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Quantum Chromodynamics

QCD

QCD is a SU(3)-gauge theory, which is very successful.

Problem: sometimes no analytical prediction is possible even
if the theory is accurate.
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Quantum Chromodynamics
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Effective Field Theories

Idea of EFT

Effective Field Theory is a low-energy approximation of a field
theory

idea

We do not need quantum gravity to understand the hydrogen
atom.

⇒ Heavy degrees of freedom need not be included among
the quantum fields of an EFT

Construct an effective Lagrangian so that heavy fields do not
appear
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Effective Field Theories

Classification of the EFT

1. Complete decoupling of heavy fields

Λ

“effective“ level “fundamental“ level

theory

The heavy fields with e.g. masses > Λ are ”integrated out”
completely for � Λ: L depends only on light fields
Example: Fermi-Theory
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Effective Field Theories

EFT of type 2

2. Partial decoupling of the heavy fields:

Heavy fields do not disappear completely from EFT but their
high-momentum modes are integrated out

Application: HQET
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Effective Field Theories

EFT of type 3

3. Spontaneous symmetry breaking:

Λ

broken symmetry symmetry

theory

symmetry break down

Goldstone Bosons
Generally non-renormalizable
Independent from specific physical realization (universality)

Applications: In condensed matter physics
Electroweak symmetry break down
Chiral perturbation theory
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Symmetries in QCD

Symmetries of QCD in light quark section

LQCD = q̄f (i /D −m)qf −
1

4
G a
µνG

aµν f = 1, 2, 3

Symmetries:

SU(3)c gauge symmetry

P−, C−, T−-symmetry

SU(3)F global symmetry (for mu = md = ms)

Chiral symmetry (for m→ 0)

Def: (with PL and PR as the projection operators)

qL := PLq =
1− γ5

2
q qR := PRq =

1 + γ5

2
q

LQCD = q̄f ,L(i /D)qf ,L + q̄f ,R(i /D)qf ,R −
1

4
G a
µνG

aµν

break chiral symmetry→

− q̄f ,Lmqf ,R − q̄f ,Rmqf ,L
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Symmetries in QCD

Chiral symmetry in QCD

Continuous symmetry of massless QCD

SU(3)L × SU(3)R for m→ 0

16 conserved currents for m = 0
With the Definition of the vector and axialvector currents
V µ,a = q̄γµ λa

2 q, Aµ,a = q̄γµγ5
λa
2 q

∂µV
µ,a = i q̄

[
M,

λa

2

]
q ∂µA

µ,a = i q̄

{
M,

λa

2

}
γ5q
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Symmetries in QCD

Goldstone bosons

For equal quark masses mu = md = ms the eight vector
currents are conserved.
Axial symmetry is explicitly broken by the quark masses.
⇒ 8 Goldstone bosons

I3

Y

π+

K+K 0

π−

K− K̄ 0

π0

η
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Construction of an effective Lagrangian

Chiral Pertubation Theory

S.Weinberg: Physica A 96,327 (1979)

.. if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles,
and then calculates matrix elements with this Lagrangian to any
given order of perturbation theory, the result will simply be the
most general possible S-matrix consistent with analyticality,
perturbative unitarity, cluster decomposition and the assumed
symmetriy principles. ..

Poincar-invariant, C, P, T, isospin symmetry, chiral
symmetry...

Causality

Conservation of the Properbility (
∑
f

|〈f |S |i〉|2 = 1)

local field theory
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Poincaré-invariant, C, P, T, isospin symmetry, chiral
symmetry...

Causality

Conservation of the Probability (
∑
f

|〈f |S |i〉|2 = 1)

local field theory

Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

Contruct a χPT

To construct an effective Lagrangian, we need

The most general effective Lagrangian

Counting scheme for perturbative description of a general
Lagrangian

Expression of Lagrangian via pion fields because degrees of
freedom are no longer quarks.

Invariance of Lagrangian under the chiral transformation for
m→ 0

Mass terms that break the chiral symmetry
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Construction of an effective Lagrangian

Perturbativ parameter

We need a small parameter to construct a perturbative theory

momentum, mass!

the most general effective Lagrangian in momentum dimension:

Leff = L2 + L4 + L6 + . . .

There are no terms L2n+1 because of the Lorentz-invariance.

gµνpµpν
εµνρσpµpνpρpσ

}
scalar

gµνpµpνpρ
εµνρσpµpνpρpσpτ

}
vector . . .
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Construction of an effective Lagrangian

Weinberg’s counting scheme

Analysis of a given diagram under a linear rescaling of all external
momenta pi 7→ t · pi

⇒ M(tpi ) = tD ·M(pi )

with D = 2 +
∞∑

n=1

2(n − 1)N2n + 2NL

N2n : Number of vertices in the order O(p2n)
NL: Number of loops
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Construction of an effective Lagrangian

Diagram sortation via power counting scheme

D = 2, O(p2) N2n = 0, NL = 0 free propagator

D = 4, O(p4) N2 = 1, NL = 1 2 one loop
one vertex O(p2)

N4 = 1, NL = 0 4 no loop
one vertex O(p4)
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Construction of an effective Lagrangian

Diagram sortation via power counting scheme

D = 6 N2 = 1 NL = 2

2

two loops
one vertex O(p2)

N2 = 2 NL = 2

2 2

two loops
two vertices O(p2)

N4 = 1 NL = 1 4 one loop,
etc . . . one vertexO(p4)
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Construction of an effective Lagrangian

Expression of Lagrangian with the meson-fields φa =

 π+

...
η


Problem: transformation matrix VL and VR ∈ SU(3)

Solution: parametrize the fields with Gell-Mann-matrices

φ(x) =
8∑

a=1

λaφa(x) =

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


Transformation of φ(x)? → nonlinear!

Solution: Definition of a new field matrix U(x)

U(x) = exp

(
i
φ(x)

F0

)
Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

Expression of Lagrangian with the meson-fields φa =

 π+

...
η


Problem: transformation matrix VL and VR ∈ SU(3)

Solution: parametrize the fields with Gell-Mann-matrices

φ(x) =
8∑

a=1

λaφa(x) =

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


Transformation of φ(x)? → nonlinear!

Solution: Definition of a new field matrix U(x)

U(x) = exp

(
i
φ(x)

F0

)
Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

Expression of Lagrangian with the meson-fields φa =

 π+

...
η


Problem: transformation matrix VL and VR ∈ SU(3)

Solution: parametrize the fields with Gell-Mann-matrices

φ(x) =
8∑

a=1

λaφa(x) =

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


Transformation of φ(x)? → nonlinear!

Solution: Definition of a new field matrix U(x)

U(x) = exp

(
i
φ(x)

F0

)
Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

Expression of Lagrangian with the meson-fields φa =

 π+

...
η


Problem: transformation matrix VL and VR ∈ SU(3)

Solution: parametrize the fields with Gell-Mann-matrices

φ(x) =
8∑

a=1

λaφa(x) =

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


Transformation of φ(x)? → nonlinear!

Solution: Definition of a new field matrix U(x)

U(x) = exp

(
i
φ(x)

F0

)
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Construction of an effective Lagrangian

Transformation of U(x):

U ′(x) = VRU(x)V †L

linear!

This is a standard procedure for implementing a symmetry
transformation on Goldstone fields.
Further reading: (Coleman Phys.Rev.177:2239-2247,1969)
Further constituents in Lagrangian:

DµU(x): Derivative of fields

f R
µν , f L

µν : Field strength tensor of external fields

χ = 2B · M: Mass matrix with parameter B
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Construction of an effective Lagrangian

Lego-Bricks of chiral perturbation theory

U(x) = O(p0)

DµU(x) = O(p)

f L
µν = O(p2)

f R
µν = O(p2)

2B ·M = O(p2)
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Construction of an effective Lagrangian

Contruct a χPT

To construct an effective Lagrangian, we need

The most general effective Lagrangian

Counting scheme for perturbative description of a general
Lagrangian

Expression of Lagrangian via pion fields because degrees of
freedom are no longer quarks.

Invariance of Lagrangian under the chiral transformation for
m→ 0

Mass terms, that break the chiral symmetry
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Construction of an effective Lagrangian

we have lego-bricks and we know how the theory
looks like (Symmetries)
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Construction of an effective Lagrangian

we have lego-bricks

approximate!

and we know how the theory
looks like (Symmetries)
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Construction of an effective Lagrangian

Transformation of Lego-Bricks

Transformation of the pion-fields U(x) and DµU(x):

U ′(x) = VRU(x)V †L [DµU(x)]′ = VR [DµU(x)]V †L ,

of the external field

(f R
µν)′ = VR f R

µνV
†
R , (f L

µν)′ = VLf
L
µνV

†
L ,

and of the mass matrix χ with spurion analysis:

χ′ = VRχV †L
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Construction of an effective Lagrangian

Transformation of lego-bricks

element G C P order

U(x) VRU(x)V †L UT U† O(p0)

DµU(x) VR [DµU(x)]V †L (DµU)T (DµU)† O(p1)

χ VRχV †L χT χ† O(p2)

f R
µν VR f R

µνV
†
R −(f L

µν)T f µνL O(p2)

f L
µν VLf

L
µνV

†
L −(f R

µν)T f µνR O(p2)

Possible combination

Tr(UU†), Tr(UU†)Tr(UU†) . . . ,

Tr(U ′U ′†) = Tr(VRUV †LVLU
†V †R) = Tr(UU†) �

Tr(DµU(DµU)†),Tr(DµU(DµU)†)Tr(DνU(DνU)†) . . .

Tr(χU†), Tr(Uχ†), . . .

Tr(f R
µν f

µν
R ), Tr(Uf L

µνU
†f µνR )
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Construction of an effective Lagrangian

Lowest order chiral Lagrangian

O(p2) Tr(DµU(DµU)†)
Tr(χU†), Tr(Uχ†)
Tr(Uf L

µνU
†) = Tr(f L

µν) = 0

the chiral Lagrangian at lowest order

L2 =
F 2

0
4 Tr[DµU(DµU)†] +

F 2
0

4 Tr(χU† + Uχ†)

=
F 2

0
4 Tr[DµU(DµU)†] +

F 2
0 B0

2 Tr(MU† + UM†)
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Construction of an effective Lagrangian

the chiral lagrangian at NLO

O(p4) : Tr(DµU(DνU)†)Tr(DµU(DνU)†),Tr(f R
µν f

µν
R ),Tr(Uf L

µνU
†f µνR )

and so on . . .

chiral lagrangian at NLO

L4 = L1

n
Tr[DµU(DµU)†]

o2

+ L2Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+ L3Tr[DµU(DµU)†DνU(DνU)†] + L4Tr[DµU(DµU)†]Tr(χU† + Uχ†)

+ L5Tr[DµU(DµU)†(χU† + Uχ†)] + L6

h
Tr(χU† + Uχ†)

i2

+ L7

h
Tr(χU† − Uχ†)

i2

+ L8Tr(Uχ†Uχ† + χU†χU†)

− iL9Tr[f R
µνDµU(DνU)† + f L

µν(DµU)†DνU] + L10Tr(Uf L
µνU†f µν

R )

+ H1Tr[f R
µν f µν

R + f L
µν f µν

L ] + H2Tr[χχ†]

Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

the chiral lagrangian at NLO

O(p4) : Tr(DµU(DνU)†)Tr(DµU(DνU)†),Tr(f R
µν f

µν
R ),Tr(Uf L

µνU
†f µνR )

and so on . . .

chiral lagrangian at NLO

L4 = L1

n
Tr[DµU(DµU)†]

o2

+ L2Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+ L3Tr[DµU(DµU)†DνU(DνU)†] + L4Tr[DµU(DµU)†]Tr(χU† + Uχ†)

+ L5Tr[DµU(DµU)†(χU† + Uχ†)] + L6

h
Tr(χU† + Uχ†)

i2

+ L7

h
Tr(χU† − Uχ†)

i2

+ L8Tr(Uχ†Uχ† + χU†χU†)

− iL9Tr[f R
µνDµU(DνU)† + f L

µν(DµU)†DνU] + L10Tr(Uf L
µνU†f µν

R )

+ H1Tr[f R
µν f µν

R + f L
µν f µν

L ] + H2Tr[χχ†]

Kai Walter Chiral Perturbation Theory



Outline Introduction Chiral perturbation theory Application Conclusion

Construction of an effective Lagrangian

chiral lagrangian at NNLO

chiral lagrangian at NNLO

too many terms!
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Construction of an effective Lagrangian

number of the parameter in χPT

Order 2 flavour 3 flavour

parameter number parameter number

p2 F , B 2 F0,B0 2

p4 l ri , hr
i 7+3 Lr

i , H r
i 10+2

p6 c r
i 52+4 C r

i 90+4

. . .
there are two types of terms:

Terms with low energy constant (LECs)

Contact terms
contain no pion-fields ⇒ no physical relevance
required for the renormalization of the loop-contribution
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Pion masses

Pion masses at LO

Lagrangian at leading order:

L2 =
F 2

0

4
Tr[∂µU(∂µU)†] +

F 2
0 B0

2
Tr(MU† + UM†)

m = mu = md : mass of the up- and down- quark
ms : mass of the strange-quark
expansion of U(x) in O(φ2)

U(x) = exp

(
i
φ

F0

)
= 1 + i

φ

F0
− φ2

2F 2
0

. . . with φ = λaφa

⇒ L2 =
1

2
(∂µφa)(∂µφa)

− 2mB0π
+π− − (m + ms)B0K

+K−

− (m + ms)B0K
0K̄ 0 − 1

3
(m + 2ms)B0η

2
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Pion masses

Pion masses at LO

Lagrangian at leading order:

L2 =
F 2

0

4
Tr[∂µU(∂µU)†] +

F 2
0 B0

2
Tr(MU† + UM†)

m = mu = md : mass of the up- and down- quark
ms : mass of the strange-quark
expansion of U(x) in O(φ2)

U(x) = exp

(
i
φ

F0

)
= 1 + i

φ

F0
− φ2

2F 2
0

. . . with φ = λaφa

⇒ L2 =
1

2
(∂µφa)(∂µφa)

−mB0

(
2π+π− + π0π0

)
− (m + ms)B0K

+K−

− (m + ms)B0K
0K̄ 0 − 1

3
(m + 2ms)B0η

2
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Pion masses

Pion masses at LO

M2
π = 2B0m M2

K = B0(m + ms) M2
η =

2

3
B0(m + 2ms)

These masses satisfy the Gell-Mann-Okubo relation:

4M2
K = 3M2

η + M2
π �

Theoretical prediction of the quark masses is not possible because
of B0, but the ratio:
M2

K
M2

π
= m+ms

2m ⇒ ms
m = 25.9

M2
η

M2
π

= 2ms+m
3m ⇒ ms

m = 24, 3
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Pion masses

Pion masses at NLO

4 , 2

LD=4 = L2φ
4 + L4φ

2

Mass at NLO: M2 = M2
0 + Σ(p2)

Contact contribution:
taylor expansion of chiral Lagrangian L4 in O(φ2)

Σc = aφ + bφp
2
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Pion masses

Pion masses at NLO

2

Loop contribution:
Taylor expansion of L2 in O(φ4) + loop integral of the form:∫

d4k

(2π)4

i

k2 −M2

Renormalization with the method of dimensional regularization +
redefinition of the low-energy constants

Σ(p2) = Aφ + Bφp
2
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Pion masses

pion masses at NLO

pion mass at NLO

M2
π,4 = M2

π,2

{
1 +

M2
π,2

32π2F 2
ln

(
M2
π,2

µ2

)
−

M2
η,2

96π2F 2
ln

(
M2
η,2

µ2

)
16

F 2
[(2m + ms)B(2Lr

6 − Lr
4) + mB(2Lr

8 − Lr
5)]

}

µ: renormalization scale, m2
q ln(mq): chiral logarithm

µ is not a new parameter!!

dM2
π,4

dµ
= 0
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π-π-scattering

Application 2: π-π-scattering at LO

π

π

π

π

QCD

loops, gluon propagator . . .
including nonperturbative
interactions

π π

π πχPT

described by a contact
interaction
easy to calculate the scattering
amplitude
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π-π-scattering

Lagrangian at LO

L2 =
F 2

4
Tr
(
∂µU∂

µU†
)

+
F 2

4
Tr
(
χU† + Uχ†

)

U(x) = exp

(
i
φ(x)

F

)
, φ =

3∑
a=1

τaφa =

(
π0

√
2π+

√
2π− −π0

)
Lagrangian must contain four fields: Expand L2 in O(φ4)

⇒ L4φ
2 =

1

6F 2

(
~φ · ∂µ~φ · ~φ · ∂µ~φ− ~φ2 · ∂µ~φ · ∂µ~φ

)
+

M2
π

24F 2
(~φ2)2
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π-π-scattering

scattering amplitude

L4φ
2 =

1

6F 2

“
δabδcdφa∂µφbφc∂

µφd − δabδcdφaφb∂µφc∂
µφd

”
+

M2
π

24F 2
δabδcdφaφbφcφd

to calculate the scattering amplitude

1 Fourier trasformation (∂µφi → ipiφi ):

−δabδcdpbpdφaφbφcφd

2 Symmetrize the vertex:

1

12
[(pa + pb)(pc + pd )δabδcd + (pa + pc )(pb + pd )δacδbd + (pa + pd )(pb + pc )δad δbc ] φaφbφcφd

⇒M = i
[
δabδcd

s−M2
π

F 2 + δacδbd
t−M2

π

F 2 + δadδbc
u−M2

π

F 2

]
for on-shell pion
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to calculate the scattering amplitude

1 Fourier trasformation (∂µφi → ipiφi ):

−δabδcdpbpdφaφbφcφd

2 Symmetrize the vertex:

1

12
[(pa + pb)(pc + pd )δabδcd + (pa + pc )(pb + pd )δacδbd + (pa + pd )(pb + pc )δad δbc ] φaφbφcφd

⇒M = i
[
δabδcd

s−M2
π

F 2 + δacδbd
t−M2

π

F 2 + δadδbc
u−M2

π

F 2

]
for on-shell pion
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π-π-scattering

scattering length

Prediction of the s-wave scattering length:

a0
0 =

7M2
π

32πF 2
= 0.156, a2

0 = − M2
π

16πF 2
= −0.045

For F = 93.2 MeV and Mπ = 139.57 MeV
Calculation until order p6 done by Bijnens et al.

a0
0 = 0.156︸ ︷︷ ︸

O(p2)

+ 0.044︸ ︷︷ ︸
O(p4)

+ 0.017︸ ︷︷ ︸
O(p6)

= 0.217

data from experiment (M. Kermani et al. [CHAOS Collaboration])

a0
0 = 0.216± 0.013(stat)± 0.008(syst)
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Conclusion

χPT is a EFT with spontaneous breakdown of chiral
symmetry.
Low-energy QCD described by the nonlinear realization of the

pion-fields U(x) = exp
(
i λaφa

F 2

)
.

There are some lego bricks of the χPT.

U(x) DµU(x) f L
µν f R

µν 2B ·M
Weinberg’s power counting scheme for sortation of Feynman
diagrams.
Advantages:

Analytical examination of the non-perturbative regime of QCD
No complicated calculations
Universality of Lagrangian

Disadvantage

A lot of low-energy constants

Very good agreement with the experimental dataKai Walter Chiral Perturbation Theory
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Thank you for your attention!
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