Scale Dependent Renormalization and the Schrödinger Functional

Dirk Hesse
dirk.hesse@uni-muenster.de

Institut für Theoretische Physik
WWU Münster

July 6th, 2007
Outline

1. Scale Dependent Renormalization
2. The Schrödinger Functional
3. Renormalizing Quark Masses
Some Conventions

We Are Lattice People

We do Monte Carlo (MC) simulations with
- Lattice size L
- Lattice spacing a
- $(L/a)^4$ lattice points (in 4 dimensions)
- The lattice introduces a momentum cutoff a^{-1}

First we will consider pure Yang-Mills-Theory, later switch to QCD.
The Running Coupling

QCD

Bare coupling constant

\[g_0 \]

has to be **renormalized**.

The Real World

Physical, scale dependant coupling \(\alpha(\mu) \), e.g.

\[
\alpha(\mu) \propto \frac{\sigma(e^+e^- \rightarrow q\bar{q}g)}{\sigma(e^+e^- \rightarrow q\bar{q})}
\]
A Picture

Stolen from S. Bethke: α_s 2002
For high energies μ, one can use perturbation theory (PT) to make predictions. The renormalization group (RG) tells us that

$$\mu \frac{\partial g}{\partial \mu} = \beta(g),$$

PT then yields

$$\beta(g) \to 0 - g^3(b_0 + g^2 b_1 + \ldots)$$

But QCD should also describe low energy phenomena ...
What Do We Want To Do?

A Test For QCD

- Determine $\alpha(\mu)$ non-perturbatively on the lattice
- Make connection to PT in the high energy sector
- i.e. connect low- and high-energy regimes of QCD, predict e.g. Λ/F_π or simply Λ trough hadronic input
- Use PT (or some other effective theory) for 'real world predictions'
- Compare with experiments
Define a physical coupling, e.g.

\[\alpha_{\bar{q}q}(\mu) := \left. \frac{1}{C_F} r^2 F(r) \right|_{\mu=1/r} \]

and measure it on the lattice!

Simple?
How To Do This?

Define a physical coupling, e.g.

\[\alpha_{\bar{q}q}(\mu) := \frac{1}{C_F} \left. r^2 F(r) \right|_{\mu=1/r} \]

and measure it on the lattice!

This doesn’t work!
Why Doesn’t It Work?

We have to satisfy constraints:

- $\mu \geq 10 \text{ GeV}$ for PT matching
- $\mu \ll a^{-1}$ to control discretization errors
- $L \gg \frac{1}{m_\pi}$, r_0 to control finite size effects

This leads to

$$L \gg r_0, \frac{1}{m_\pi} \sim \frac{1}{0.14 \text{ GeV}} \gg \frac{1}{\mu} \sim \frac{1}{10 \text{ GeV}} \gg a$$

\Rightarrow Simulate $L/a \gg 70$ lattice points in MC simulation

\rightarrow (today) not possible
Besides a^{-1}, another energy scale is accessible in MC simulations, namely L

The L Trick

- Identify $\mu = \frac{1}{L}$, i.e. choose finite size effects as observable
- Find a clever definition for $\alpha(L)$
- Split up the
 - Renormalization of $\alpha(L)$ for fixed L and
 - Computation of the scale dependence of α
To investigate the scale evolution of α, define the step scaling function σ

The Step Scaling Function

- Choose starting point $u_0 = \bar{g}^2(L)$
- Choose a scaling factor s
- Define $\sigma(s, u_0) = \bar{g}^2(sL)$

This is a discrete integrated β-function
The SSF on a Lattice

REMEMBER: We Are Lattice People

- Obtained on a lattice, \(\sigma \) will carry a dependence on \(a/L \)
- So define

\[
\Sigma(s, u, a/L) = \left. \frac{\bar{g}^2}{g^2} \right|_{g^2(L)=u,g_0 \text{ fixed},a/L \text{ fixed}}
\]

- Calculate \(\Sigma(s, u, a/L) \) for several lattice resolutions and take the limit

\[
\sigma(s, u) = \lim_{a/L \to 0} \Sigma(s, u, a/L)
\]
σ in Three n Steps

How To Obtain σ?

1. Choose initial $(L/a)^4$ lattice
2. Tune β such that $\bar{g}(L) = u$ is where you want to start
3. Compute $\bar{g}(2L)$ with the same bare parameters and get $\Sigma(2, u, a/L)$

Repeat for several resolutions a/L and extrapolate $a/L \to 0$

Note:

- Step 2) takes care of renormalization
- Step 3) computes the scale-evolution of the renormalized coupling
σ: A Comic Approach

Stolen from ALPHA Collaboration
Does It Work?

One finds that

\[
\frac{\Sigma(2, u, a/L) - \sigma(2, u)}{\sigma(2, u)} = \delta_1(a/L)u + \delta_2(a/L)u^2 + \ldots
\]

where

\[
\delta_n = O(a/L).
\]

This looks good, the continuum limit is reached with errors of \(O(a/L)\).
What About Universality?

Question
Does σ depend on the choice of the action?

Answer
It seems not ...

Strategy
Improve Σ

$$
\Sigma^{(k)}(2, u, a/L) = \frac{\Sigma(2, u, a/L)}{1 + \sum_{i=1}^{k} \delta_i(a/L)u}
$$

and calculate σ for different actions.
Some Numerical Results

\(\bar{g}^2(2L) \)

\(\bar{g}^2(L) = 2.4484 \)

Stolen from CP-CACS Collaboration
Putting It Together

What We’ve Got So Far

Assume, one has

- Calculated $\sigma(u_i)$ for several u_i
- Interpolated a polynomial $\sigma(u)$

The Final Step

Then one can construct the running coupling $\bar{g}^2(2^{-i}L_0) = u_i$ via the recursion

$$u_0 = \bar{g}^2(L_0), \sigma(u_{i+1}) = u_i$$
Some Results

- Scale Dependent Renormalization
- The Schrödinger Functional
- Renormalizing Quark Masses

Done by ALPHA
What Still Has To Be Done

The Definition of $\alpha(L)$

We have to define $\alpha(L)$ such that it has

- An easy expansion in PT
- A small Monte Carlo variance
- Small discretization errors

Which leads us to ...
Introducing: The Schrödinger Functional

The SF ...

- Was first used by Symanzik for renormalization of the Schrödinger Picture in QFT
- Then by Lüscher and Narayanan, Weisz, Wolff for finite size scaling technique
- Is the propagation kernel of some field configuration C to another in euclidean time T
Our theory lives on a L^3-space-box with periodic boundary and finite time T, like this.
The Players I: Gauge Fields

- On our space-time live $SU(N)$ gauge fields $A_k(\vec{x})$ on LS^3.
- We want for a $SU(N)$ gauge transformation Λ

$$A_k^\Lambda(\vec{x}) = \Lambda(\vec{x})A_k(\vec{x})\Lambda(\vec{x})^{-1} + \Lambda(\vec{x})\partial_k\Lambda(\vec{x})^{-1}$$

to be another gauge field.
- We only admit periodic gauge transformations Λ
The Winding Number Thing

The Operators $A : S^3 \to SU(N)$ fall in disconnected topological classes, labelled by their **winding number** n. A simple example:

$$f : S^2 \to U(1) \simeq S^2$$

![Diagram](image_url)
The Players II: The States

A state is a wave functional $\psi[A]$. On the set of all states, a scalar product is given by

$$\langle \psi | \chi \rangle = \int \mathcal{D}[A] \psi[A]^* \chi[A]$$

with

$$\mathcal{D}[A] = \prod_{\vec{x},k,a} A_k^a(\vec{x})$$

Physical states satisfy $\psi[A^\Lambda] = \psi[A]$. We introduce the projector on the set of physical states through

$$\mathbb{P} \psi[A] = \int \mathcal{D}[\Lambda] \psi[A^\Lambda]$$
The Players III: The Boundary

How To Make Up a State ...

- Take a smooth classical gauge field $C_k(\vec{x})$
- Introduce a state $|C\rangle$ via

$$\langle C|\psi\rangle = \psi[C] \quad \forall \text{ states } \psi$$

- C can be made gauge invariant by applying \mathbb{P}
Putting It Together

Defining the Schrödinger Functional

Let

\[Z[C', C] = \langle C' | e^{-H_T} P | C \rangle \]

Invariant under gauge transformations due to \(P \)
Putting It Together

Defining the Schrödinger Functional

Let

\[Z[C', C] = \langle C'| e^{-HT} P | C \rangle \]

\[= \sum_{n=0}^{\infty} e^{E_n T} \psi_n[C'] \psi_n[C]^* \]

Where \(\psi_n \) is the \(n \)-th (physical) energy eigenstate

Invariant under gauge transformations due to \(P \)
Going Functional

We Are Lattice People

We want a functional integral:

$$Z[C', C] = \int \mathcal{D}[\Lambda] \mathcal{D}[A] e^{S[A]}$$

(modulo renormalization factor) where

$$A_k(x) = \begin{cases} C^\Lambda_k(\vec{x}) & \text{at } x^0 = 0 \\ C'_k(\vec{x}) & \text{at } x^0 = T \end{cases}$$

and

$$S[A] = -\frac{1}{2g_0^2} \int d^4x \, \text{tr}(F_{\mu\nu}F_{\mu\nu})$$
The Topology Trick

After the $\mathcal{D}[A]$ integration, Z reads

$$Z[C', C] = \int \mathcal{D}[\Lambda] F[\Lambda]$$

and actually, F only depends on the winding number n. So we find that

$$Z[C', C] = \sum_{n=-\infty}^{\infty} \int \mathcal{D}[A] e^{S[A]}$$

where

$$A_k(x) = \begin{cases} C^\Lambda_n(\vec{x}) & \text{at } x^0 = 0 \\ C'_k(\vec{x}) & \text{at } x^0 = T \end{cases}$$
The Action And the Winding Number

A Boundary for the Action

- One finds that $S[A]$ is bounded by

$$S[A] \geq \frac{1}{2g_0^2} |S_{CS}[C] - S_{CS}[C'] + n|$$

- Where S_{CS} is the Chern-Simons action
- And n the winding number of A
- Only have to check a few topological sectors for minimal action gauge fields, which dominate the integral
The Action And the Winding Number

A Boundary for the Action

One finds that $S[A]$ is bounded by

$$S[A] \geq \frac{1}{2g_0^2} \left| S_{CS}[C] - S_{CS}[C'] + n \right|$$

$$= \frac{1}{2g_0^2} |\text{some number} + n|$$

- Where S_{CS} is the Chern-Simons action
- And n the winding number of A
- Only have to check a few topological sectors for minimal action gauge fields, which dominate the integral
Finding The Minimum

How To Obtain a Minimal Action Configuration B?

- Generally difficult
- Easy if we
 - Take a known solution B of the field eqns. and
 - Define C, C' as
 \[C_k(x) |_{x^0 = 0} = B_k(x) |_{x^0 = 0} \quad C'_k(x) = B_k(x) |_{x^0 = T} \]
- If
 - $G_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu + [B_\mu, B_\nu]$ is self dual and
 - $S_{SC}[C'] - S_{CS}[C] < 1/2$ and
 - $n(B) = 0$
- Then B is the unique (up to gauge transformations) minimal action configuration
A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

\[B_0(x) = 0 \quad B_k(x) = b(x^0) l_k \quad [l_k, l_l] = \epsilon_{klj} l_j. \]

Self-duality condition reduces to

\[\partial_0 b = b^2 \quad \Rightarrow \quad b(x^0) = (\tau - x^0)^{-1}. \]

We just found a family of globally stable background fields!
A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

\[B_0(x) = 0 \quad B_k(x) = b(x^0) l_k \quad [l_k, l_l] = \epsilon_{klj} l_j. \]

Self-duality condition reduces to

\[\partial_0 b = b^2 \quad \Rightarrow \quad b(x^0) = (\tau - x^0)^{-1}. \]

We just found a family of globally stable background fields!

We will need this for α!
What About Renormalization?

Question: Is the SF Renormalizable?

In the weak coupling domain, expand the SF around the induced background field and obtain for the effective action:

\[
\Gamma[B] = -\ln Z[C', C] = g_0^{-2}\Gamma_0[B] + \Gamma_1[B] + g_0^2\Gamma_2[B] + \ldots
\]

With \(\Gamma_0[B] = g_0^2 S[B]\), divergent in each power of \(g_0\)

Answer: Most Probably ... Yes

- Of course, one has to renormalize \(g_0, (m)\)
- In general, one has to add boundary counter-terms
- This should be sufficient (checked up to 2-loop order in QCD)
- In Yang-Mills theory, no such counter-terms are needed
The Running Coupling (Finally)

A Running Coupling Recipe

- Choose a background field B depending on a dimensionless parameter η
- Then $\Gamma'[B] = -\frac{\partial}{\partial \eta} \Gamma[B]$ is a renormalization group invariant.
- Set $T = L$ and define a physical coupling via
 \[
 \bar{g}^2(L) := \frac{\Gamma'[B]}{\Gamma_0'[B]}
 \]
- This is a Casimir force between the boundary fields
- If the chosen field depends on parameters with dimension $\neq 1$, scale them proportional to L, e.g. in our example set $\tau = -L/\eta$
The Result

From ALPHA again
Let’s Measure a Mass

Fermions

The next interesting quantities which needs scale dependent Renormalization are the quark Masses.

- Define N_f fermion fields ψ_s on our periodic space time
- Define boundary fields ζ, ζ' for quark fields
- Add counter terms for ψ at the boundary for renormalization
Definition for \bar{m}

Defining a Running Quark Mass

- Use the PCAC relation to define \bar{m}

$$\partial_\mu A_\mu^R(x) = (\bar{m}_s + \bar{m}_s') P^R(x)$$

with

$$A_\mu^R(x) = Z_A A_\mu(x) = Z_A \bar{\psi}_s(x) \gamma_\mu \gamma_5 \psi_s'(x)$$

$$P^R(x) = Z_P P(x) = Z_P \bar{\psi}_s(x) \gamma_5 \psi_s'(x)$$

- $A_\mu(x)$ is renormalized through current algebra relations
- Scale- & scheme-dependence arises through renormalization of $P(x)$, $Z_P = Z_P(\mu)$
- the corresponding RG function reads $\tau(\bar{g}) \bar{m}_s = \mu \frac{\partial \bar{m}_s}{\partial \mu}$
A Definition for $Z_P(L)$

We drop s and define

$$Z_P(L) = \frac{\sqrt{3f_1}}{f_P(L/2)}$$

where $\sqrt{3f_1}$ is only a normalization factor, defined as

$$f_P(x) = -\frac{1}{3} \int d^3y \, d^3z \, \langle \overline{\psi}(x) \gamma_5 \frac{1}{2} \tau^a \psi(x) \overline{\zeta}(y) \gamma_5 \frac{1}{2} \tau^a \zeta(z) \rangle$$

$$f_1 = -\frac{1}{3L^6} \int d^3u \, d^3v \, d^3y \, d^3z \, \langle \overline{\zeta'}(u) \gamma_5 \frac{1}{2} \tau^a \zeta'(v) \overline{\zeta}(y) \gamma_5 \frac{1}{2} \tau^a \zeta(z) \rangle$$

which look complicated, but...
f_p and f_1, an Illustration

... can be illustrated like this:
Calculating $M(m, \mu)$, Pt. 1

Yet Another Step Scaling Function

So far, we have

$$\overline{m}(\mu)_s = \frac{Z_A}{Z_P(L)} m_s$$

Define the step scaling function σ_P as

$$Z_P(2L) = \sigma_P(u) Z_P(L)$$

and compute $\sigma(L_0), \ldots, \sigma(2^k L_0)$. Use these for

$$\frac{M}{m(2^k L_0)} = \frac{M}{m(L_0)} \underbrace{\frac{\overline{m}(L_0)}{m(2L_0)} \frac{\overline{m}(2L_0)}{m(2^2 L_0)} \cdots \frac{\overline{m}(2^{k-1} L_0)}{m(2^k L_0)}}_{\text{accessible in PT}} \sim \text{SSF}^{-1}$$
Calculating $M(m, \mu)$, Pt. 2

The Final Step

Finally, we can compute

$$M = \frac{M}{\bar{m}(2^k L_0)} \bar{m}(2^k L_0)$$

$$= \frac{M}{\bar{m}(2^k L_0)} Z_A \frac{1}{Z_P (\mu = (2^k L_0)^{-1})} m$$

(known from Pt. 1) (from simulations)

$$= Z(\mu) m$$

We found the overall renormalization factor!
Scale Dependent Renormalization

The Schrödinger Functional

Renormalizing Quark Masses

This Talk’s Last Picture

\[\frac{\bar{m}(\mu)}{M} \]

\[\text{SF scheme, } N_f=2 \]

- 2/3-loop
- 1/2-loop

\[\mu/\Lambda \]

ALPHA once more
Conclusions

- Important physical quantities like α and m require scale dependent renormalization.
- Scale dependent renormalization is a difficult task, because a large variety of energy scales has to be covered.
- This problem can be fixed by using a finite scaling technique.
- The Schrödinger Functional provides a good framework for the definition of scale dependent quantities.

Thank you!

Some literature:

- R. Sommer: Non-perturbative QCD [...], hep-lat/0611020
- Capitani, Lüscher, Sommer, Wittig: Non-perturbative quark mass renormalization in quenched lattice QCD, hep-lat/9810063