{\nu}U)^{\dagger})...$
- Tr $(\chi U^{\dagger}), \operatorname{Tr}(U\chi^{\dagger}), \ldots$
- $\blacksquare \operatorname{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^\dagger$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f^L_{\mu u}$	$V_L f^L_{\mu u} V^{\dagger}_L$	$-(f^R_{\mu u})^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Possible combination

- Tr(UU^{\dagger}), Tr(UU^{\dagger})Tr(UU^{\dagger})..., Tr($U'U'^{\dagger}$) = Tr($V_RUV_L^{\dagger}V_LU^{\dagger}V_R^{\dagger}$) = Tr(UU^{\dagger})
- $\operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}), \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\operatorname{Tr}(D_{\nu}U(D^{\nu}U)^{\dagger})...$
- Tr $(\chi U^{\dagger}), \operatorname{Tr}(U\chi^{\dagger}), \ldots$
- $\operatorname{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Pinstitut für theoretische physik

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^\dagger$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f_{\mu\nu}^L$	$V_L f_{\mu\nu}^L V_L^{\dagger}$	$-(f_{\mu\nu}^R)^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Possible combination

- $\operatorname{Tr}(UU^{\dagger}), \operatorname{Tr}(UU^{\dagger})\operatorname{Tr}(UU^{\dagger})...,$ $\operatorname{Tr}(U'U'^{\dagger}) = \operatorname{Tr}(V_RUV_L^{\dagger}V_LU^{\dagger}V_R^{\dagger}) = \operatorname{Tr}(UU^{\dagger})$ \checkmark
- $\operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}), \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\operatorname{Tr}(D_{\nu}U(D^{\nu}U)^{\dagger})...$
- $\operatorname{Tr}(\chi U^{\dagger}), \operatorname{Tr}(U\chi^{\dagger}), \ldots$
- Tr $(f_{\mu\nu}^R f_R^{\mu\nu})$, Tr $(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

TRANSFORMATION OF LEGO-BRICKS

element	G	С	Р	order
U(x)	$V_R U(x) V_L^{\dagger}$	U^T	U^{\dagger}	$\mathcal{O}(p^0)$
$D_{\mu}U(x)$	$V_R[D_\mu U(x)]V_L^{\dagger}$	$(D_{\mu}U)^{T}$	$(D_{\mu}U)^{\dagger}$	$\mathcal{O}(p^1)$
χ	$V_R \chi V_L^{\dagger}$	χ^{T}	χ^{\dagger}	$\mathcal{O}(p^2)$
$f^R_{\mu u}$	$V_R f^R_{\mu u} V^{\dagger}_R$	$-(f^L_{\mu u})^T$	$f_L^{\mu u}$	$\mathcal{O}(p^2)$
$f^L_{\mu u}$	$V_L f^L_{\mu u} V^{\dagger}_L$	$-(f^R_{\mu u})^T$	$f_R^{\mu u}$	$\mathcal{O}(p^2)$

Possible combination

- Tr(UU^{\dagger}), Tr(UU^{\dagger})Tr(UU^{\dagger})..., Tr($U'U'^{\dagger}$) = Tr($V_RUV_L^{\dagger}V_LU^{\dagger}V_R^{\dagger}$) = Tr(UU^{\dagger})
- $\operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}), \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\operatorname{Tr}(D_{\nu}U(D^{\nu}U)^{\dagger})...$
- $\operatorname{Tr}(\chi U^{\dagger}), \operatorname{Tr}(U\chi^{\dagger}), \ldots$
- $\operatorname{Tr}(f_{\mu\nu}^R f_R^{\mu\nu})$, $\operatorname{Tr}(U f_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

Outline

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

LOWEST ORDER CHIRAL LAGRANGIAN

$$\begin{array}{ll} \mathcal{O}(p^2) & \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}) \\ & \operatorname{Tr}(\chi U^{\dagger}), \ \operatorname{Tr}(U\chi^{\dagger}) \\ & \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger}) = \operatorname{Tr}(f_{\mu\nu}^L) = 0 \end{array}$$

THE CHIRAL LAGRANGIAN AT LOWEST ORDER

 $\mathcal{L}_{2} = \frac{\frac{F_{0}^{2}}{4}}{\frac{F_{0}^{2}}{4}} \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_{0}^{2}}{4} \operatorname{Tr}(\chi U^{\dagger} + U\chi^{\dagger}) \\ = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_{0}^{2}B_{0}}{2} \operatorname{Tr}(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger})$

Pinstitut für theoretische physik Outline

Introduction

Chiral perturbation theory

Application

- **→** → **→**

Conclusion

institut für theoretische physik

Construction of an effective Lagrangian

LOWEST ORDER CHIRAL LAGRANGIAN

$$\begin{aligned} \mathcal{O}(p^2) & \operatorname{Tr}(D_{\mu}U(D^{\mu}U)^{\dagger}) \\ & \operatorname{Tr}(\chi U^{\dagger}), \ \operatorname{Tr}(U\chi^{\dagger}) \\ & \operatorname{Tr}(Uf_{\mu\nu}^L U^{\dagger}) = \operatorname{Tr}(f_{\mu\nu}^L) = 0 \end{aligned}$$

THE CHIRAL LAGRANGIAN AT LOWEST ORDER

$$\mathcal{L}_2 = \frac{\frac{F_0^2}{4}}{4} \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_0^2}{4} \operatorname{Tr}(\chi U^{\dagger} + U\chi^{\dagger}) \\ = \frac{F_0^2}{4} \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_0^2 B_0}{2} \operatorname{Tr}(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger})$$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

THE CHIRAL LAGRANGIAN AT NLO

$\mathcal{O}(p^4): \quad \mathsf{Tr}(D_{\mu}U(D_{\nu}U)^{\dagger})\mathsf{Tr}(D^{\mu}U(D^{\nu}U)^{\dagger}), \mathsf{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \mathsf{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

and so on ...

CHIRAL LAGRANGIAN AT NLO

- $\mathcal{L}_4 = L_1 \left\{ \mathsf{Tr}[D_\mu U(D^\mu U)^\dagger] \right\}^2 + L_2 \mathsf{Tr}[D_\mu U(D_\nu U)^\dagger] \mathsf{Tr}[D^\mu U(D^\nu U)^\dagger]$
 - + $L_3 \operatorname{Tr}[D_{\mu} U(D^{\mu} U)^{\dagger} D_{\nu} U(D^{\nu} U)^{\dagger}] + L_4 \operatorname{Tr}[D_{\mu} U(D^{\mu} U)^{\dagger}] \operatorname{Tr}(\chi U^{\dagger} + U\chi^{\dagger})^{\dagger}]$
 - + $L_5 \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}(\chi U^{\dagger}+U\chi^{\dagger})] + L_6 \left[\operatorname{Tr}(\chi U^{\dagger}+U\chi^{\dagger})\right]^2$
 - + $L_7 \left[\operatorname{Tr}(\chi U^{\dagger} U\chi^{\dagger}) \right]^2 + L_8 \operatorname{Tr}(U\chi^{\dagger} U\chi^{\dagger} + \chi U^{\dagger}\chi U^{\dagger})$
 - $iL_9 \operatorname{Tr}[f_{\mu\nu}^R D^{\mu} U (D^{\nu} U)^{\dagger} + f_{\mu\nu}^L (D^{\mu} U)^{\dagger} D^{\nu} U] + L_{10} \operatorname{Tr}(U f_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$
 - + $H_1 \operatorname{Tr}[f_{\mu\nu}^R f_R^{\mu\nu} + f_{\mu\nu}^L f_L^{\mu\nu}] + H_2 \operatorname{Tr}[\chi \chi^{\dagger}]$

e physik
$\mathbf{Outline}$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

THE CHIRAL LAGRANGIAN AT NLO

$\mathcal{O}(p^4): \quad \mathsf{Tr}(D_{\mu}U(D_{\nu}U)^{\dagger})\mathsf{Tr}(D^{\mu}U(D^{\nu}U)^{\dagger}), \mathsf{Tr}(f_{\mu\nu}^R f_R^{\mu\nu}), \mathsf{Tr}(Uf_{\mu\nu}^L U^{\dagger} f_R^{\mu\nu})$

and so on ...

CHIRAL LAGRANGIAN AT NLO

$$\mathcal{L}_4 = L_1 \left\{ \mathsf{Tr}[D_\mu U(D^\mu U)^\dagger] \right\}^2 + L_2 \mathsf{Tr}[D_\mu U(D_\nu U)^\dagger] \mathsf{Tr}[D^\mu U(D^\nu U)^\dagger]$$

- + $L_3 \operatorname{Tr}[D_{\mu} U(D^{\mu} U)^{\dagger} D_{\nu} U(D^{\nu} U)^{\dagger}] + L_4 \operatorname{Tr}[D_{\mu} U(D^{\mu} U)^{\dagger}] \operatorname{Tr}(\chi U^{\dagger} + U\chi^{\dagger})$
- + $L_5 \operatorname{Tr}[D_{\mu} U(D^{\mu} U)^{\dagger} (\chi U^{\dagger} + U \chi^{\dagger})] + L_6 \left[\operatorname{Tr}(\chi U^{\dagger} + U \chi^{\dagger})\right]^2$

+
$$L_7 \left[\operatorname{Tr}(\chi U^{\dagger} - U \chi^{\dagger}) \right]^2 + L_8 \operatorname{Tr}(U \chi^{\dagger} U \chi^{\dagger} + \chi U^{\dagger} \chi U^{\dagger})$$

- $iL_9 \operatorname{Tr}[f^R_{\mu\nu} D^{\mu} U (D^{\nu} U)^{\dagger} + f^L_{\mu\nu} (D^{\mu} U)^{\dagger} D^{\nu} U] + L_{10} \operatorname{Tr}(U f^L_{\mu\nu} U^{\dagger} f^{\mu\nu}_R)$
- + $H_1 \operatorname{Tr}[f_{\mu\nu}^R f_R^{\mu\nu} + f_{\mu\nu}^L f_L^{\mu\nu}] + H_2 \operatorname{Tr}[\chi \chi^{\dagger}]$

e physik

 $\mathbf{Outline}$

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

CHIRAL LAGRANGIAN AT NNLO

CHIRAL LAGRANGIAN AT NNLO

theoretische physik

э

.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathbf{Outline}$

Introduction

Chiral perturbation theory

Application

Conclusion

Construction of an effective Lagrangian

CHIRAL LAGRANGIAN AT NNLO

CHIRAL LAGRANGIAN AT NNLO

too many terms!

theoretische physik

э

- 4 同 6 4 回 6 4 回 6

Kai Walter Chiral Perturbation Theory

Outline

Introduction

Chiral perturbation theory

Application 000000000 Conclusion

Construction of an effective Lagrangian

NUMBER OF THE PARAMETER IN χPT

Order	2 flavour		3 flavour	
	parameter	number	parameter	number
<i>p</i> ²	<i>F</i> , <i>B</i>	2	F_0, B_0	2
p^4	I_i^r, h_i^r	7+3	L_i^r, H_i^r	10+2
p^6	c _i ^r	52+4	C _i	90+4

there are two types of terms:

- Terms with low energy constant (LECs)
- Contact terms

contain no pion-fields \Rightarrow no physical relevance required for the renormalization of the loop-contribution

Outline	Introduction 000000	Chiral perturbation theory	Application ●00000000	Conclusion
Pion masses				

Lagrangian at leading order:

$$\mathcal{L}_{2} = \frac{F_{0}^{2}}{4} \mathrm{Tr}[\partial_{\mu} U(\partial^{\mu} U)^{\dagger}] + \frac{F_{0}^{2} B_{0}}{2} \mathrm{Tr}(\mathcal{M} U^{\dagger} + U \mathcal{M}^{\dagger})$$

 $m = m_u = m_d$: mass of the up- and down- quark m_s : mass of the strange-quark expansion of U(x) in $\mathcal{O}(\phi^2)$

$$U(x) = \exp\left(i\frac{\phi}{F_0}\right) = 1 + i\frac{\phi}{F_0} - \frac{\phi^2}{2F_0^2}\dots \quad \text{with } \phi = \lambda_a\phi_a$$

$$\Rightarrow \mathcal{L}_2 =$$

Outline	Introduction 000000	Chiral perturbation theory	Application •00000000	Conclusion
Pion masses				

l

Lagrangian at leading order:

$$\mathcal{L}_{2} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[\partial_{\mu} U(\partial^{\mu} U)^{\dagger}] + \frac{F_{0}^{2} B_{0}}{2} \operatorname{Tr}(\mathcal{M} U^{\dagger} + U \mathcal{M}^{\dagger})$$

 $m = m_u = m_d$: mass of the up- and down- quark m_s : mass of the strange-quark expansion of U(x) in $\mathcal{O}(\phi^2)$

$$\mathcal{U}(x) = \exp\left(i\frac{\phi}{F_0}\right) = 1 + i\frac{\phi}{F_0} - \frac{\phi^2}{2F_0^2} \dots \quad \text{with } \phi = \lambda_a \phi_a$$
$$\Rightarrow \mathcal{L}_2 = \frac{1}{2}(\partial_\mu \phi_a)(\partial^\mu \phi_a)$$

Outline	Introduction 000000	Chiral perturbation theory	Application ●00000000	Conclusion
Pion masses				

1

Lagrangian at leading order:

$$\mathcal{L}_{2} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[\partial_{\mu} U(\partial^{\mu} U)^{\dagger}] + \frac{F_{0}^{2} B_{0}}{2} \operatorname{Tr}(\mathcal{M} U^{\dagger} + U \mathcal{M}^{\dagger})$$

 $m = m_u = m_d$: mass of the up- and down- quark m_s : mass of the strange-quark expansion of U(x) in $\mathcal{O}(\phi^2)$

$$U(x) = \exp\left(i\frac{\phi}{F_0}\right) = 1 + i\frac{\phi}{F_0} - \frac{\phi^2}{2F_0^2}\dots$$
 with $\phi = \lambda_a\phi_a$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusion
Pion masses				

$$M_{\pi}^2 = 2B_0m$$
 $M_K^2 = B_0(m+m_s)$ $M_{\eta}^2 = \frac{2}{3}B_0(m+2m_s)$

These masses satisfy the Gell-Mann-Okubo relation:

$$4M_K^2 = 3M_\eta^2 + M_\pi^2 \qquad \checkmark$$

Theoretical prediction of the quark masses is not possible because of B_0 , but the ratio: $\frac{M_K^2}{M_\pi^2} = \frac{m+m_s}{2m} \Rightarrow \frac{m_s}{m} = 25.9$ $\frac{M_\eta^2}{M_\pi^2} = \frac{2m_s+m}{3m} \Rightarrow \frac{m_s}{m} = 24,3$

∰ ▶ ∢ ≣ ▶

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ 0 \bullet 0 0 0 0 0 0 0 0$	Conclusion
Pion masses				

$$M_{\pi}^2 = 2B_0m$$
 $M_K^2 = B_0(m+m_s)$ $M_{\eta}^2 = \frac{2}{3}B_0(m+2m_s)$

These masses satisfy the Gell-Mann-Okubo relation:

$$4M_K^2 = 3M_\eta^2 + M_\pi^2 \qquad \checkmark$$

Theoretical prediction of the quark masses is not possible because of B_0 , but the ratio: $\frac{M_K^2}{M_\pi^2} = \frac{m+m_s}{2m} \Rightarrow \frac{m_s}{m} = 25.9 \qquad \frac{M_\eta^2}{M_\pi^2} = \frac{2m_s+m}{3m} \Rightarrow \frac{m_s}{m} = 24,3$

Outline	Introduction	Chiral perturbation theory	Application	Concl
			00000000	

usion

PION MASSES AT NLO

$$\mathcal{L}_{D=4} = \mathcal{L}_4^{2\phi} + \mathcal{L}_2^{4\phi}$$

Mass at NLO: $M^2 = M_0^2 + \Sigma(p^2)$

Contact contribution:
taylor expansion of chiral Lagrangian L₄ in O(φ²

$$\Sigma_c = a_\phi + b_\phi p^2$$

Kai Walter Chiral Perturbation Theory

▶ ∢ ≣

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \texttt{oo}\bullet\texttt{oo} \texttt{oo} $	Conclusion
Pion masses				

$$\mathcal{L}_{D=4} = \mathcal{L}_4^{2\phi} + \mathcal{L}_2^{4\phi}$$

Mass at NLO: $M^2 = M_0^2 + \Sigma(p^2)$

 Contact contribution: taylor expansion of chiral Lagrangian L₄ in O(φ²)

$$\Sigma_c = a_\phi + b_\phi p^2$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ 000000000 \end{array}$	Conclusion
Pion masses				
PION M	IASSES AT	NLO		

Loop contribution:

Taylor expansion of \mathcal{L}_2 in $\mathcal{O}(\phi^4)$ + loop integral of the form:

$$\int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - M^2}$$

Renormalization with the method of dimensional regularization + redefinition of the low-energy constants

$$\Sigma(p^2) = A_{\phi} + B_{\phi} p^2$$

Introduction

Chiral perturbation theory

Application 00000000

Conclusion

Pion masses

PION MASSES AT <u>NLO</u>

PION MASS AT NLO

$$M_{\pi,4}^2 = M_{\pi,2}^2 \qquad \left\{ 1 + \frac{M_{\pi,2}^2}{32\pi^2 F^2} \ln\left(\frac{M_{\pi,2}^2}{\mu^2}\right) - \frac{M_{\eta,2}^2}{96\pi^2 F^2} \ln\left(\frac{M_{\eta,2}^2}{\mu^2}\right) \\ \frac{16}{F^2} \left[(2m + m_s)B(2L_6^r - L_4^r) + mB(2L_8^r - L_5^r) \right] \right\}$$

 μ : renormalization scale, $m_q^2 \ln(m_q)$: chiral logarithm

 μ is not a new parameter!!

$$\frac{dM_{\pi,4}^2}{d\mu} = 0$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \end{array}$	Conclusion
π - π -scatter	ring			
Δ ddt i	$C_{\rm ATTON} 2$	$\pi_{-}\pi_{-}$ SCATTEDINC		

loops, gluon propagator ... including nonperturbative interactions described by a contact interaction easy to calculate the scattering amplitude

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \circ \circ \circ \circ \circ \circ \bullet \circ \circ \end{array}$	Conclusion
π - π -scatterin	ıg			

LAGRANGIAN AT LO

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right) + \frac{F^{2}}{4} \operatorname{Tr}\left(\chi U^{\dagger} + U \chi^{\dagger}\right)$$

$$U(x) = \exp\left(i\frac{\phi(x)}{F}\right), \qquad \phi = \sum_{a=1}^{3} \tau_{a}\phi_{a} = \left(\begin{array}{cc} \pi^{0} & \sqrt{2}\pi^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} \end{array}\right)$$

Lagrangian must contain four fields: Expand \mathcal{L}_2 in $\mathcal{O}(\phi^4)$

$$\Rightarrow \mathcal{L}_{2}^{4\phi} = \frac{1}{6F^{2}} \left(\vec{\phi} \cdot \partial_{\mu} \vec{\phi} \cdot \vec{\phi} \cdot \partial^{\mu} \vec{\phi} - \vec{\phi}^{2} \cdot \partial_{\mu} \vec{\phi} \cdot \partial^{\mu} \vec{\phi} \right) + \frac{M_{\pi}^{2}}{24F^{2}} (\vec{\phi}^{2})^{2}$$

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \circ \circ \circ \circ \circ \circ \circ \bullet \circ \end{array}$	Conclusion
π - π -scattering				

$$\mathcal{L}_{2}^{4\phi} = \frac{1}{6F^{2}} \left(\delta_{ab} \delta_{cd} \phi_{a} \partial_{\mu} \phi_{b} \phi_{c} \partial^{\mu} \phi^{d} - \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \partial_{\mu} \phi_{c} \partial^{\mu} \phi_{d} \right) + \frac{M_{\pi}^{2}}{24F^{2}} \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}$$

to calculate the scattering amplitude

1 Fourier trasformation $(\partial_{\mu}\phi_i \rightarrow ip_i\phi_i)$:

 $-\delta_{ab}\delta_{cd}p_bp_d\phi_a\phi_b\phi_c\phi_d$

Symmetrize the vertex:

 $\frac{1}{12}\left[(p_a+p_b)(p_c+p_d)\delta_{ab}\delta_{cd}+(p_a+p_c)(p_b+p_d)\delta_{ac}\delta_{bd}+(p_a+p_d)(p_b+p_c)\delta_{ad}\delta_{bc}\right]\phi_a\phi_b\phi_c\phi_d$

$$\Rightarrow \mathcal{M} = i \left[\delta_{ab} \delta_{cd} \frac{s - M_{\pi}^2}{F^2} + \delta_{ac} \delta_{bd} \frac{t - M_{\pi}^2}{F^2} + \delta_{ad} \delta_{bc} \frac{u - M_{\pi}^2}{F^2} \right]$$

for on-shell pion

Outline	Introduction 000000	Chiral perturbation theory	Application ○○○○○○○●○	Conclusion
π - π -scatterin	g			

$$\mathcal{L}_{2}^{4\phi} = \frac{1}{6F^{2}} \left(\delta_{ab} \delta_{cd} \phi_{a} \partial_{\mu} \phi_{b} \phi_{c} \partial^{\mu} \phi^{d} - \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \partial_{\mu} \phi_{c} \partial^{\mu} \phi_{d} \right) + \frac{M_{\pi}^{2}}{24F^{2}} \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}$$

to calculate the scattering amplitude

1 Fourier trasformation $(\partial_{\mu}\phi_i \rightarrow ip_i\phi_i)$:

$$-\delta_{ab}\delta_{cd}p_bp_d\phi_a\phi_b\phi_c\phi_d$$

2 Symmetrize the vertex:

 $\frac{1}{12}\left[(p_a + p_b)(p_c + p_d)\delta_{ab}\delta_{cd} + (p_a + p_c)(p_b + p_d)\delta_{ac}\delta_{bd} + (p_a + p_d)(p_b + p_c)\delta_{ad}\delta_{bc}\right]\phi_a\phi_b\phi_c\phi_d$

$$\Rightarrow \mathcal{M} = i \left[\delta_{ab} \delta_{cd} \frac{s - M_{\pi}^2}{F^2} + \delta_{ac} \delta_{bd} \frac{t - M_{\pi}^2}{F^2} + \delta_{ad} \delta_{bc} \frac{u - M_{\pi}^2}{F^2} \right]$$

for on-shell pion

- ∢ ≣ ▶

Outline	Introduction 000000	Chiral perturbation theory	Application ○○○○○○○●○	Conclusion
π - π -scatterin	g			

$$\mathcal{L}_{2}^{4\phi} = \frac{1}{6F^{2}} \left(\delta_{ab} \delta_{cd} \phi_{a} \partial_{\mu} \phi_{b} \phi_{c} \partial^{\mu} \phi^{d} - \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \partial_{\mu} \phi_{c} \partial^{\mu} \phi_{d} \right) + \frac{M_{\pi}^{2}}{24F^{2}} \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}$$

to calculate the scattering amplitude

1 Fourier trasformation $(\partial_{\mu}\phi_i \rightarrow ip_i\phi_i)$:

$$-\delta_{ab}\delta_{cd}p_bp_d\phi_a\phi_b\phi_c\phi_d$$

2 Symmetrize the vertex:

 $\frac{1}{12}\left[(p_a+p_b)(p_c+p_d)\delta_{ab}\delta_{cd}+(p_a+p_c)(p_b+p_d)\delta_{ac}\delta_{bd}+(p_a+p_d)(p_b+p_c)\delta_{ad}\delta_{bc}\right]\phi_a\phi_b\phi_c\phi_d$

$$\Rightarrow \mathcal{M} = i \left[\delta_{ab} \delta_{cd} \frac{s - M_{\pi}^2}{F^2} + \delta_{ac} \delta_{bd} \frac{t - M_{\pi}^2}{F^2} + \delta_{ad} \delta_{bc} \frac{u - M_{\pi}^2}{F^2} \right]$$

for on-shell pion

Outline	Introduction 000000	Chiral perturbation theory	Application ○○○○○○○●○	Conclusion
π - π -scatterin	g			

$$\mathcal{L}_{2}^{4\phi} = \frac{1}{6F^{2}} \left(\delta_{ab} \delta_{cd} \phi_{a} \partial_{\mu} \phi_{b} \phi_{c} \partial^{\mu} \phi^{d} - \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \partial_{\mu} \phi_{c} \partial^{\mu} \phi_{d} \right) + \frac{M_{\pi}^{2}}{24F^{2}} \delta_{ab} \delta_{cd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}$$

to calculate the scattering amplitude

1 Fourier trasformation $(\partial_{\mu}\phi_i \rightarrow ip_i\phi_i)$:

$$-\delta_{ab}\delta_{cd}p_bp_d\phi_a\phi_b\phi_c\phi_d$$

2 Symmetrize the vertex:

 $\frac{1}{12}\left[(p_a+p_b)(p_c+p_d)\delta_{ab}\delta_{cd}+(p_a+p_c)(p_b+p_d)\delta_{ac}\delta_{bd}+(p_a+p_d)(p_b+p_c)\delta_{ad}\delta_{bc}\right]\phi_a\phi_b\phi_c\phi_d$

$$\Rightarrow \mathcal{M} = i \left[\delta_{ab} \delta_{cd} \frac{s - M_{\pi}^2}{F^2} + \delta_{ac} \delta_{bd} \frac{t - M_{\pi}^2}{F^2} + \delta_{ad} \delta_{bc} \frac{u - M_{\pi}^2}{F^2} \right]$$

for on-shell pion

Outline	Introduction 000000	Chiral perturbation theory	$\begin{array}{c} \mathbf{Application} \\ \circ \circ \circ \circ \circ \circ \circ \circ \bullet \end{array}$	Conclusion		
π - π -scattering						
SCATTERING LENGTH						

Prediction of the s-wave scattering length:

$$a_0^0 = rac{7M_\pi^2}{32\pi F^2} = 0.156, \qquad a_0^2 = -rac{M_\pi^2}{16\pi F^2} = -0.045$$

For F = 93.2 MeV and $M_{\pi} = 139.57$ MeV Calculation until order p^6 done by Bijnens et al.

$$a_0^0 = \underbrace{0.156}_{\mathcal{O}(p^2)} + \underbrace{0.044}_{\mathcal{O}(p^4)} + \underbrace{0.017}_{\mathcal{O}(p^6)} = 0.217$$

data from experiment (M. Kermani et al. [CHAOS Collaboration])

$$a_0^0 = 0.216 \pm 0.013 (\text{stat}) \pm 0.008 (\text{syst})$$

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion

CONCLUSION

- *χ*PT is a EFT with spontaneous breakdown of chiral symmetry.
- Low-energy QCD described by the nonlinear realization of the pion-fields $U(x) = \exp\left(i\frac{\lambda_a\phi_a}{F^2}\right)$.
- There are some lego bricks of the χ PT.

- Weinberg's power counting scheme for sortation of Feynman diagrams.
- Advantages:
 - Analytical examination of the non-perturbative regime of QCD
 - No complicated calculations
 - Universality of Lagrangian
- Disadvantage
 - A lot of low-energy constants

Outline	Introduction 000000	Chiral perturbation theory	Application 000000000	Conclusion

Thank you for your attention!

