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1 IntroductionConformal invariance has a long history in physics. Maxwell's theory of electrodynam-ics and also Einstein's general relativity are examples of conformal invariant classical�eld theories. Cunningham [Cu09] and Bateman [Ba10] were the �rst to observe thatMaxwell's equations are covariant not only under the Lorentz group but also under thelarger conformal group. Conformal transformations are coordinate transformationsunder which the metric tensor g��(x) is multiplied by a space{time dependent scalarfactor �(x). They include in particular Poincar�e transformations (homogeneous andinhomogeneous Lorentz transformations) where the conformal factor is one. They alsoinclude dilatations where the conformal factor is a constant di�erent from one, andso called special conformal transformations. As a brief introduction to conformal in-variance in classical physics we mention the article [FRW62] by Fulton, Rohrlich, andWitten. In two dimensions conformal invariance is a particularly powerful concept.If one considers two real coordinates (x; y) as one complex number z = x + iy, thenconformal transformations consist of substitutions z 7! f(z) where f is a holomorphicfunction. It is not surprising that holomorphic mappings therefore play an importantrole in the electrodynamics of two dimensional systems.The standard model of particle physics is conformal invariant as a classical �eldtheory if all particle masses are put to zero. In quantum �eld theory an early hope wasthat conformal invariance might be an approximate symmetry at high energies. Thereason behind this hope was that conformal invariance should take place at energieswhere the particle masses become negligible. It was argued that theories should nothave an intrinsic scale at high energies and therefore be scale invariant. Unfortunately,renormalization tends to break scale invariance. The renormalization of a quantum�eld theory amounts to the subtractions of singularities due to vacuum uctuations onall length scales. Their subtraction requires the introduction of a renormalization scale,which breaks the conformal invariance. At low energies scale invariance is furthermorebroken explicitely in the standard model due to non{vanishing particle masses. Scaletransformations were subsequently re�ned to the renormalization group, an importantstructure underlying quantum �eld theory. An introduction to this subject can befound in [Co71] by Coleman.The construction of conformal invariant solutions to quantum �eld equations hasremained a promising enterprise. The idea is to use the constraints imposed by con-formal invariance to obtain truly non{perturbative information about quantized �eldtheories. In conjunction with the idea of operator product expansions, this program isknown in particle physics as conformal bootstrap. It still awaits its fruitful completionin higher dimensions than two. A status of the work preceding the present boost intwo dimensions, together with references to the original articles, can be found in thereport [DMPPT77] by Dobrev, Mack, Petkova, Petrova, and Todorov.In two dimensions the conformal bootstrap is a story of astounding success. Theseminal work of Belavin, Polyakov, and Zamolodchikov [BPZ84] started an avalancheof activity which is now an entire branch of theoretical physics. The wealth of results5



obtained in its development has had deep impact on various branches of physics andmathematics, and we may well expect more surprising results to come.The motivation in physics to study two dimensional conformal invariant �eld the-ories is at least threefold. One motivation is string theory. String theory, as lecturedfor instance by Green, Schwarz, and Witten [GSW87], is a candidate for a quantumtheory of all interactions including gravity. Conformal invariance comes in string the-ory as reparametrization invariance of world sheets. Two dimensional conformal �eldtheories are the classical solutions of string theory. A particular conformal �eld theorydetermines the string vacuum and encodes information about the number of space{time dimensions and the gauge group of its low energy limit. Not every conformal �eldtheory however is an acceptable string vacuum. One has constraints both from the re-quirement of internal consistency, for example the vanishing of the conformal anomalyand modular invariance, and also from the requirement that it should reproduce thefour dimensional standard model as its low energy limit. The investigations of theseconstraints is an ambitious ongoing program.The second motivation is the study of two dimensional statistical systems at thecritical point [Ca89]. Two dimensional systems come in statistical physics and in solidstate physics in the form two dimensional �lms in three dimensions, layered systemsin three dimensions which are e�ectively two dimensional, and as surface e�ects ofthree dimensional bulk systems. Examples of which are the quantum Hall e�ect andlayered models of high Tc super{conductivity. From a theoretical point of view, twodimensional systems are highly valuable as models of critical behavior because of theirsolvability. They also serve as a laboratory to test approximations with exact results.In the statistical physics of critical systems one addresses the following inter{relatedquestions. What is the classi�cation of universality classes of critical behavior? Whatare the criteria to decide to which universality class a given system belongs? Whatare the values of critical exponents and universal amplitudes? What are the �nitesize e�ects when a critical system is put into a �nite volume? What is the e�ect ofperturbations which drive a system away from criticality? Conformal invariance is apowerful tool in their investigation. The strategy is to identify universality classes withconformal �eld theories. The critical exponents of a universality class are encodedin the spectrum of anomalous dimensions of the scaling operators in the conformal�eld theory. Conformal invariance puts restrictive constraints on their possible values.Finite size e�ects are studied as the response of a conformal �eld theories to a variationof the size and shape of the Euclidean space{time region. Last not least, the e�ect ofperturbations is studied by conformal perturbation theory. A basic concept in thisstrategy is to view the critical system from the point of a Euclidean �eld theory.Critical behavior is a collective phenomenon due to uctuations of a statisticalsystem on all length scales. An illustrative example in statistical physics is the twodimensional Ising model. Its critical properties can be investigated by means of therenormalization group [BGZ76, WK74]. The link to conformal �eld theory is theconcept of scale invariance. In Wilson's renormalization group [WK74] it comes aboutas follows. Applying the renormalization group in the infra{red direction, one looks6



at a system on larger and larger scales. Technically one averages out short distanceuctuations and studies the resulting e�ective theory of long distance uctuations.After having integrated out all uctuations between two length scales, say L1 andL2 (L1 < L2), one compares the result with that of a pure scale transformation byL2=L1. Suppose �rst that your system is non{critical in the sense that uctuationson a particular scale are dominating. Such a model is solved in a single step byaveraging out precisely these uctuations. The analysis of critical systems require anin�nite number of steps, when in each step a �nite portion of uctuations is averaged.The idea is then to study the ow of e�ective theories, always rescaling to a unitscale where the e�ective distributions can be compared. Universality classes comeout as domains of attraction. Two di�erent systems in the same universality classtend to converge to the same e�ective distribution. Critical systems come out asrenormalization group �xed points. Applying the scale analysis to a critical system, oneows into a �xed point which characterizes the universality class. The two dimensional(and also the three dimensional) Ising model has such a non{trivial infrared �xedpoint. This �xed point encodes the critical properties of the Ising model, for instanceits critical exponents. Their investigation is a truly non{perturbative problem. Thetoolbox of the renormalization group for models in any number of dimensions containsthe �-expansion, the 1=N -expansion, and numerical techniques. All of them makeapproximations which are di�cult to control. In two dimensions conformal invarianceprovides a method which is truly non{perturbative and exact. Critical properties aretherefore advantageously studied in terms of conformal �eld theory. For instance,the critical exponents can be inferred from the spectrum of anomalous dimensions.Conversely, if the critical indices are known from other calculations they can be usedto identify the conformal �eld theory. Other prominent examples besides the Isingmodel are the tri{critical Ising model and the three states Potts model [Do84]. Theybelong to a series of conformal �eld theories called minimal models [BPZ84], whosesymmetry properties form a subject of this thesis.A critical system is scale invariant in the sense that looking upon it with a poorermagnifying glass reproduces the same picture up to a trivial scale transformation.Belavin, Polyakov, and Zamolodchikov [BPZ84] argue that scale invariance impliesinvariance under special conformal transformations. A system which is Euclidean in-variant to begin with is consequently invariant under the full conformal group. Theargument relies on a �eld theoretic description of the critical system. For the Isingmodel this can be done quite explicitely, see for instance [ID89]. For a general lattice�eld theory it requires to perform a scaling limit of the lattice correlation functions.Roughly speaking, the continuum �eld theory is contained in their long distance be-havior. The argument concludes that the scaling limit of a critical system is a masslessEuclidean �eld theory. It encloses a traceless stress{energy tensor, which generatesthe space{time symmetries. Provided that the �eld theory satis�es general axioms itfollows that tracelessness implies conformal invariance. In two dimensions the technicalconclusion is that the stress{energy tensor is a Lie �eld, and that its charges satisfythe commutation relations of two copies of the Virasoro algebra. This fact is known as7



L�uscher{Mack theorem [LM76] and is the starting point of [BPZ84].Two dimensional conformal �eld theories exhibit a wealth of interesting structures.A basic structure is the factorization into holomorphic and anti{holomorphic chiral�eld theories. The observation is that, if one changes from real Euclidean coordinatesx1 and x2 to the complex ones z = x1+ix2 and �z = x1�ix2, two dimensional conformal�eld theory on the plane presents itself in terms of quantities which depend either onz or on �z. Such quantities are called chiral. In this thesis we will restrict our attentionto the holomorphic chiral sector. A more involved structure, which is a main issuein this thesis, is the multi{valuedness of chiral conformal correlators as functions ofthe insertion points. In mathematical terms, chiral conformal correlators have a non{trivial monodromy. In two dimensions the exchange of two insertion points in a chiralcorrelator depends on the path along which they are exchanged. In dimensions higherthan two any two such paths can be continuously deformed into one another. In twodimensions this is not the case. As a consequence, the monodromy of chiral correlatorsis not governed by the permutation group but rather by the braid group. In a nutshell,two dimensional �eld theories allow for more than the Bose{Fermi alternative. Wemention that braid group statistics is a fascinating topic in itself, whose consequencesare far from completely explored. An illuminating reference to braid group statisticsare the lecture notes [Fr88] by Fr�ohlich.The conformal �eld theories which we will look upon below therefore furnish in-deed monodromy representations of braid groups. The complete representation theoryof braid groups is a di�cult mathematical problem. We will restrict our attention tothose representation which arise in the conformal �eld theory of the minimalmodels dueto [BPZ84] and the Wess{Zumino{Witten models [KZ84] based on SU(2). They turnout to be so calledR{matrix representations. The particular representation of the braidgroup, which is realized in a given conformal �eld theory is an extremely importantstructural datum. The investigations of this thesis were initiated by the observationthat the R{matrix representations from minimal models and Wess{Zumino{Wittenmodels based on SU(2) coincide with R{matrix representations of the quantum groupUq (sl2(C )). Abstractly speaking, one observed that conformal �eld theory comes to-gether with data from the representation category of quantum groups. A naturalquestion to ask is whether this coincidence can be traced back to a quantum groupsymmetry, or at least to a quantum group action on auxiliary quantities entering theconstruction of chiral correlators. This question will receive a positive answer in formof topological representations of quantum groups connected to integral representationsof chiral correlators.Quantum groups emerged from the solution of two dimensional integrable modelsby means of the algebraic Bethe ansatz. Their foundation as a mathematical objectwas layed by Drinfeld [D86]. Quantum groups have undergone an intense inspectionsince then. For our purposes, the notion of Uq (sl2(C )) as a quantum deformation ofthe universal envelopping algebra of sl2 will su�ce. The deformation is such that theresulting object remains a Hopf algebra. In practice, one deformes both the relations ofthe Lie algebra and, for instance, the coproduct. The coproduct is necessary in order8



to preserve the notion of a tensor product of two representations. The result in the caseof Uq (sl2(C )) is a Hopf algebra which is coassociative but non{cocommutative. Thenon{cocommutativity comes in form of a universal R{matrix which satis�es a Yang{Baxter equation. The Yang{Baxter equation again is the link to the algebraic Betheansatz [B82]. Quantum groups therefore provide a tool to solve integrable models basedon the algebraic Bethe ansatz. The representation theory of Uq (sl2(C )) turns out todegenerate in the case when the complex deformation parameter q becomes a root ofone. In conformal �eld theory precisely this degenerate case turns out to be realized.An account of the representation theory of Uq (sl2(C )) in the degenerate case has beengiven by Fr�ohlich and Kerler [FK93]. We mention that the decomposition of its adjointrepresentation in this case has been accomplished only very recently by Ostrik [O96].That such a structure plays a role in quantum theory is an exciting surprise. Sincethe advent of quantum mechanics it is taught that symmetries take place in the form ofrepresentations of symmetry groups. In the presense of a symmetry quantum states canbe organized into multiplets, which form representations of the symmetry group, andthe symmetry implies selection rules for transitions. A question which was neglectedbefore the appearance of quantum groups is whether one can also quantize the notion ofsymmetry. The most general notion of a symmetry compatible with the framework ofquantum theory known today is that of a weak quasi{Hopf algebra. The quantum groupUq (sl2(C )) falls into this category. An explanation of the appearance of quantum groupdata in conformal �eld theory is to implement the quantum group as a global symmetryalgebra. The idea there is to decompose the Hilbert space of states into superselectionsectors carrying quantum group quantum numbers, and to construct �eld operatorsmaking transitions between superselection sectors, subject to braid relations. Thispicture has been worked out by Mack and Schomerus [MS90]. A source of troubles areunwanted and unphysical non{decomposable �nite dimensional representations.In this thesis we proceed in a di�erent direction. The quantum group data, braidingand fusion rules, comes encoded in chiral conformal correlators. They form the buildingblocks of a conformal �eld theory. The most powerful method for their investigationare free �eld representations. We will address the question why quantum group dataappears in free �eld representations. In free �eld representations one works with anenlarged theory. The quantum group turns out to act on this enlarged theory. More-over, this action can be described explicitely, the representations can be explicitelyconstructed, identi�ed, and analyzed. The result is a topological representation.The third motivation to study two dimensional conformal �eld theory and its sym-metries is its mathematical beauty, which has attracted a lot of workers to the �eld.Two dimensional conformal �eld theory is to a considerable extent the representationtheory of in�nite dimensional Lie algebras, the Virasoro algebra, and current algebras.As a consequence, it yields beautiful representation theoretic interpretations of criticalexponents in two dimensions. When formulated on higher topologies, intricate connec-tions with complex geometry, for instance modular properties of higher genus surfaces,appear. The main motivation to study higher genus surfaces comes from string theory.But the lowest higher topology, the torus, plays also an important role in statistical9



physics. About half this thesis is devoted to the modi�cations that come about in thetheory of topological representations in the transition from genus zero to genus one.Last not least topological representations are a theory of a large class of special func-tions, hypergeometric functions and generalizations thereof. As a mathematical subjectthey have been established by the work of Schechtman and Varchenko [SV90] and byFelder and the author [FW91]. The subject is still in motion. In particular topologicalrepresentations on higher genus surfaces are still to be properly understood.2 PrologueTwo dimensional conformal �eld theory has its origin in the statistical physics of twodimensional systems at a critical point. It has furthermore attracted a lot of interestbecause of its applications to string theory, and also because of its mathematical beauty.We mention the seminal paper [BPZ84], the collection [ISZ88] of reprints, and thelectures [Gi89, Ca89, ID89] as a �rst guide to the literature.2.1 Scale InvarianceThe scaling limit of a critical model de�nes a two dimensional Euclidean quantum �eldtheory. This �eld theory is not only invariant under the group of Euclidean motionsbut also under dilatations. One can argue [BPZ84, Ca89] that it is then invariantunder the conformal group. An objective of conformal �eld is the classi�cation of alltwo dimensional critical phenomena. The intense work in conformal �eld theory since[BPZ84] has changed the objective to a considerably broader nature. The connectionof two dimensional conformal �eld theory with quantum groups is a structural questionwhich has been posed in the course of this developement.2.2 Energy{Momentum TensorWe assume space{time to be two dimensional Euclidean space. Complex coordinatesare introduced by z = x1 + ix2 and �z = x1 � ix2. It is common strategy to consider zand �z as independent variables, and to set them complex conjugate in the very end ofthe reasoning. The in�nitesimal conformal transformations are given by z 7! z��zn+1.The corresponding generators on functions are ln = �zn+1@z. They span an in�nitedimensional Lie algebra with relations[ln; lm] = (n�m)ln+m: (1)In �eld theory, co{ordinate transformations are generated by the charges constructedfrom an energy{momentum tensor. In conformal �eld theory the energy{momentumtensor is traceless and decomposes in a holomorphic zz{component T (z) and an anti{holomorphic �z�z{component �T (�z). It has an expansionT (z) = Xn2ZLn z�n�2; (2)10



where the coe�cients satisfy the relations of the Virasoro algebra[Ln; Lm] = (n�m)Ln+m + C12(n3 � n)�n;�m; [Ln; C] = 0: (3)Thus in conformal �eld theory we are not dealing with the Witt algebra (1) but ratherits central extension (3). This conformal anomaly was derived in [LM76] and is thestarting point of [BPZ84]. Analogous equations hold for the anti{holomorphic compo-nent of the energy{momentum tensor. Eq. (3) plays the role of an in�nite symmetryalgebra in conformal �eld theory.2.3 Minimal ModelsIn a given conformal �eld theory, the central charge C takes a de�nite value c, andis the most important single datum. In the Ising model c = 1=2. Special values of chave the important property that they yield a �nite set of irreducible highest weightrepresentations of (3). Models with this property are called rational. First examplesare the minimal models of [BPZ84]. They have the property of being solvable in astrong sense. Integral representations are known for their correlation functions. Theintegrals have been computed explicitely in many cases. Let us briey discuss the setupof minimal models of [BPZ84] following [F89]. The Hilbert space of a minimal modelis a direct sum H =Mn0 ;nHn0;n 
Hn0;n (4)of irreducible highest weight representations for two copies V ir � V ir of (3). Thegenerators are Ln and �Ln, acting as Ln
1 and 1
Ln respectively. The central chargeis c = 1� 6(p0 � p)2p0p ; (5)where p0 and p are two positive integers without common divisor. They label the seriesof minimal models. The highest weight module Hn0 ;n is constructed as a quotient of aVerma module V (hn0;n; c) with highest weighthn0;n = (n0 p� n p0)2 � (p� p0)24p p0 (6)by its maximal proper submodule LV (hn0;n; c). The representations are labelled bypairs n0; n of integers subject to 1 � n0 < p0, 1 � n < p and pn0 > p0n. A result of[FQS86] shows that a model is unitary if and only if p = p0 � 1. For p0 = p � 1 weobtain the series of unitary minimal models with central chargec = 1� 6p(p + 1) ; (7)11



where p = 3; 4; 5; : : : . The Ising model is the �rst of which with p = 3. Let us alsohave a brief look at the �eld content of minimal models. It is convenient to introducethe abbreviations N = (n0; n); M = (m0;m); L = (l0; l) (8)for double indices. With each representation is associated a conformal primary �eld�N (z; �z) = XM;LCLN;M �LN;M(z)
 �LN;M(�z): (9)In the renormalization group terminology it is a scaling �eld. Here CLN;M are C -valuedstructure constants. The �eld �LN;M(z) is a holomorphic chiral primary �elds. It mapsHM to HL, is zero on the other HK, and is a conformal �eld of weight hN :[Ln; �LN;M(z)] = (zk+1 ddz + (k + 1) hN zk)�LN;M(z): (10)We remark that (10) de�nes an action of V ir on a space of operators generated from theprimary �eld. The operators obtained from the primary �eld by acting with productsof L�n, n > 0, are called descendants. The family of �eld operators forms a conformalmultiplet [BPZ84]. In principle all matrix elements of chiral primary �elds can becomputed up to normalization constants by means of (10). The normalization constantscan be �xed by (vL; �LN;M(1)vM) = 1; (11)where vM denotes the highest weight vector in HM . It follows that the theory iscompletely determined by the structure constants. Their evaluation is the subject ofthe conformal bootstrap [BPZ84]. Correlation functions of primary �elds (9) factorizeinto h�N1(z1; �z1) � � ��Nk (z1; �zk)i =X� ��F�(z1; : : : ; zk)F�(�z1; : : : ; �zk): (12)The index � stands for a sequence of intermediate representations (M1; : : : ;Mk�1). Theconstants �� are products of structure constants. The factors in (12) are correlationfunctions F�(z1; : : : ; zk) = �vM0; �M0N1;M1(z1) � � � �Mk�1Nk ;Mk(zk) vMk� : (13)Here M0 =Mk = (1; 1) denotes the vacuum representation. The correlation functions(13) are called chiral conformal blocks. They are the main objects of this investigation.In principle they can be computed by doing the sum over intermediate representa-tions. Again there exists a more powerful tool, the method of integral representations.In a nut shell, the program is to deduce integral representations for the solutions of12



di�erential equations for the conformal blocks which follow from (10). The result isgenerally a multiple contour integral. Boundary data is then encoded in the choice ofintegration contours. At this point the quantum group enters the scene. The quan-tum group organizes which contours yield the physical conformal blocks. By locality(12) is required to be single valued. This is not the case for the conformal blocks(13). They are generally multi{valued functions of the insertion points. Upon ana-lytic continuation they de�ne a representation of the braid group on the con�gurationspace of insertion points. This representation is one of the interesting features of twodimensional conformal �eld theory. More on this will be said in the bulk of this thesis.2.4 U(1){Current AlgebraIntegral representations for the conformal blocks of minimal models are e�ciently de-duced from free �eld representations. See [DF84, F89] and references therein. Sincethey form the point of departure of this thesis, we give a brief derivation for the caseof minimal models. We do not follow the standard free �eld computations but ratherchoose an alternative geometrical construction. We use an adaptation of the approachin [F92] for Wess{Zumino{Witten models to the case of U(1){current algebra. We�nd it amusing by itself. It also underlies the more involved constructions of the lastchapters.We begin with an introduction of pre{requisites, simultaneously �xing the notation.Let g = C be the complexi�ed Lie algebra of U(1). The associated loop algebrais Lg = C ((t)), the space of complex valued formal Laurent series in t. The loopalgebra is again a Lie algebra, and is abelian in this case. It has a central extensioncLg = Lg � C k. This central extension is a non{abelian Lie algebra with bracket[f � �k; g � �k] = res(f 0g) k; (14)where f and g are formal Laurent series, res(f) is the coe�cient of t�1, � and � arecomplex numbers, and k denotes the central element. The derivative with respect to tis adjoined as an additional element L�1 through[L�1; f � � k] = �f 0: (15)In terms of the generators an = tn, n 2Z, the bracket (14) becomes[an; am] = n�n;mk: (16)Analogous to (2) one associates with (16) a U(1){current j(z) = Pz2Zan z�n�1. Weremark that cLg can be decomposed into n� � g � n+, where n� = t�C [[t�]]. Fur-thermore, cLg � CL�1 is integer graded by the assignments deg(tn) = n, deg(k) = 0,deg(L�1) = �1.The next brick in this construction are highest weight modules V (�), where � is areal number called the charge of the module. V (�) is de�ned as being generated from13



a cyclic vector v(�) with de�ning propertiesanv(�) = 0; n > 0; (17)a0v(�) = �v(�); (18)and kv(�) = v(�). The module is spanned by �nite linear combinations of vectorsa�n1 a�n2 � � � a�nk v(�) with n1 � n2 � � � � � nk. The space V (�) comes equippedwith the structure of a highest weight module over the Virasoro algebra through thefollowing basic construction. One de�nesLn = 12 Xm2Z: aman�m : ��(n+ 1)an; (19)where � is another real parameter. The colons mean normal ordering. They order theannihilators an, n > 0, to the right. For instance,L�1 = Xm�0 a�1�mam: (20)On every element of V (�) of �nite weight only �nitely many terms in the sum con-tribute. Therefore, (19) is well de�ned on V (�). It can be shown that (19) satisfy therelations (3) with central charge c = 1 � 12 �2: (21)This construction is therefore in particular suited for the case of minimal models. v(�)is also Virasoro highest weight vector. It satis�esLn v(�) = 0; n > 0; (22)L0 v(�) = h(�; �) v(�); (23)with highest weight h(�; �) = 12�2 � ��: (24)We remark that this representations of the Virasoro algebra is not irreducible in the caseof minimal models. The irreducible representation can be obtained through a beautifulcohomological construction. We refer to [F89] for this so called BRST{cohomology.2.5 Conformal BlocksConformal blocks were introduces as correlation functions of chiral conformal �elds.They depend on the positions of the �eld operators which we take to be non{coinciding.To describe this situation, we introduce a con�guration spaceC [n] = C n n [i<jfzi = zjg (25)14



of n non{coinciding points in the complex plane. Chiral conformal �elds come as con-formal multiplets. This is formalized by associating with each point zj a highest weightmodule V (�j). The highest weight vector v(�j) corresponds to a chiral primary �eldat zj. Other vectors correspond to descendant �elds. This correspondence is slightlyinaccurate because we are using Fock spaces at this moment instead of irreducibleViraso modules. We should better speak of free �eld or U(1) conformal blocks.The de�ning property of these conformal blocks is a U(1){Ward identity which weexplain next. Let M(z1; : : : ; zn) be the space of meromorphic functions, holomorphicon C nfz1; : : : ; zng. They can be thought of as g{valued functions and form an abelianLie algebra. Let f be such a meromorphic function. At each zj we can perform aLaurant expansion and interpret the result as an element of Lg. But Lg � cLg, althoughthe inclusion is not a Lie algebra homomorphism. cLg acts on V (�j). Therefore, wehave linear maps�j :M(z1; : : : ; zn)! End(V (�j)); �j(f) = f(zj + t): (26)Doing this for all points z1; : : : ; zn we obtain � = �1 � � � � � �n, a linear map� :M(z1; : : : ; zn)! End(V (�1)
 � � � 
 V (�n)): (27)This map has the remarkable property of being a Lie algebra homomorphism. Thereason is that the residues coming from (14),[�(f); �(g)] = nXj=1 reszj (f 0g); (28)sum up to zero thanks to the residue theorem. For this purpose we better formulatethe theory on the Riemann sphere CP 1, rather than on the plane C . In other words, wehave an action of the space of g-valued meromorphic functions on the tensor productof highest weight modules.Conformal blocks are distinguished by being invariant under this action. A confor-mal block at �xed positions z1; : : : ; zn is a linear formF : V (�1)
 � � � 
 V (�n)! C ; (29)such that for all f 2 M(z1; : : : ; zn) and all elements u 2 V (�1)
 � � � 
 V (�n)hF; �(f)ui = 0: (30)The bracket h�; �i means the evaluation of a linear form on a vector. The space of theseinvariant linear forms is denoted byE(z1; : : : ; zn) = HomM(z1;::: ;zn)(V (�1)
 � � � 
 V (�n); C ): (31)This is equivalent to a U(1){Ward identity. A case of particular interest is the valueof an invariant linear form on the product of all highest weight vectorsv = v(�1)
 � � � 
 v(�n): (32)15



This case corresponds to a product of chiral primary �elds. An interesting question iswether the value of a conformal block on general vectors is already �xed by its value onthe product of highest weight vectors. This is indeed the case. For f(z) = (z � zj)�n,n > 0, it follows that �(f) v = 8<:a(j)�n +Xi 6=j(zi � zj)�n a(i)0 9=; v; (33)where a(j)�n is meant to act on the j'th factor of v. But the Ward identity then impliesthat DF; a(j)�nvE = �Xi 6=j �i (zi � zj)�n hF; vi : (34)Iterating this procedure, we can evaluate the conformal block on any vector in theproduct module.The next question to be asked is how a conformal blocks behave under variation ofthe positions z1; : : : ; zn. The answer to this question relies on a remarkable di�erentialequation, to which we turn our attention now. The idea is to view conformal blocks asinvariant sections of a vector bundle. Let U � C [n] be an open subset. Consider thenthe in�nite rank trivial vector bundleU 
HomC (V (�1)
 � � � 
 V (�n); C ): (35)Let E(U) denote the space of sections F : U ! HomC (V (�1)
 � � � 
 V (�n); C ) of thisvector bundle such that F is holomorphic in z1; : : : ; zn and such that F (z1; : : : ; zn)is an element of E(z1; : : : ; zn) for all (z1; : : : ; zn) 2 U . Elements of E(U) are calledholomorphic conformal blocks. The trivial vector bundle (35) comes together with aat connection r = nXi=1 dzi rzi; rziF = @ziF � F L(i)�1; (36)de�ned on holomorphic sections. This connection is called Friedan{Shenker connection.A straight forward computation proves thatrzi(F �(f)) = rziF �(f) + F@zi�(f): (37)As a consequence (36) leaves invariant the space of sections E(U). To be precise, aninvariant section is mapped to an invariant di�erential form. Conformal blocks aredistinguished by the property of being horizontal sections. That is, a conformal blockis an element of F 2 E(U) which satis�esrF = 0: (38)16



In the case of general current algebras, where one starts this construction from a generalsimple complex Lie algebra, (38) is the celebrated Knizhnik{Zamolodchikov di�erentialequation [KZ84]. A more explicit form of (38) is@zi hF (z1; : : : ; zn); ui = DF (z1; : : : ; zn); L(i)�1 uE : (39)We have already seen that it is su�cient to compute the pairing with the product ofhighest weight vectors (32). In this case we have thatL(i)�1 v = a(i)�1a(i)0 v = �i a(i)�1 v: (40)From (34) we then immediately deduce the U(1){Kniznik{Zamolodchikov equation@zi hF (z1; : : : ; zn); vi =Xj 6=i �i�jzi � zj hF (z1; : : : ; zn); vi : (41)It tells the behavior of conformal blocks upon variation of the con�guration (z1; : : : ; zn).It is not di�cult to solve in the special case that�1 + � � �+ �n = 0: (42)Recall that �i is the U(1){charge of V (�i). Eq. (42) therefore requires the total chargeto be zero. Notice that charge neutrality is required by invariance of a conformal blockunder the constant function �(1). The result ishF (z1; : : : ; zn); v)i =Yi<j(zi � zj)�i�j ; (43)choosing an overall normalization constant equal to one. Eq. (43) is a well knownexpression from many body theory of U(1){charged particles. The point with chargeneutrality is that (43) behaves at in�nity likez�1Pj 6=1 �j1 = z��211 (44)as a function of z1 for �xed z2; : : : ; zn, and is therefore regular at in�nity. In the non{neutral case (43) is still a solution to (41) but is singular at in�nity. Thus it wouldhave to be interpreted as a conformal block with another �eld located at in�nity.2.6 Integral RepresentationsWith this formalism we are ready to derive integral representations. The case of totalcharge neutrality has been solved explicitely. The key idea is to reduce the generalnon{neutral case to the neutral one at the expense of additional so called screeningcharges. Screening charges are de�ned by h(�; �) = 1. That is, they correspondto highest weight modules of conformal weight one. The solution to this quadraticequation de�nes two charges �� = � �q�2 + 2: (45)17



Integral representations can be derived if the excess charge can be compensated for byscreening charges. With this we mean that we have charge neutrality in an extendedsystem nXi=1�i + r+�+ + r��� = 0: (46)The total number of screening charges will be denoted by r = r++r�. Let w+1 ; : : : ; w+r+and w�1 ; : : : ; w�r� be the positions of the positive and negative screening charges respec-tively. To simplify the notation we putz = (z1; : : : ; zn); w = (w+1 ; : : : ; w+r+; w�1 ; : : : ; w�r�); (47)and de�ne furthermore v� = r�Yj=1 a(j)�1 v(��)
 � � � 
 v(��); (48)v�i = Yj 6=i a(j)�1 v(��)
 � � � 
 v(��): (49)Then we de�ne an extended conformal block, which depends on the screening chargepositions w, by D eF (z;w); uE = DF (z;w); u
 v+ 
 v�E : (50)The right hand side is a charge neutral conformal block and is explicitely known. u isan element of V (�1)
 � � �
V (�n). As it stands (50) does not satisfy invariance underM(z1; : : : ; zn) due to the presence of sreening charges. The idea is now to integrateout the sreening charges in a way to obtain an invariant expression. Eq. (50) is byconstruction invariant under the extended symmetry�(f) = �z(f) + �w(f) (51)in a self{explanatory notation. The problematic piece is �w(f). Notice that we seekinvariance for functions f , which are regular on the positions of the screening charges.The trick is best explained by computing�(f)a�1 v(��) = ff(w)a0 + f 0(w)a1g a�1 v(��)= ff(w)L�1 + f 0(w)g v(��); (52)where f is assumed to be regular at w. At this point it is required that the charge bea screening charge, i.e., the conformal weight be one. As a consequence,DF (z;w); �w(f)u
 v+ 
 v�E = r+Xj=1 @w+j nf(w+j ) DF (z;w); u
 v+j 
 v�Eo+r�Xj=1 @w�j nf(w�j ) DF (z;w); u
 v+ 
 v�j Eo : (53)18



The strategy is then to integrate the screening charges over contours � = (1; : : : ; r)such that (53) is zero for all functions f 2 M(z). This can indeed be accomplishedand is a main theme of this thesis. Naively one would expect that any collection ofclosed curves encircling the singularities would do the job. This is not the case becausethe integrand is generally multi{valued and one has to account for phase factors. Inthe more complicated case of the torus one even has to account for a general case ofcertain matrices. Once this has been achieved one has an integral representationhF�(z); ui = Z� D eF (z;w); uE dw (54)with all desired properties. The integral (54) is then in particular M(z) invariantand satis�es the atness condition. The integrand follows directly from the neutralexpression. It is a single valued function timesYi<j(zi � zj)�i�j Yi;j (zi � w+j )�i�+Yi;j (zi � w�j )�i��Yi<j(w+i � w+j )�2+ Yi<j(w�i � w�j )�2�Yi<j(w+i � w�j )�2: (55)Notice that �+�� = �2. The single valued function comes from evaluating (50) bymeans of (34). This evaluation is a form of Wicks theorem and is left to the reader.Notice that we do not take the screening charges to be highest weight vectors.2.7 Local SystemsOur investigation of topological representations of quantum groups begins with thisintegral representation for minimal models. The function (55) is multi{valued on thecon�guration space C [n+r] of charges and screening charges. We de�ne it by analyticcontinuation from a reference point. Analytical continuation associates with each loopin the con�guration space, beginning and ending at the reference point, a phase factor.This is a one dimensional local system. With the local systems fromminimalmodels onCP 1 we associate topologigal representations of the quantum group Uq (sl2(C )). Theyserve in the �rst place to explain what kind of integration contours yield physical con-formal blocks. They also answer structural questions about the conformal blocks. Onesuch structural question is the behavior of conformal blocks upon analytic continuationof the insertion points. For minimal models on CP 1 one �nds an R-representation ofthe braid group, where the R{matrix belongs to Uq (sl2(C )). The topological repre-sentation of Uq (sl2(C )) gives an explanation of this fact. Thus conformal blocks comeencoded with quantum group data. The quantum group data can be reconstructedto a large extent from the local system alone. In particular another class of models,the Wess{Zumino{Witten models built on SU(2) possess the same local system andtherefore the same quantum group structure. This may be viewed as a kind of quan-tum group universality. Quantum group symmetry was used on the side of integrablelattice models in [PS90] to identify scaling limits. The connection between conformal19



�eld theory and quantum groups is therefore also a contribution to the classi�cationprogram. The constructions of this thesis are built upon integral representations of theform (54) and generalizations thereof. A surprisingly rich structure emerges, in partic-ular when one considers conformal �eld theories on a toroidal space time. Connectionswith quantum groups, in�nite dimensional Lie algebras, and complex geometry ap-pear. They form a whole menu of interesting problems among which the topologicalrepresentations of quantum groups.Except for the last two chapters, which rely on the theory of current algebras, thebasic input from conformal �eld theory is the local system. Each chapter is precededby a short introduction to the particular subject under investigation. Chapter one tofour form one logical unit, and chapter �ve and six another one. They can be readindependently. Chapter �ve is a sub{case of chapter six. We have included it in orderto make the essence readable to a broader audience.3 Topological Representations of the QuantumGroupUq (sl2(C ))We de�ne a topological action of the quantum group Uq (sl2(C )) on a space of homologycycles with twisted coe�cients on the con�guration space of the punctured disc. Thisaction commutes with the monodromy action of the braid groupoid, which is given bythe R-matrix of Uq (sl2(C )).3.1 IntroductionIn the free �eld representation of conformal �eld theory based on SU(2) one is led toconsider integrals of the form [DF84, ZF86]GC(w1; : : : ; ws) = ZC dz1 ^ : : : ^ dzr f(z1; : : : ; zr; w1; : : : ; ws)Yi<j(zi � zj)2�Yi;j (zi � wj)(1�nj)�Yi<j(wi � wj) 12 (1�ni)(1�nj)� (56)In this formula n1; : : : ; ns are positive integers, f is a single valued meromorphic func-tion, symmetric under permutations of the z-variables, with poles on the hyperplanesfzi = wjg. The parameter � is equal to 1=(k+2) for the Wess-Zumino-Witten (WZW)model based on SU(2) at level k, and is equal to p0=p for minimal models with centralcharge c = 1 � 6(p � p0)2=(pp0).For each integration cycle C in the rth homology group with coe�cients in the localsystem given by the monodromy of the di�erential form in (56), GC is a many valuedanalytic function on the con�guration space C1;::: ;1(C ) = f(w1; : : : ; ws) 2 C s jwi 6=wj (i 6= j)g. To compute its transformation under analytic continuation along pathsexchanging the punctures wi, one needs to know the monodromy action of the braidgroupoid on homology. Examples of this computation by contour deformation have20



been worked out by several authors, among others [GN84, DF84, TK88, FFK89, La90],in di�erent languages. It generalizes the computation of Gauss for the hypergeometricfunction. It has become clear that the monodromy is described by the R-matrix (moreprecisely by the 6j-symbols) of the quantum group Uq (sl2(C )). The topological pointof view we adopt here is closest to [PS90].In this chapter, we propose an explanation of this fact. It consists of two parts.First one considers a space of relative cycles on which Uq (sl2(C )) acts. The action isdescribed purely in topological terms and commutes with the monodromy action of thebraid group. The absolute cycles are then given by the highest weight vectors in thespace of relative cycles. We have then schematically the following dictionary betweentopological and algebraic entities:Relative cycles Elements of the tensorproduct of Verma modules
iVniAbsolute cycles Highest weight vectors in
iVniIntersection pairing Covariant bilinear formMonodromy action of thebraid groupoid on relativecycles R-matrix representation ofthe of braid groupoid on
iVniMoreover, the quotient of the space of absolute cycles by the cycles in the nullspace of the intersection pairing is closed under braiding and is given by the fusion rulesubquotient. More precise de�nitions and correspondences are explained in the bulkof this chapter.Our approach is rather elementary and based on the concept of families of loopsrather than on the (in some sense more natural) homology groups directly. We expectthat our construction extends to locally �nite homology, but this would require asomewhat more sophisticated machinery.We point out that part of our results can be understood as a topological versionof results known in the literature on free �eld representation of conformal �eld theory[PS90, GP89, BMP90] and, in particular, [GS90]. The results in [BMP90] suggestthat our construction extends to groups of higher rank. Here we present the purelytopological results in this subject, which can be read without knowledge in conformal�eld theory. See [FS89a, F90, G90] for applications of these concepts to conformal �eldtheory. While this work was completed, we received some interesting preprints [SV90]where related results were obtained.This chapter is organized as follows: in section 3.2 we introduce the concept of braidgroupoid representations and local systems in a rather general context. In section 3.3we specialize to SU(2), and explain the action of Uq (sl2(C )) on relative cycles. Section3.4 contains the discussion on intersection pairing. In section 3.5 we show that therepresentation of Uq (sl2(C )) on relative cycles is isomorphic to the tensor product ofVerma modules, one for each puncture. In section 3.6 we compute the monodromy21



action of the braid groupoid on relative cycles. The appendix contains a summary ofresults on Uq (sl2(C )).3.2 Local Systems on Con�guration Spaces3.2.1 Colored Braid GroupoidsLet X be a connected two-dimensional manifold, possibly with boundary, k a positiveinteger (the number of colors), and n1; : : : ; nk non-negative integers (the numbers ofstrands with given color). Set n = Pni. De�ne the con�guration spacesC(ni)(X) = Cn1:::nk(X) = (Xn n [i<jfzi = zjg) = (Sn1 � : : :� Snk) ; (57)where the symmetric group Sn1 acts by permutations on the �rst n1 variables, Sn2on the subsequent n2 variables, and so on. It is understood that the factors Sni withni = 0 should be omitted in (57). An element of Cn1:::nk (X) can also be thought as asequence (Z1; : : : ; Zk) of pairwise disjoint subsets of X with cardinalities jZij = ni.Fix a base point x of Cn1 :::nk(X), and let Ox be the orbit of x under the symmetricgroup1 Sn. Thus Ox can be identi�ed with the right coset spaceOx = Sn=(Sn1 � : : :� Snk ): (58)The colored braid groupoid Bn1:::nk (X;x) is the space of paths in X, starting andending in Ox, up to homotopies preserving endpoints; viewed as a subgroupoid of thefundamental groupoid of Cn1:::nk (X). The groupoid G = Bn1:::nk(X;x) is indexed byOx and has components labeled by the endpoints:G = [�;�2OxG��; (59)The multiplication law G�� � G� ! G� is the composition of paths. Since X isconnected, braid groupoids corresponding to di�erent choices of base points are iso-morphic. Any such isomorphism can be described as the composition with a homotopyclass of paths connecting the base points. If k = 1, G is a group, the braid group on nstrands on X. The groupoid G = Bn1:::nk (X;x) can be described in terms of the braidgroup Bn(X;x). Let h : Bn(X;x) ! Sn be the canonical projection homomorphism.Then for �; � 2 Ox there is a one-to-one map��;� : fg 2 Bn(X;x) : � = h(g)�g ! G��; (60)such that ���(g)��(g0) = ��(gg0).For X � C , call x 2 Cn1:::nk (X) an admissible base point if x is the image of a pointin C n with Re(z1) < : : : < Re(zn): (61)1Acting as �(z1; : : : ; zn) = (z��1(1); : : : ; z��1(n)).22



Suppose now that X = C . For any two admissible base points there is a unique homo-topy class of paths in the space of admissible base points connecting them. Thereforethe corresponding colored braid groupoids can be uniquely identi�ed, and we can omitthe dependence on x in the notation; with the agreement that G = Bn1:::nk (C ) is de�nedusing any admissible base point.An element � in Ox can be described by a color map�� : f1; : : : ; ng ! f1; : : : ; kg (62)such that j���1(i)j = ni. The correspondence between � and �� is the following: Let� = �(x); � 2 Sn. Then��(i) = � i� ��1(i) 2 (��1X1 nj + 1; : : : ; �X1 nj) : (63)Let �i; i = 1; : : : ; n�1 be the standard generator of Bn(C ), that exchanges the ithstrand with the (i+1)st one, and let �i = h(�i) denote the corresponding transposition.Then the system��i = ��i�;�(�i) 2 G�i�;�; i = 1; : : : ; n� 1; � 2 Ox; (64)is a system of generators of G.Let � 2 R. The inclusion C(ni)(fRe(z) < ag) � C(ni)(C ) induces an isomorphismB(ni)(fRe(z) < ag) ! B(ni)(C ). The same holds for the subset fRe(z) > ag. Letni = n0i + n00i ; i = 1; : : : ; k. The inclusion� : C(n0i)(fRe(z) < ag)� C(n00i )(fRe(z) > ag)! C(ni)(C )((Z 01; : : : ; Z 0k); (Z 001 ; : : : ; Z 00k )) 7! (Z 01 [ Z 001 ; : : : ; Z 0k [ Z 00k ) (65)induces an injective homomorphism of groupoids� : B(n0i)(C ) �B(n00i )(C ) ! B(ni)(C ) (66)More precisely, we have a map � : O0 � O00 ! O de�ned by restriction to the orbitsO0; O00 of admissible base points, and maps (in an obvious notation)� : G0�0�0 �G00�00�00 ! G��; (67)with � = �(�0; �00) and � = �(�0; �00), compatible with the composition law. Intuitively,this homomorphism is simply the juxtaposition of colored braids.3.2.2 R-Matrix Representations.A representation of a groupoid G = [��2IG�� with index set I, on a family of complexvector spaces (V�)�2I is an index preserving homomorphism from G to the groupoid23



[��2IHom�(V�; V�) of invertible linear maps of the vector spaces V�. In other words,a representation � of G is a family of maps��� : G�� ! Hom�(V�; V�); (68)such that ���(g)��(g0) = ��(gg0). To simplify the notation, we will often omit thelabel ��, thinking of ��� as the restriction of a map � de�ned on G.De�nition: Let U�; � = 1; : : : ; k be vector spaces and for each pair �; � let R�� bean invertible element of End(U� 
 U�). An R-matrix representation of the groupoidB(ni)(C ) is a representation on the family of vector spaces, labeled by Ox,V� = U��(1) 
 : : :
 U��(r); (69)such that on generators�(��i ) = PRi;i+1��(i)��(i+1); Pu 
 v = v 
 u; (70)where PRi;j�� denotes PR�� acting on the ith and jth factor in the tensor product.Proposition 3.1 (I) Let k be a �xed positive integer. A family of vector spacesU�; � = 1; : : : ; k and a family R�� of invertible elements of End(U� 
 U�) de�nesa representation �(ni) of Bn1;::: ;nk(C ) for all n1; : : : ; nk if and only if the Yang-Baxterequation R23��R13��R12�� = R12��R13��R23�� (71)holds on U� 
 U� 
 U�. (II) Let � be the homomorphism (66),Bn01:::n0k (C ) �Bn001 :::n00k (C ) ! Bn1:::nk (C ); ni = n0i + n00i ; (72)and set �0 = �(n0i), �00 = �(n00i ), � = �(ni). Then, for all �0; � 0 2 O0, �00; � 00 2 O00���(�(g0; g00)) = ��0�0(g0)
 ��00�00(g00); (73)where � = �(�0; �00) and � = �(�0; �00).Example 1: Let U� = C , � = 1; : : : ; k, and identify V� = C 
 : : : 
 C with C . Letq�� be any non zero complex numbers. Then �(��i ) = q��(i)��(i+1) de�nes an R-matrixrepresentation of Bn1:::nk(C ).Example 2: Let A be a quantum universal enveloping algebra [D86] with universalR-matrix R 2 A 
A, and let �� be �nite dimensional representations of A on spacesU�. Then R�� = �� 
 ��(R) de�nes an R-matrix representation of Bn1:::nk(C ).24



3.2.3 Local SystemsLet (M;x) be a topological space with base point, and M̂ its universal covering space,with right action of �1(M;x). M̂ is the space of homotopy classes of paths in Moriginating at x. For any representation � : �1(M;x) ! GL(V ) on a vector spaceV one de�nes a local system L as the vector bundle (M̂ � V )= � over M with theidenti�cation (m̂; �(�)v) � (m̂�; v), � 2 �1(M;x), and projection (m̂; v) 7! m, thecovering projection on the �rst argument. Thus a local system is the same as a atvector bundle with holonomy �, and speci�ed trivialization of the �ber over the basepoint.This construction has the following slight generalization. Let O be a �nite subset ofM and G the subgroupoid of the fundamental groupoid of M , consisting of homotopyclasses of paths whose endpoints are in O. For � 2 O, let M̂� be the universal coveringspace of the space with base point (M;�). The groupoid G acts on the disjoint uniont�M̂� on the right by composition of paths, given by maps M̂��G�� ! M̂�. Let � bea representation of G = [��2OG�� on a family of vector spaces (V�)�2O. These datade�ne a local system as the vector bundle�L = t�M̂� � V�� = � (74)with identi�cation (m̂�; ���(���)v) � (m̂����; v�), ��� 2 G��. Such a local system isthe same as a at vector bundle overM together with a family of vector spaces (V�) andisomorphisms of the �bers over � 2 O with V�, such that parallel transport operatorsare given by �. Local horizontal sections are continuous sections which locally can bewritten as m 7! (m̂; v), with constant v, and m̂ covering m.Let M1;M2 be topological spaces and O1 � M1; O2 � M2 be �nite subsets. Ahomomorphism of local systems L1 overM1 to L2 overM2 is a map L1 ! L2 mapping�bers to �bers linearly and sending local horizontal sections to local horizontal sections.Lemma 3.2 Let f be a map from M1 to M2 such that f(O1) � O2 and let f� 2Hom(V� ! Vf(�)), be linear maps indexed by O1 such that the diagramV� �1(�)���! V�f�???y ???yf�Vf(�) ����!�2(f��) Vf(�) (75)is commutative for all �; � 2 O1; � 2 G��. Then f lifts uniquely to a homomorphismL1 ! L2 of the local systems associated to �1; �2, also denoted by f , which reduces tof� on the �ber V� over � 2 O1.Let � be a representation of Bn1:::nk (C ) and let L be the corresponding local system.Here is an explicit description of L in terms of transition functions. Fix an admissible25



base point x, and de�ne the cells C�(ni) � C(ni)(C ) as follows: let � = �x; � 2 Sn andde�ne C�(ni) = n(z1; : : : ; zn) 2 C(ni)(C )jRe(z��1(1)) < : : : < Re(z��1(n))o : (76)The cells C�(ni) are pairwise disjoint, their union is dense in C(ni)(C ), and each cellcontains precisely one point in Ox, for any choice of admissible base point x.Let �C�(ni) be the closure of the cell C�(ni). For y 2 �C�(ni)\ �C�(ni), let � be any path goingfrom � to y in C�(ni) and continuing from y to � in C�(ni). De�ne the locally constanttransition function g��(y) = �(�). Then L is the at vector bundle over C(ni)(C ),L = t�2O � �C�(ni) � V�� = � (77)with identi�cation(y; v�) � (y; v�); y 2 �C�(ni) \ �C�(ni); v� 2 V�; v� 2 V�; (78)if and only if v� = g��(y)v�.Let � be any path whose endpoints lie in [�2OC�(ni). Then the parallel transportoperator along � is an operator in Hom(V�; V�), in the trivialization. Therefore, wehave an extension of the de�nition of � to all homotopy classes of paths with endpointsin [�2OC�(ni).Let now �(ni) be the representations associated with a family of R-matrices, asin Proposition 3.1, and L(ni) the corresponding local systems on C(ni)(C ). Let a 2R; C+ = fRe(z) > ag; C � = fRe(z) < ag. Denote by L<(ni)(L>(ni)) the restriction ofL(ni) to C(ni)(C �) (C(ni)(C + ), respectively). Let L<(n0i) 
 L>(n00i ) be the at bundle overC(n0i)(C �)� C(n00i )(C+ ) de�ned by taking the tensor products of the �bers.Proposition 3.3 The maps � : C(n0i)(C �) � C(n00i )(C + )! C(ni)(C ) lifts to a homomor-phism � : L<(n0i) 
 L>(n00i ) ! L(ni) (79)sending local horizontal sections to local horizontal sections. The lift is �xed by settingthe homomorphisms of Lemma 3.2 equal to the canonical homomorphisms V� 
 V� ��!V�(�;�).Proof : Let C�(n0i) < = C�(n0i)\C(n0i)(C �) and C�(n00i ) > = C�(n00i )\C(n00i )(C + ). Then L<(n0i)
L>(n00i )is the vector bundlet�2O0;�2O00( �C�(n0i) < � �C�(n00i ) >)� (V� 
 V�)= � : (80)The map � maps �C�(n0i) <� �C�(n00i ) > to �C�(�;�)(ni) , and the transition functions are given bytensor products of transition functions. The claim follows then from Proposition 3.1and Lemma 3.2. �If n� = 1 and n� = 0, � 6= �, then C0;::: ;1;::: ;0(C ) = C and the �ber of L0;::: ;1;::: ;0 overany point is canonically identi�ed with U�. We have the following special case of thepreceding Proposition. 26



Proposition 3.4 Let a 2 R, � 2 f1; : : : ; kg, and z+; z� be complex numbers withRe(z�) < a < Re(z+). Then the maps��� : Cn1 ;::: ;nk(C + )! Cn1;::: ;n�+1;::: ;nk(C ); (81)��+ : Cn1 ;::: ;nk(C � )! Cn1;::: ;n�+1;::: ;nk(C ); (82)given by (Z1; : : : ; Zk) 7! (Z1; : : : ; Z� [ fz�g; : : : ; Zk), lift to homomorphisms��� : U� 
 L>n1;::: ;nk ! Ln1 ;::: ;n�+1;::: ;nk (83)��+ : L<n1;::: ;nk 
 U� ! Ln1;::: ;n�+1;::: ;nk : (84)These homomorphisms preserve horizontal sections and are isomorphisms on each �ber.3.3 The Topological Action of Uq (sl2(C ))3.3.1 The SU(2) caseLet us specialize the general discussion to the case of interest to us. Let D be the unitdisc fjzj � 1g, and w1; : : : ; ws be s distinct points in its interior. De�ne Xr(w1; : : : ; ws)to be the �ber over (w1; : : : ; ws) of the �bration Cr;1;::: ;1(D) ! C1;::: ;1(D). In otherwords, Xr(w1; : : : ; wr) is the space of subsets of D n fw1; : : : ; wsg with r elements.Let n1; : : : ; ns be positive integers, and q 2 C n f0g. The family of one-dimensionalR-matrices R11 = �q2; R1j = Rj1 = q1�nj ; j = 2; : : : ; s+ 1; (85)de�nes a representation of Br;1;::: ;1(C ), and a local system over Cr;1;::: ;1(C ) (and also onCr;1;::: ;1(D), by restriction). Let Lr(w1; : : : ; ws) be the restriction of this local system toXr(w1; : : : ws). We will often omit the w dependence in the notation, and write Xr; Lrwhen no confusion arises.In the following construction it is useful to choose also two points on the boundaryof D. For de�niteness, choose P+ = 1, P� = �1. Denote X�r = fZ 2 XrjZ 3 P�g. ByProposition 3.4, the inclusionsXr nX�r ! X�r+1; Z 7! Z [ fP�g; (86)lift to homomorphisms �� : LrjXrnX�r ! Lr+1jX�r+1 .3.3.2 Families of Loops.In the following we �x s distinct points w1; : : : ; ws in the interior of the unit disc, anddenote by X the set D n fw1; : : : ; wsg.De�nition: A non-intersecting family of loops in X, based at the point P�, is a �nitesequence 0; : : : ; r�1 : [0; 1]! X of curves in X such that27



1. j(0) = j(1) = P�; j(t) 6= P� for t 2]0; 1[,2. If t; s 2]0; 1[ and j(t) = k(s) then t = s and j = k,3. For all j, the homotopy class of j is non-trivial.A non-intersecting family of loops can also be represented as a map � from the r-cube]0; 1[r to Xr. It is the restriction of a continuous map �� de�ned on the open r-cubewith open r � 1-facesQr =]0; 1[r[ r[i=1 (]0; 1[� : : :� f0; 1g � : : :�]0; 1[) (87)de�ning an inclusion �� : Qr ! Xr of a closed subset of Xr.De�nition: A homotopy of non-intersecting families of loops is de�ned to be a homotopyh :]0; 1[r�[0; 1]! Xr such that for all s 2 [0; 1], h(�; s) is a non-intersecting family ofloops. Two families �;�0 are said to be homotopic if there is a homotopy h such thath(�; 0) = � and h(�; 1) = �0.Consider the space Ar = Ar(w1; : : : ; wr) of �nite linear combinationsX� ��[�]; (88)where [�] = [0; : : : ; r�1] are homotopy classes of families of loops and �� are horizon-tal sections of the pull-back bundle ��Lr over the contractible space Qr, modulo theequivalence relations:1. �[�] � �f��[� � f ], for any orientation preserving (+) or reversing (�) isometryf of the cube.2. If, for some i, i is homotopic to the composition 0i �  00i with homotopy ~i :[0; 1]� [0; 1]! X and 0; : : : ; ~i(�; s); : : : ; r�1, (0 � s < 1); 0; : : : ; 0i; : : : ; r�1;0; : : : ; 00i ; : : : ; r�1 are all non-intersecting families of loops, then�[0; : : : ; r�1] � �0[0; : : : ; 0i; : : : ; r�1] + �00[0; : : : ; 00i ; : : : ; r�1]; (89)where �0, �00 are de�ned by restriction of �.It is understood that horizontal sections over homotopic families of loops are canon-ically identi�ed by parallel transport, so that the expressions (88) make sense.Let � be su�ciently small that the closed discs of radius � centered at wj are disjointand contained in the interior of the unit disc. Let X�r, X��r be the spaces obtained fromXr;X�r by removing points fz1; : : : ; zrg such that jzi � wjj < �. Elements of Ar28



represent relative locally �nite cycles in H lfr (X�r ;X��r ;Lr) with coe�cients in the localsystem Lr. Thus we have a linear map'r : Ar(w1; : : : ; ws)! H lfr (X�r ;X��r ;Lr): (90)On the other hand, we can also view a family � as a map ~� from ]0; 1[r to X��r by theformula ~� : (t0; : : : ; tr�1) 7! f�1; 0(t0); : : : ; r�1(tr�1)g; (91)and a section � of ��Lr is mapped under �� to a section of ~��Lr+1, and we also havea linear map  r+1 : Ar(w1; : : : ; ws)! H lfr+1(X��r+1;Lr): (92)3.3.3 OperatorsWe de�ne a set of operators acting on �10 Ar and then compute their commutationrelations.Let  be the path  : [0; 1]! X; t 7! �e2�it (93)Let i :]0; 1[r!]0; 1[r+1 be the inclusion (t0; : : : ; tr�1) 7! (t0; : : : ; tr�1; 1=2). De�ne alinear operator F : Ar ! Ar+1 that adds a loop:F : �[0; : : : ; r�1] 7! �0[0; : : : ; r�1; ]; (94)where �0 is the section over Qr+1 such that �+� = �0 � i on ]0; 1[r. This de�nitionmakes sense since we can assume that the representative 0; : : : ; r�1 does not intersect except at the endpoints.Introduce the face maps [0; 1]r ! [0; 1]r+1,e+i;r(t0; : : : ; tr�1) = (t0; : : : ; ti�1; 1; ti; : : : ; tr�1); (95)e�i;r(t0; : : : ; tr�1) = (t0; : : : ; ti�1; 0; ti; : : : ; tr�1); (96)and the linear operator that kills a loopE : �[0; : : : ; r�1] 7! r�1Xi=0(�1)i��1� (� � e+i;r � � � e�i;r)[0; : : : ; ̂i; : : : ; r�1]: (97)(̂ denotes omission). The third operator is the diagonal operator K2, de�ned on Ar asK2 = q�(ni�1)�2r1Ar : (98)The relation between E and the boundary operator is explained by the29



Proposition 3.5 The diagramAr 'r���! H lfr (X�r ;X��r ;Lr)E???y ???y@�Ar�1 ���! r H lfr�1(X��r ;Lr) (99)is commutative.3.3.4 RelationsTheorem 3.6 The operators E;F;K�2 obey the relationsK2E = q2EK2; K2F = q�2FK2; EF � FE = K2 �K�2: (100)We have a representation of the quantum group Uq (sl2(C )) on �rAr(w1; : : : ; ws).Proof : The �rst two relations follow from the de�nition. The third relation is bestchecked in an explicit trivialization. We can assume that f0�12�; : : : ; r�1�12�g is insome cell C�r . Denote by 1 the horizontal section of ��Lr, which takes the value 1 overthe point �12; : : : ; 12� in the trivialization over C�r . Let ��i be the pathst 7! �0 �12� ; : : : ; i �12(1� t)� ; : : : ; r�1 �12�� ; (101)going from the cell C�r to the cell containing the point nP�; 0 �12� ; : : : ; r�1 �12�o. Wehave the explicit expressionsF 1[0; : : : ; r�1] = 1[0; : : : ; r�1; ]; (102)E 1[0; : : : ; r�1] = r�1Xi=0(�1)i(�r(�+i )� �r(��i )) 1[0; : : : ; ̂i; : : : ; r�1]: (103)Denoting by �� the paths t 7! n0 �12� ; : : : ; r�1 �12� ;  �12(1 � t)�o, we �nd representa-tion factors �r+1(�+) = q�(1�ni)(�q2)r and �r+1(��) = �r+1(�+)�1. We then compute,EF1[0; : : : ; r�1] = E1[0; : : : ; r�1; ]= r�1Xi=0(�1)i ��r(�+i )� �r(��i )� 1[0; : : : ; ̂i; : : : ; r�1; ] +(�1)r ��r(�+)� �r(��)� 1[0; : : : ; r�1]= FE 1[0; : : : ; r�1] +�q�(ni�1)�2r � q��(ni�1)+2r� 1[0; : : : ; r�1]: (104)The proof is complete. �From Proposition 3.5 and Theorem 3.6 follows:Corollary 3.7 Singular vectors in Ar(w1; : : : ; ws) (i.e., vectors in Ker E) representabsolute cycles in H lfr (X�r;Lr). 30



3.4 Intersection Pairing3.4.1 Reection and DualityLet L0r be the local system dual to Lr, i.e., the at line bundle with holonomies �0(�) =�(�)�1, (which is the representation obtained from � by replacing q by its inverse),and let � be the reection sending x + iy to �x + iy. The reection � maps orbits ofadmissible base points to orbits of admissible base points and preserves holonomies,�0(� � �) = �(�); (105)and lifts therefore to an involutive homomorphism of local systems� : Lr(w1; : : : ; ws)! L0r(�w1; : : : ; �ws): (106)The lift is speci�ed by setting the maps �� of Lemma 3.2 equal to the identity.Denote by A0r(w1; : : : ; ws) the space of linear combinations P��[�] with [�] ho-motopy classes of non-intersecting families of loops based at P+, and �� horizontalsections of ��L0r(w1; : : : ; ws), modulo the above equivalence relations. The reection �induces an isomorphism� : Ar(w1; : : : ; ws)! A0r(�w1; : : : ; �ws); �[�] 7! ��[� � �]; (107)which de�nes an action of Uq (sl2(C )) on �A0r.3.4.2 Intersection PairingIn this subsection we assume that all families of curves are smooth maps on ]0; 1[r.Let � be a family of curves based at P� = �1 and �0 be a family of curves basedat P+. Suppose that � and �0 intersect transversally in a �nite number of points lyingin the interior of X. Thus the set of (t; t0) such that �(t) = �0(t0) is �nite, contained in]0; 1[r�]0; 1[r, and the tangent map D� �D�0 is non-singular at any such (t; t0). Theintersection index ](t; t0) at (t; t0) is then de�ned to be 1 if the tangent map preservesthe orientation, and �1 otherwise. The orientation of T�(t)Xr = C r is conventionallyde�ned via the identi�cation(x1 + iy1; : : : ; xr + iyr) � (x1; : : : ; xr; y1; : : : ; yr) (108)of C r with R2r.De�nition: The intersection pairing is the complex bilinear form( ; ) : �rAr(w1; : : : ; wr)��rA0r(w1; : : : ; wr)! C ; (109)which is zero on Ar �A0r0; r 6== r0, and such that([ ]; [ ]) = 1; (�[�]; �0[�0]) = (�1)r X(t;t0):�(t)=�0(t0) ](t; t0)h�(t); �0(t0)i (110)31



on Ar �A0r; h ; i denotes duality of �bers.It is possible to give a more explicit formula for ( ; ). Let _(t) be the tangent vectorat t to a smooth curve .Proposition 3.8 Suppose that � = 0; : : : ; r�1 and �0 =  00; : : : ; 0r�1 intersect transver-sally. Let Tij �]0; 1[�]0; 1[ be the set of (t; t0) such that (t) = 0(t0) and �ij =sign Im(�_i(t) _ 0j(t0)) be the intersection index of i and 0j at (t; t0). Let for � 2 Sr,T� = n(t; t0) 2]0; 1[r�]0; 1[r j (tj; t0�j) 2 Tj�j; j = 0; : : : ; r � 1o : (111)Then (�[�]; �0[�0]) = (�1)r X�2Sr sign � X(t;t0)2T� r�1Yj=0 �j�jh�(t); �0(t0)i: (112)Proof : The condition �(t) = �0(t0) is equivalent to j(tj) = 0�j(t0�j) for all j and somepermutation �. Thus f(t; t0)j�(t) = �0(t0)g = [�2SrT�; (113)and T� \ T�0 = for � 6= �0, by the second property of non-intersecting families ofcurves. For (t; t0) 2 T�, ](t; t0) is the sign of the determinant of the matrix �ijRe( _j(tj)) ��i;jRe( _ 0j(tj))�ijIm( _j(tj)) ��i;jIm( _ 0j(tj))! (114)which is easily put in block form by permuting rows and column, and the result follows.�Theorem 3.9 Fix w1; : : : ; ws, let ( ; ) be the intersection pairing corresponding tow1; : : : ; ws and let ( ; )� be the intersection pairing corresponding to �w1; : : : ; �ws. (I)For all a 2 Ar(w1; : : : ; ws); b 2 Ar(�w1; : : : ; �ws),(a;�b) = (b;�a)�: (115)(II) Let T denote transposition with respect to ( ; ). ThenET = F; F T = E; K2T = K2; (116)i.e., ( ; ) is a covariant bilinear form.Proof : (1) Set a = �1[�1] and b = �2[�2]. Looking at the de�nition of intersectionpairing, we see that since � preserves the pairing between �bers, it is su�cient to provethat the intersection index ](t1; t2) is the same on both sides of the equation. Let(t1; t2) be an intersection point of �1 with ��2. Identify the tangent space at a pointof the unit r-cube in a canonical way with Rr, and the tangent space at a point in Xr32



with R2r as above. Then the intersection index occurring on the left hand side is thesign of the determinant of the r� r matrix D�1� ��D�2 : Rr�Rr! R2r. The matrix�� is the diagonal matrix with entries 1; : : : ; 1;�1; : : : ;�1. We havedet(D�1 � ��D�2) = (�1)rdet(��D�1 �D�2)= (�1)r2+rdet(D�2 � ��D�1)= det(D�2 � ��D�1): (117)The sign of the last determinant is the intersection index occurring on the right handside. (2) K2T = K2 follows immediately from the de�nition. Next, we show thatF T = E. The third relation follows then from (1). Let � = 0; : : : ; r�1 be a family ofloops based at P� and �0 =  00; : : : ; 0r�1 one based at P+. Let us, as in the proof ofTheorem 3.6, denote by 1 the section of ��Lr(w1; : : : ; wr), which takes the value 1 overthe point �12 ; : : : ; 12� in the trivialization over 0�12�; : : : ; r�1�12�, which is assumed tobe in a cell. Suppose that i intersects 0j in a point which is in some cell C�, and lett; t0 denote the value of the parameters at the intersection point. Denote by �ij thepath s 7! i �12(1 � s) + ts� and by � 0ij the path s 7! 0i �12(1� s) + t0s�. Then we havethe explicit expression(1[�]; 1[�0]) = (�1)r X�2Sr sign � X(t;t0)2T� r�1Yj=0 �j�j�(�j;�j)�0(� 0j;�j): (118)Let  be the path t 7! � exp(2�it). We have to compute(F1[0; : : : ; r�1]; 1[00; : : : ; 0r]) = (1[0; : : : ; r�1; ]; 1[00; : : : ; 0r]) : (119)It can be assumed, by possibly applying a homotopy, that  intersects each  0j atexactly two points, namely when the parameter t0j of  0j is close to zero, with positiveintersection index, and when t0j is close to one, with negative index (see Fig. 1). Inboth cases the parameter t of  is close to 12. Therefore the corresponding paths �rj; � 0rj ,associated to these intersections, can be replaced by the trivial path and by the paths�0�j de�ned by t! �00 �12� ; : : : ; 0j �12(1 � t)� ; : : : ; 0r �12�� : (120)We are in position to complete the calculation:�F1[0; : : : ; r�1]; 1[00; : : : ; 0r�1]� =(�1)r+1 rXi=0 X�2Sr(�1)r�isign (�)X(t;t0)2T� ��0r(�0�i )� �0r(�0+i )� r�1Yj=0 �j;�j�(�j;�j)�0(� 0j;�j) =�1[0; : : : ; r�1]; E1[00; : : : ; 0r�1]� (121)� 33



Figure 1: The points of intersection of with 0j.3.5 Tensor Products and CoproductIn this section we give explicitly the structure of �Ar(w1; : : : ; ws) as a Uq (sl2(C ))module.3.5.1 The module �Ar(w1; : : : ; ws)The spaces Ar(w1; : : : ; ws) constitute a complex vector bundle over C1;::: ;1(D). Thisbundle comes with a at Gauss-Manin connection induced by the connection of Lr;1;::: ;1.The holonomy of this connection will be computed in the next section. Let us noticethat the spaces Ar(w1; : : : ; ws) are isomorphic (although not canonically isomorphic),and we can �x w1; : : : ; ws as we like. For de�niteness, we choose w1; : : : ; ws to beadmissible, so that Re(w1) < : : : < Re(ws). To describe Ar(w1; : : : ; ws) as a linearspace, we choose a basis as follows. Fix a non-intersecting family of loops 1; : : : ; s,so that i winds around wi as shown in Fig. 2a. Introduce the shorthand notation[r11 ; : : : ; rss ] (122)to denote a homotopy class of non-intersecting families of loops, constructed as follows:Let (j)i (1 � i � s, 1 � j � ri) be slight homotopic deformations of i such that (j)ilies inside (j+1)i , and such that (1)1 ; : : : ; (r1)1 ; : : : ; (1)s ; : : : ; (rs)s is a non-intersectingfamily of loops. Let [r11 ; : : : ; rss ] be the associated homotopy class. De�ne a horizontalsection denoted by 1 over this family to be the section which takes the value 1 withrespect to the trivialization over a point with coordinates obeyingRe(w1) < Re(z1) < : : : < Re(zr1) < Re(w2) <Re(zr1+1) < : : : < Re(zr2) < Re(w3) < : : : (123)If r1; : : : ; rs run over all non-negative integers with total sum r, the families of loops1[r11 ; : : : ; rss ] form a basis of Ar(w1; : : : ; wr).34



Figure 2: The loops used to de�ne a basis of Ar(w1; : : : ; ws) and A0r(w1; : : : ; ws).Theorem 3.10 The Uq (sl2(C ))-module �Ar(w1; : : : ; ws) is isomorphic to the tensorproduct of Verma modules Vn1 
 : : :
 Vns (124)with action of Uq (sl2(C )) given by the s-fold coproduct4(s). IfRe(w1) < : : : < Re(ws),an isomorphism is explicitly given by1[r11 ; : : : ; rss ] 7! F r1vn1 
 : : :
 F rsvns: (125)Proof : For s = 1, we have 1[r1] = F1[r�11 ], by de�nition of F . For higher r, wehave to show that the action of the generators on the basis is indeed given by thecoproduct. For the (diagonal) generators K2;K�2 this follows from the de�nition. Forthe other (raising and lowering) operators, the proof follows from contour deformation.To compute the action of F we must deform the added loop  to the composition ofloops homotopic to s; : : : ; 1:F1[r11 ; : : : ; rss ] = sXi=1 �i1[r11 ; : : : ; ri+1i ; : : : ; rss ]: (126)The coe�cient �i is, up to a sign, the transition function we pick up by going fromthe point where the section 1 over r11 ; : : : ; rss ;  is trivialized to the point where thesection 1 over r11 ; : : : ; ri+1i , : : : ; rss is trivialized. The sign is (�1)�j>irj , and comesfrom reordering the loops. Thus �i = qPj>i(1�nj�2rj) and we get the resultF =Xi 1 
 : : :
 1
 F 
K�2 
 : : :
K�2: (127)Similarly, by computing the contribution proportional to 1[r11 ; : : : ; ri�1i ; : : : ; rss ] ofE1[r11 ; : : : ; rss ], we see that we get the same terms as in the computation of E[rii ]35



except for the factor q�Pj<i(1�nj�2rj) that we pick up by going from the vicinity of wito P�, and we obtain the result:E =Xi K2 
 : : :
K2 
E 
 1 
 : : :
 1: (128)This concludes the proof. �Remark: We see that the tensor product also has a topological interpretation: letS+; S� be the upper and lower halves of the unit circle. We can think ofDnfw1; : : : ; wsg(with wi 6= wj; i 6= j and wi 2 int D) as the result of glueing s punctured discs D nf0gin such a way that S+ of the ith disc is identi�ed with S� of the i + 1st disc. Thisconstruction gives an identi�cation of Ar(w1; : : : ; ws) with A1(0)
 : : :
A1(0) so that1[r11 ; : : : ; rss ] is identi�ed with 1[r1]
 1[r2]
 : : :
 1[rs].The module A0r(w1; : : : ; ws), being isomorphic to Ar(�w1; : : : ; �ws), also has thestructure of a tensor product of Verma modules. In order to achieve compatibilitybetween tensor product structure and bilinear form, one has to choose the isomorphismin a special way. Let 0i be the non-intersecting family depicted in Fig. 2b, and, as above,de�ne [(01)r1; : : : ; (0s)rs] and a horizontal section 1 taking the value 1 with respect tothe trivialization over a point withRe(z1) < : : : < Re(zr1) < Re(w1) < Re(zr1+1) < : : : < Re(zr2) < Re(w2) < : : :(129)Let furthermore � be the automorphism of Uq (sl2(C )) de�ned on generators by�(H) = H; �(E) = K�2E; �(F ) = FK2: (130)The following dual version of Theorem 3.10 is proven exactly as Theorem 3.10.Theorem 3.11 The Uq (sl2(C ))-module A0r(w1; : : : ; ws) is isomorphic to the tensorproduct of Verma modules Vn1 
 : : :
 Vns (131)with action of Uq (sl2(C )) given by the twisted coproduct ��1 � 4(s) � �. If Re(w1) <: : : < Re(ws), an isomorphism is explicitly given by1[(01)r1; : : : ; (0s)rs] 7! F r1vn1 
 : : :
 F rsvns: (132)3.5.2 Tensor Products and Intersection PairingThe isomorphisms described in the preceding Theorems de�ne intersection pairing asa bilinear form ( ; ) on Vn1 
 : : :
 Vns .Theorem 3.12 The intersection pairing coincides with the product of the Shapovalovbilinear forms on Vni . In particular, it is symmetric and degenerate. It reduces to anon-degenerate symmetric bilinear form on the fusion rule subquotient.36



Proof : For s = 1, the highest weight vector vn of Vn has (vn; vn) = 1 and onehas ET = F , F T = E, K2T = K2, which are the characterizing properties of theShapovalov bilinear form on the Verma module Vn. The choice of identi�cation ofAr, A0r with the product of Verma modules is chosen in such a way that the weight(�1)r](t; t0)h�(t); �0(t0)i of each intersection point factorizes into s factors equal to theweights of the corresponding intersections in ([rii ]; [0r0ii ]). �3.5.3 The Local SystemThe result of Theorem 3.10 can be cast into the formalism of local systems. To be moreprecise, introduce the dependence of the labels n1; : : : ; ns explicitly in the notation:Ar = Ar(w1; : : : ; wsjn1; : : : ; ns): (133)Fix a base point (w01; : : : ; w0s) such that Re(w1) < : : : < Re(ws). The spaces (133)de�ne a at vector bundle over C1;::: ;1(D) with (Gauss-Manin) connection induced bythe connection on Lr;1;::: ;1. The �ber over (w01; : : : ; w0s) is identi�ed with Vn1 
 : : :
Vnsby the explicit isomorphism of Theorem 3.10. Similarly, for any permutation � 2 Sswe can identify the �ber over �(w01; : : : ; w0s) with Vn�(1) 
 : : :
 Vn�(s) using the trivialidenti�cationAr(w0��1(1); : : : ; w(0)��1(s)jn1; : : : ; ns) = Ar(w01; : : : ; w0s jn�(1); : : : ; n�(s)): (134)3.6 Monodromy Action of the Braid Groupoid and UniversalR-MatrixIn the following we will consider the con�guration space Cn1;::: ;ns+1(D) with D = fz 2C j jzj � 1g; n1 = r and n2 = : : : = ns = 1.Let p : Cr;1;::: ;1(D) ! C1;::: ;1(D) be the projection given by omitting the �rst rentries of (z1; : : : ; zr; w1; : : : ; ws). p de�nes a �ber bundle over C1;::: ;1(D) with �bersp�1(w1; : : : ; ws) = Xr(w1; : : : ; ws). In particular, X1(w1; : : : ; ws) = Dnfw1; : : : ; wsg isthe punctured unit disc. In the following we will restrict our attention to fw1; : : : ; wsg �intD.Fix a base point x = (w1; : : : ; ws) 2 C1;::: ;1(D), with Re(w1) < : : : < Re(ws). Weconstruct a non-abelian representation � of the colored braid groupoid B1;::: ;1(D;x) =G. Note that Ox = Ssx and G = [�;�2SsG�;�. G is generated by [��i ], i 2 f1; : : : ; s�1gand � 2 Ss. Here ��i : [0; 1]! C1;::: ;1(D) is a smooth parametrized curve with ��i (0) =�x and ��i (1) = �i�x, which implements a counter clockwise exchange of w��1(i) andw��1(i+1).Let the representation space V� associated with � 2 Ss be Ar(w��1(1); : : : ; w��1(s)).It admits the explicit decription as linear spanAr(w��1(1); : : : ; w��1(s)) = �C 1[(1)j1 : : : (s)js]�: (135)37



The sum is over (j1; : : : ; js) 2 f0; : : : ; p � 1gs such that j1 + : : : + js = r. Thus wehave an identi�cation Ar(w��1(1); : : : ; w��1(s)) �= C N(r;s) with N(r; s) =  r + ss � 1!. Thesimplest nontrivial case is s = 2 with N(r; s) = r + 1. Let [��i ] be represented by thedeformation homomorphism �([��i ]) : V� ! V�i� associated with ��i . Introduce theq-number notation [n]q = qn � q�n, and, for k = 0; : : : ; n,"nk#q = [n]q[n� 1]q : : : [n� k + 1]q[k]q[k � 1]q : : : [1]q : (136)Proposition 3.13 (I) �([��i ])1[(1)j1 : : : (s)js]� =ji+1Xk=0 1[(1)j1 : : : (i)ji+1�k(i+1)ji+k : : : (s)js]�i�q 12k(k�1)q 12 (n�(i+1)�1�2(ji+1�k))(n�(i)�1�2(ji+k))"ji+1k #q k�1Yl=0[n�(i+1) � (ji+1 � k)]q (137)(II) �([��i ]�1)1[(1)j1 : : : (s)js]� =jiXk=0 1[(1)j1 : : : (i)ji+1+k(i+1)ji�k : : : (s)js]�i�(�1)kq� 12k(k�1)q� 12 (n�(i+1)�1�2ji+1)(n�(i)�1�2ji)"jik#q k�1Yl=0[n�(i) � (ji � k)]q: (138)Proof : Without loss of generality we can restrict the proof to the case s = 2, i = 1,and � = id. The loops used in this proof are represented in Fig. 3. The matrixrepresentation of [�] is computed by consecutive deformations and subdivisions of theindividual loops in�([�])1[(1)j1(2)j2] = q 12 (n1�1�2j1)(n2�1�2j2)qj2(n1�1)�2j1j21[(2)j1(�1)j2 ]� : (139)Subdivide the last �1-loop in a 2- and a �2-loop to obtain1[(2)j1(�1)j2 ]� =�q�2(n2�1)+2(j2�1)1[(2)j1+1(�1)j2�1]� + 1[(2)j1(�1)j2�1�2]� : (140)38



Figure 3: The loops appearing in the proof of Proposition 3.13. The points markedwith a cross are the points used to de�ne the section 1.Iterate this subdivision until there is no �1-loop left over. The result is1[(2)j1(�1)j2 ]� =j2Xk=0(�1)kq�2k(n2�1) X0�i1<:::<ik�j2�1 q2Pkl=1 il1[(2)j1+k(�2)j2�k]� : (141)The sum over ordered k-tuples is now performed with Gauss' formulaX0�i1<:::<ik�j2�1 q2Pkl=1 il = qk(j2�1) "j2k #q : (142)Then subdivide the �2-loops in 1- and 2-loops. This decomposition yields1[(2)j1+k(�2)j2�k]� =j2�kXl=0 q�(j2�k�l)(n1�1�2(j1+k)�l) "j2 � kl #q 1 h(1)j2�k�l(2)j1+k+li� : (143)Insert (142) and (143) into (141), and reorder the double sum to obtain1[(2)j1(�1)j2 ]� =j2Xk=0(�1)kqk(j2�2n2+1)�(j2�k)(n1�1�2(j1+k)) "j2k #qkXl=0(�1)lq�l(2j2�2n2�k+1) "kl#q 1 h(1)j2�k(2)j1+ki� : (144)Then perform the second sum with the q-binomial formulakXl=0(�1)lq�l(2j2�2n2�k+1) "kl#q = (�1)kqk(n2�j2)+ 12k(k�1) k�1Yl=0[n2 � (j2 � l)]q: (145)39



Insert (144) and (145) into (139) to �nd (137). The matrix representation of [�]�1 iscomputed following the same lines. �The important consequence of Proposition 3.13 is that the deformation homomor-phism �([��i ]) : V� ! V�i�, written as an operator, has a universal form which resemblesthe universal R-matrix of the quantum group algebra Uq (sl2(C )). Let p 2 N[f1g bethe smallest positive integer such that q2p = 1.Theorem 3.14 Denote by Xi the operator 1
 : : :
 1
X 
 1
 : : :
 1, acting on thei'th factor of Vn1 
 : : :
 Vns . Take 1 � n1; : : : ; ns � p� 1. Then�([��i ) = p�1Xk=0 q 12k(k�1) (q � q�1)k[k]q! q 12HiHi+1Eki F ki+1�i; (146)and �([��i ]�1) = p�1Xk=0(�1)kq� 12k(k�1) (q � q�1)k[k]q! F ki Eki+1q� 12HiHi+1�i: (147)Proof : Recall the de�nition of the operators Ei; Fi;Hi, and of �i. They act asEi1[(1)j1 : : : (s)js]� = [ji]q[n�(i) � ji]qq � q�1 1[(1)j1 : : : (i)ji�1 : : : (s)js]�; (148)Fi1[(1)j1 : : : (s)js]� = 1[(1)j1 : : : (i)ji+1 : : : (s)js]�; (149)Hi1[(1)j1 : : : (s)js]� = (n�(i) � 1 � 2ji)1[(1)j1 : : : (s)js]�: (150)and �i1[(1)j1 : : : (s)js]� = 1[(1)j1 : : : (s)js]�i�: (151)Compare (137) and (138) with (150) and (151) to conclude (146) and (147). �The content of Theorem 3.14 exceeds pure nomenclature since the operators Ei; Fi,and Hi have a topological interpretation. They satisfy the commutation relations[Hi; Ej] = 2Ej�j;i; [Hi; Fj] = �2Fj�j;i; [Ei; Fj] = [Hj ]q�j;i: (152)We have identi�ed Ar(w�(1); : : : ; w�(s)) with the tensor product Vn�(1) 
 : : :
 Vn�(s) ofUq (sl2(C )) Verma modules, the identi�cation being1[(1)j1 : : : (s)js] 7! F j1vn�(1) 
 : : :
 F jsvn�(s): (153)Moreover, we have identi�ed Ei 2 Hom(Ar(w�(1); : : : ; w�(s)); Ar�1(w�(1); : : : ; w�(s)))with the element Ei 7! 1
 : : :
 E 
 : : :
 1 (154)40



of Uq (sl2(C ))
s. Here E stands in the ith entry. Similarly we have proceeded with Fiand Ei. �i is identi�ed with the ith transposition. We have proved that this identi�ca-tion is a quantum group algebra homomorphism and a module isomorphism.The observation of this section is now that�([��i ]�1) 7! 1
 : : :
 (RP )�1 
 : : :
 1 (155)with R 2 Uq (sl2(C ))
2 the universal R-matrix in an obvious normalization and R�1its inverse, acting on the ith and (i+ 1)st entry.It follows that � de�nes an R-matrix representation of B1;::: ;1(X). The Yang-Baxterequations for the topological R-matrix follows from properties of the universal R-matrix.Having constructed an N(r; s)-dimensional R-matrix representation of B1;::: ;1(D),we also have a rank N(r; s) local system Lr1;::: ;1(D) over C1;::: ;1(D). Let C�1;::: ;1(D) bethe intersection of the cell C�1;::: ;1 with C1;:::;1(D).Lr1;::: ;1(D) = �t�2SsC�1;::: ;1(D) � C N(r;s)�� � (156)with the equivalence relation over C�1;::: ;1(D) \ C�i�1;::: ;1(D) given by multiplication withthe matrices (137) and (138) respectively. The �ber space p�1(w��1(1); : : : ; w��1(s)) isAr(w��1(1); : : : ; w��1(s)). The parallel transport matrix associated with ��i in the basis(136) is the universal R-matrix in the representation n�(i) 
 n�(i+1).This representation of the braid groupoid is not irreducible in general. In particular,it has as invariant subspaces the null space of the bilinear form ( ; ), which de�nes asubbundle of our at bundle, invariant under parallel transport.These subspaces aredescribed explicitly in the Appendix.3.7 Locally �nite homologyWe have worked on the spaces Ar rather than on homology groups directly. We nowformulate some conjectures on the relation to homology, and the structure of the corre-sponding locally �nite homology groups. These conjectures follow from the assumptionthat our quantum group action extends to an action on homology, and by applyingthe computations of [FS89a, F90], which are not completely rigorous, to the situationstudied here. As usual, we assume that s distinct points w1; : : : ; ws in the interior ofthe unit circle, s positive integers n1; : : : ; ns, and a complex number q 6= �1; 0; 1 aregiven. If q is a root of unity, we furthermore assume that 1 � ni � p�1, where p is thesmallest positive integer such that q2p = 1. For � small enough, the locally compactspaces X�r � X��r are de�ned as in (86), and we have a local system Lr over X�r.Conjecture 3.15 If q is not a root of unity, the map'r : Ar(w1; : : : ; ws)! H lfr (X�r;X��r ;Lr); (157)is an isomorphism of vector spaces. 41



If q is a root of unity, let ULq (sl2(C )) be Lusztig's version of Uq (sl2(C )) [Lu90], withgenerators H;E;F;Ep=[p]!; F p=[p]!. Let V Ln be the Verma module over the quantumgroup ULq (sl2(C )) with vacuum vector vn, so that Hvn = (n � 1)vn, and Evn =Ep=[p]!vn = 0. There is a canonical Hopf algebra homomorphism Uq (sl2(C )) !ULq (sl2(C )), so that V Ln is also an Uq (sl2(C )) module. For any H-diagonalizableUq (sl2(C )) module M , denote by (M)n the eigenspace of H to the eigenvalue n.Conjecture 3.16 If q is not a root of unity, there are isomorphismsH lfr (X�r ;X��r ;Lr) ��! (Vn1 
 : : :
 Vns)�ni�s�2r; (158)H lfr (X�r;Lr) ��! Ker Ej(Vn1 
 : : :
 Vns)�ni�s�2r: (159)If q is a root of unity, there are isomorphismsH lfr (X�r ;X��r ;Lr) ��! (V Ln1 
 : : :
 V Lns)�ni�s�2r; (160)H lfr (X�r;Lr) ��! Ker Ej(V Ln1 
 : : :
 V Lns)�ni�s�2r: (161)3.8 AppendixWe summarize some known facts about Uq (sl2(C )), following essentially [D86, RT91,Lu90].Fix a non-zero complex number q. Let Uq (sl2(C )) be the algebra with unit over Cwith generators E;F;H, and relations[H;E] = 2E; [H;F ] = �2F; [E;F ] = qH � q�H: (162)We often denoteK2 = qH. Of course qH is not well-de�ned in the algebra, but its actionon modules where H takes integer values is. A more precise de�nition is the following:let Uq (sl2(C )) be the complex algebra with unit with generators E;F;H;K2;K�2 andrelations [H;E] = 2E; [H;F ] = �2F; [E;F ] = K2 �K�2;K2K�2 = K�2K2 = 1; K2H = HK2: (163)Uq (sl2(C )) is a Z-graded algebra, with the assignment deg(E) = �deg(F ) = 1,deg(H) = deg(K�2) = 0. Let Gq be the category of Z-graded left Uq (sl2(C ))-modulesM = �n2ZMn such that:1. For all � 2M there exists an N such that EN� = 0.2. HMn = nMn and K2Mn = qnMn.The degree of homogeneous element of a module in Gq is called weight. Followingcommon usage, we refer to objects in Gq as (Z-graded) Uq (sl2(C ))-modules.Let n be an integer, and q 2 C n f0g. The Verma module Vn is the quotient ofUq (sl2(C )) by the left ideal generated by E;K2�qn�1 and H� (n�1), with left action42



of Uq (sl2(C )). The module Vn is in Gq and is generated by a highest weight vector vn(=image of 1) of weight n� 1. A basis of Vn is given by the vectors F jvn, j = 0; 1; : : : ,and one has the explicit formulaeEF jvn = [j][n� j]q � q�1 F j�1vn; HF jvn = (n� 1� 2j)F jvn: (164)The notation we use here for q-numbers are[j] � [j]q = qj � q�j; "jl#q = [j][j � 1] : : : [j � l + 1][l][l� 1] : : : [1] ;[j]! = [j][j � 1] : : : [2][1]; [0]! = 1: (165)If q is a root of unity we de�ne a number p as the smallest positive integer such thatq = e�ip0=p (166)for some integer p0 > 0. If q is not a root of unity we set p =1.Proposition 3.17 (I) If q is not a root of unity, Vn is irreducible for n � 0. Itcontains a proper submodule SVn generated by the singular vector2 F nvn, if n � 1. Thequotient Vn=SVn is an irreducible n-dimensional representation.(II) If q = e�ip0=p is a root of unity, then Vn contains a proper submodule SVn generatedby the singular vector F �nvn, where 1 � �n � p and �n � n(mod p). The quotient Vn=SVnis irreducible, of dimension �n.The Shapovalov form on Vn is the symmetric bilinear form ( ; ): Vn � Vn ! C ,uniquely characterized by1. (vn; vn) = 1 and2. (E�; �) = (�; F�), (H�; �) = (�;H�); �; � 2 Vn.The null space of ( ; ) is SVn.The action of Uq (sl2(C )) on tensor products of modules in Gq is de�ned by the coas-sociative coproduct 4 : Uq (sl2(C )) ! Uq (sl2(C )) 
 Uq (sl2(C )) de�ned on generatorsas 4(H) = H 
 1 + 1
H; 4(K�2) = K�2 
K�2;4(E) = E 
 1 +K2 
 E; 4(F ) = F 
K�2 + 1 
 F: (167)The action on tensor products with s factors is given by4(s) : Uq (sl2(C )) ! Uq (sl2(C ))
: : : 
 Uq (sl2(C )) with 4(s+1) = (4(s) 
 1)4, 4(2) = 4. The universal R-matrix ofUq (sl2(C )) is the formal seriesR = 1Xk=0 q 12 k(k�1) (q � q�1)k[k]! q 12H
HEk 
 F k: (168)2A singular vector is a vector annihilated by E.43



This series is well de�ned on any tensor product module in Gq since only �nitely manyterms are non-vanishing when R acts on a vector. Also, singular denominators cancel.Let ( ; ) denote the product of Shapovalov forms: ( ; ) : Vn1 
 : : : 
 Vns � Vn1 
: : :
 Vns ! C .Proposition 3.18 Let Ri;i+1 = 1
 : : :
 1
R
 1
 : : :
 1 be the R matrix acting onthe ith and (i+1)'st factor in Vn1
 : : :
Vns and Pi;i+1 the transposition �1
 : : :
�s 7!�1 
 : : :
 �i+1 
 �i 
 : : :
 �s. Then(Ri;i+1�; �) = (�; Pi;i+1Ri;i+1Pi;i+1�) (169)for all �; � 2 Vn1 
 : : :
 Vns.LetWn(Vn1
 : : :
Vns) be the space of singular vectors of weight n�1 in Vn1
 : : :
Vns . The family of vector spaces Wn(V�(n1) 
 : : :
 V�(ns)), � 2 Ss carries an R-matrixrepresentation of the colored braid groupoid B1;::: ;1. As a consequence of Proposition3.18 we haveProposition 3.19 Let Fn(Vn1 
 : : :
 Vns) be the quotient of Wn(Vn1 
 : : : 
 Vns) bythe null space N of ( ; ) restricted to Wn(Vn1 
 : : : 
 Vns). The representation ofB1;::: ;1 on fWn(V�(n1) 
 : : : 
 V�(ns))g�2Ss reduces to a well-de�ned representation onfFn(V�(n1) 
 : : :
 V�(ns))g�2Ss.The subquotient Fn(Vn1 
 : : : 
 Vns) is called the fusion rule subquotient of Vn1 
: : :
 Vns with weight n� 1. It can be characterized more explicitly.Proposition 3.20 Let p � 1 � n1; n2; n � 1. ThenNnn1n2 = dimFn(Vn1 
 Vn2 )= 8<:1 ifjn1 � n2j+ 1 � n � min(n1 + n2 � 1; 2p � n1 � n2 � 1);0 otherwise: (170)Thus, if Nnn1n2 = 1, there is a singular vector in Vn1 
 Vn2 of weight n� 1, which isnot in the null space of ( ; ). Correspondingly we have a homomorphismCnn1;n2 : Vn ! Vn1 
 Vn2 : (171)Suppose in the following that p � 1 � n1; : : : ; ns; n � 1. Introduce the path spaceP nn1 ; : : : ; ns as the space of complex linear combinations of sequences (m1; : : : ;ms�2)of integers in [1; p � 1] such that Nnn1;m1 = Nmi�1nimi = Nms�2ns�1ns = 1, (2 � i � s� 2).Proposition 3.21 The homomorphismP nn1 ;::: ;ns ! Wn(Vn1 
 : : :
 Vns);(m1; : : : ;ms�2) 7! (1 
 : : :
 1 
 Cms�1ns�1ns) : : : (1
 Cm1n2m2)Cnn1m1vn; (172)composed with the canonical projection Wn ! Fn, gives an isomorphismP nn1 ;::: ;ns ��! Fn(Vn1 
 : : :
 Vns): (173)44



The proofs of the last two propositions can be extracted from [FK93], noticing thatsince the vectors of the form �1 
 : : :
 �s with some �j 2 SVnj are in the null space of( ; ), we can replace everywhere Vn by the irreducible quotient Vn=SVn.4 Fock Space Representations of A(1)1 and Topolog-ical Representations of Uq (sl2(C ))We apply the topological representations of Uq (sl2(C )) to the Fock space representa-tions of the untwisted a�ne Kac-Moody algebra A(1)1 . We show how singular vectorsin quantum group Verma modules determine Fock space representations of BRST op-erators, primary �elds, and conformal blocks.4.1 Fock Space Representations of A(1)1Let us recall the basic facts about Fock space representations of A(1)1 . The algebra A(1)1is generated by Jan , a 2 f+;�; 0g and n 2Z, and a central element K with relations[J0n; J�m] = �J�n+m; [J0n; J0m] = n2 �n;�mK;[J+n ; J�m] = 2J0n+m + n�n;�mK; [K;Jan] = 0; (174)supplemented by a derivation d satisfying[d; Jan] = �nJan; [d;K] = 0: (175)Following [Wa86, BF90, FF89], we then require a bosonic !�!+ system together witha free bosonic �eld �. Let �1 be the algebra generated by !n and !+n , n 2 Z, withrelations [!n; !+m] = �n;�m; [!n; !m] = [!+; !+m] = 0: (176)Furthermore, we require a Fock space F 1 with vacuum vector v1 such that, for 0 � n,!n+1v1 = !+n v1 = 0: (177)Let �2 be the algebra generated by an, n 2 Z, with relations[an; am] = n�n;�m; (178)and F 2J;k the Fock space of charge J=, where  = qk+22 , generated from a vacuumvector v2J;k satisfying, for 0 � n, anv2J;k = J �n;0v2J;k: (179)45



Then de�ne � = �1 
 �2 and FJ;k = F 1 
 F 2J;k. This tensor product of Fock spacescomes equipped with the structure of a highest weight module over A(1)1 at level kthrough the following construction due to [Wa86]. Let us introduce �eld operators!(z) = 1Xn=�1 !nz�n; !+(z) = 1Xn=�1 !+n z�n�1; (180)j(z) = 1Xn=�1 anz�n�1; (181)and �(z) such that j(z) = i@�(z). In terms of these we can compose currentsJ+(z) = !+(z)
 id; (182)J0(z) =: !(z)!+(z) : 
id+  id
 j(z); (183)J�(z) = � �: !(z)2!+(z) : +k @!(z)�
 id� 2 !(z)
 j(z): (184)Then it can be shown that the coe�cients of the developmentsJa(z) = 1X�1 Janz�n�1 (185)satisfy the relations (174). The free �eld stress energy tensorT (z) = � : @!(z)!+(z) : 
id+ 12 id
  : j(z)2 : �1@j(z)! (186)agrees with the Sugawara form. Expanding, as usual,T (z) = 1Xn=�1 Lnz�n�2 (187)FJ;k also becomes a highest weight module over the Virasoro algebra Vir with centralcharge c = 3k=(k + 2). The generators of A(1)1 have the explicit formJ+n = !+n 
 id; (188)J0n = 1Xm=�1 : !m!+n�m : 
id+  
 an; (189)J�n = �0@ 1Xm;l=�1 : !m!n!+n�m�l : �kn!n1A
 id� 2 1Xm=�1 !m 
 an�m: (190)The generators with n = 0 generate an sl2 subalgebra. FJ;k is, in particular, a moduleover sl2. The vacuum is also an sl2 highest weight vector withJ+0 vJ;k = 0; J00vJ;k = JvJ;k: (191)46



As an sl2-module, FJ;k thus contains a highest weight representation with spin J gen-erated from the vacuum. This representation is irreducible since (J�0 )2J+1 = 0. Thebasic objects in the following constructions are vertex operators, which we take to bede�ned as VI;k(z) =exp I b0! exp I ln(z)a0! exp I 1Xn=1 a�n znn ! exp �I 1Xn=1 an z�nn ! : (192)Here [an; b0] = �n;0 and we have an operator from F 2J;k to F 2J+I;k. To be precise,VJ;k(z) =: exp(i I�(z)) : de�nes a bilinear form on (F 2J+K;k)� 
 F 2J;k (restricted dual).Finally let VI;k(z) = ~VI;k(z)zI�1a0; (193)splitting o� the factor which depends on the zero mode of j(z).4.2 IntertwinersAs a �rst application of the topological representations, we construct operators map-ping one Fock space to another which intertwine the representations of A(1)1 and, con-sequently, Vir. As a basic ingredience, introduceV �(z) = !+(z)
 V�1;k(z) ; (194)the screening operator. V �(z) maps FJ;k to FJ�1;k. Its operator product expansionwith the stress-energy tensor (186) is given byT (z)V �(w) = 1(z � w)2V �(w) + 1z � w @@wV �(w) +O(1) ; (195)where O(1) sums up regular terms. It shows that V � has conformal weight 1. Theoperator product expansions of V � with the currents have the formJ+(z)V �(w) = O(1); (196)J�(z)V �(w) = 22 @@wn 1z � wid
 V�1;k(w)o; (197)J0(z)V �(w) = O(1): (198)They follow from basic operator product expansions of the free �eld, diverging termscancelling each other neatly. Due to the total derivative, V �(z) does not intertwinethe action of A(1)1 on FJ;k with that on FJ�1;k. To produce intertwiners we have to47



integrate products of screening operators. This givesQRC = ZC V �(z1) : : : V �(zR) dz1 : : : dzR= ZC : V �(z1) : : : V �(zR) : Y1�i<j�R(zi � zj)�2 dz1 : : : dzR= ZC : ~V �(z1) : : : ~V �(zR) : RYi=1 z��1a0i Y1�i<j�R(zi � zj)�2 dz1 : : : dzR ; (199)a map from FJ;k to FJ�R;k.Taking matrix elements, these integrals give rise to topological representations ofUq (sl2(C )) at q = exp( �i22 ), possibly a root of 1. LetXR(0) = (Dnf0g)Rn[1�i�j�Rfzi =zjg=SR be the con�guration space of R indistinguishable screening charges in the discD = fjzj � 1g, punctured at 0. Fix a point p� on the boundary of D, e.g., p� = �1.Let LR be the local system determined by the multi valued form on XR, obtained byevaluating the integrand on Fock vacua. Note that di�erent values of J yield di�erentLR.Let AR(0) be the space of linear combinations of families � of non-intersectingloops in XR based at p� together with sections of ��LR modulo equivalence relationsreecting the possibility to homotopically deform or reparametrize �. Let Ê : AR(0)!AR�1(0), F̂ : AR(0) ! AR+1(0), and K̂2 : AR(0) ! AR(0) be the topological opera-tors introduced above. They satisfy the Uq (sl2(C )) relations. Ê is the combinatorialboundary operator composed with a map which identi�es (R � 1)-chains in XR with(R � 1)-chains in XR�1. We have shown thatK̂2Ê = q2ÊK̂2; K̂2F̂ = q�2F̂ K̂2; [Ê; F̂ ] = K̂2 � K̂�2; (200)endowing L1R=0AR(0) with the structure of a module over the quantum group algebraUq (sl2(C )). In the application we have in mind, qp = 1. In this case, Êp = 0 andK̂4p = 1. This is proved by an explicit computation using a basis to describe AR(0; w)as a space. Families of loops which contain p homotopic deformations of a single looprepresent null homologous cycles. To prove this one retracts the p loops to p pointson a single loop path ordering the arguments. The prefactor from the path orderingvanishes. This can be taken into account by adding another relation in the de�nition ofthe space AR(0). This relation puts families of loops which contain p homotopic loopsequivalent to the null family. As a consequence, then also F̂ p = 0. Using a generalizedversion of Poincare duality this could possibly be understood in terms of the kernelof the topological intersection pairing. For q a root of unity the conclusion is that we�nd a representation of the reduced quantum group algebra U redq (sl2(C )), the algebraobtained from Uq (sl2(C )) dividing by the ideal generated by the central elements Ep,F p, and K4p�1. Let us only consider this case in the following. For a detailed accounton U redq (sl2(C )) and its representation theory we recommend [FK93].As a quantum group module,Lp�1R=0AR(0) is isomorphic to the U redq (sl2(C )) Verma48



module V (n), n = 2J + 1, generated from a singular vector v0(n) such thatEv0(n) = 0 ; K2v0(n) = qn�1v0(n) : (201)Let ' :Lp�1R=0AR(0)! V (n) be the isomorphism. For 0 � R � p� 1, we de�ne weightspaces V (n)R = CFRv0(n). K2 acts on V (n)R by multiplication with qn�1�2R.Restricting our attention to the most interesting case, let 22 = k + 2 = p be apositive integer and let n 2 Z. The BRST construction of [BF90, FF89] then producesunitary integrable irreducible highest weight representations of A(1)1 with 1 � n � p�1,n = 2J + 1, on the homology. Here we work directly with the representations on theFock spaces.Theorem 4.1 (I) Consider Q(R) as a map from V (n) to the space of linear operatorsHomC(FJ;k; FJ�R;k). ThenQ(R) : ker (E : V (n)R ! V (n)R�1)! HomA(1)1 (FJ;k; FJ�R) (202)maps to the space of A(1)1 intertwiners. (II) Let n = 2J + 1 and �n = nmod, 0 � �n �p � 1. For �n = 0, ker(E) = Cv0(n): (203)For 1 � �n � p� 1, ker(E) = Cv0(n) �CF �nv0(n): (204)(III) For 1 � �n � p� 1, the only non-vanishing intertwiner besides the identity is Q(R)Cwith R = �n and C = '�1(F �nv0(n)), unique up to a normalization constant.Thus the structure of singular vectors in Uq (sl2(C ))-Verma modules, in our case aroot of 1, provides all data needed to decide wether intertwiners exist and, furthermore,gives explicit formulas for them.Corollary 4.2 (I) For n = 2J+1, let Fn = FJ;k. For 1 � �n � p�1, the non-vanishingintertwiners form an in�nite sequence� � � ! F2p��n Q(p��n)! F�n Q(�n)! F��n ! : : : (205)(II) This sequence is a complex.The homology of this complex is isomorphic to the irreducible A(1)1 highest weightmodule of weight J and level k. Further intertwiners can be constructed out of cy-cles with np path ordered arguments, n 2 f1; 2; : : : g. They correspond to powersof generators F p[p]!�1 in Lusztig's version of Uq (sl2(C )). They can be used to con-struct complexes whose homology gives non-integrable A(1)1 modules [BMP90]. Here[n] = qn � q�n and [n]! = [1] : : : [n]. 49



4.3 Chiral Primary FieldsThe second application of topological representations concerns the construction of chi-ral primary �elds �KJ;I(w) : FJ;k 
 ~UI ! FK;k. ~UI is a representation of A(1)1 at level 0to be de�ned below. Consider operators I;�(z) =: !(z)I�� : 
VI;k(z); (206)mapping FJ;k to FJ+I;k. The operator product expansion with T (z)T (z) I;�(w) = I(I + 1)=(22)(z �w)2  I;�(w) + 1z � w@ I;�(w) +O(1) (207)shows that  I;�(z) has conformal weight hI = I(I + 1)=(22). The operator productexpansion with the current Ja(z) has the formJa(z) I;k(w) = 1z �w IX�=�I  I;�(w)D(I)�;�(Ja) +O(1): (208)D(I)(Ja) is a spin I representation matrix of sl2. For u 2 UI , the representation spaceof the representation D(I), de�ne I(u;w) = IX�=�I  I;�(w)u�: (209)The operator product expansion implies that[Jan;  I(u;w)] =  �D(I)(Ja)u;w�wn: (210)With these preparations in mind let us consider the operators�I;�(w)(R)C = ZC  I;�(w)V �(z1) : : : V �(zR)dz1 : : : dzR (211)from FJ;k to FK;k with K = J + I �R. Using Wick's theorem: !(w)I�� : RYi=1!+(zi) = minfI��;RgX�=0 C(I � �; �) XI � f1; : : : ; RgjIj = �: !(w)I�R��+� Yi2I !+(zi) : Yi2f1;:::;RgnI(z � w)�1 (212)50



we normal order the integrand. C(I � �; �) is a combinatorial factor counting thenumber of contractions. The result is�I;�(w)(R)C = ZC dz1 : : : dzR minfI��;RgX�=0 C(I � �; �) XI � f1; : : : ; RgjIj = �: !(w)I�R��+� Yi2I !+(zi) : 
 : ~VI;k(w) ~V�1;k(z1) : : : ~V�1;k(zR) : wI�1a0RYi=1 z��1a0 Yi2f1;:::;RgnI(w � zi)�1 RYi=1(w � zi)�I�2 Y1�i<j�R(zi � zj)�2 : (213)The chain C is taken to be an element of AR(0; w). The local system LR(0; w) involvedin the de�nition of AR(0; w) is determined by the monodromy of the multi valued R-form obtained by evaluating the integrand on Fock vacua. As a Uq (sl2(C ))-module,the space L2p�2R=0 AR(0; w) has been shown to be isomorphic to the tensor product ofVerma modules V (n)
 V (m). Let (V (n)
 V (m))R be the weight space on which K2acts by multiplication with qn+m�2�2R.Lemma 4.3 Consider �I(w)(R) as a map from V (n) 
 V (m) to the space of bilinearoperators HomC (FJ;k 
 UI ; FK;k) with K = J + I � R. Here UI is the sl2 representa-tion space. For '(C) 2 ker�E : (V (n)
 V (m))R ! (V (n)
 V (m))R�1�, we �nd thecommutation relation [Jan; �I(u;w)(R)C ] = �I �D(I)(Ja)u;w�(R)C wn: (214)For C a chain, which represents an absolute cycle in homology, we obtain a chiralprimary �eld. Its construction goes as follows. Expanding�I(u;w)(R)C = 1Xn=�1 �I;n(u)(R)C w�n+hK�hI�hJ (215)it follows that [Jam; �I;n(u)(R)C ] = �I;m+n �D(I)(Ja)u�(R)C : (216)Let ~UI = UI 
 w�hK+hI+hJC [w;w�1 ] (217)be the A(1)1 -module with Jan acting as D(I)(Ja) 
 wn, d as w@=(@w), and K as zero.Then � 
 �u
 wn�hK+hI+hJ�! �I;n(u)(R)C � (218)51



de�nes a map from FJ;k 
 ~UI to FK;k. To be precise, for u 2 UI ,�I(u;w)(R)C 2 HomC(FJ;k; FK;k)
 w�hK+hJ+hIC (w;w�1); (219)is a formal power series in w whose coe�cients are linear operators from the Fock spaceFJ;k to the Fock space FK;k. For u
 � 2 ~UI , we obtain a well de�ned operator through�I(u
 �)(R)C = 12� I �I(u;w)(R)C �(w)dw: (220)Here C is moved with w through the Gauss-Manin connection on C n f0g. That is, weassociate operators to Laurent polynomials �. This map is an A(1)1 homomorphism.Theorem 4.4 Consider �(R)I as a map from (V (n)
 V (m))R to the space of bilinearoperators HomC(FJ;k 
 ~UI ; FK;k) with K = J + I �R. Then�(R)I : ker�E : (V (n)
 V (m))R ! (V (n)
 V (m))R�1�! HomA(1)1 (FJ;k 
 ~UI ; FK;k)(221)maps to the space of A(1)1 -intertviners.The general decomposition of the tensor product of Verma modules V (n)
 V (m),which contains among other things the structure of singular vectors, has been carriedout in [FK93]. For the sake of brevity, it cannot be reproduced here. Let us onlymention the following partial results.Proposition 4.5 Let n = 2J + 1, m = 2I + 1, 1 � n;m � p � 1, and 0 � R < n;m.Then ker �E : (V (n)
 V (m))R ! (V (n)
 V (m))R�1� =C  RXl=0 xlFR�lv0(n)
 F lv0(m)! (222)with xl, 0 � l � R, determined by x0 = 1 and the recursion relation[R� l]q[n�R+ l]qxl + qn�1�2(R�l�1)[l+ 1]q[n� l� 1]qxl+1 = 0; (223)where [x]q = qx � q�x.The intertwiner corresponding to this cycle is denoted by �KJ;I(u 
 �) with K =J + I � R. It is unique up to a normalization constant which can be �xed as followsusing the three point functionhvK;k;�; �KJ;I(e�;w)vJ;k;�i = whK�hI�hJNKJ;I " K� J� I� # ; (224)involving a (classical) sl2 Clebsch-Gordan coe�cient and the fusion coe�cient NKJ;I .The three point function is conveniently normalized such that the fusion coe�cienttakes the values 0 or 1. �KJ;I(u 
 �) is the chiral primary �eld in the Fock spacerepresentation. 52



Proposition 4.6 Let n = 2J + 1, m = 2I + 1, and l = 2K + 1 be such that 1 �n;m; l � p � 1. De�ne a triple  KJ I ! to be admissible if jI � J j � K � I + J ,I +J +K 2 Z, and I+J +K � p� 2. Then the chiral primary �eld has the followingproperties: (I) For  KJ I ! not admissible, NKJ;I = 0. (II) For  KJ I ! admissible,NKJ;I = 1.The quantum group data encoded in the fusion rules of �KJ;I(w) is here inheritedfrom the representation V (n)
V (m). The most important property of �KJ;I(w) is BRSTinvariance. It is a necessary condition to proceed through the BRST construction. Letus mention that BRST invariance also has a cohomological meaning on the quantumgroup level.Conformal blocks are vacuum expectation values of products of chiral primary �elds.A product �Js+1Js;Is(us 
 �s) : : : �J3J2;I2(u2 
 �2)�J2J1;I1(u1 
 �1) (225)de�nes an element of HomA(1)1 (FJ1;k 
 ~UI1 
 � � � 
 ~UIs; FJs+1;k): (226)Using (213), such operators can be expressed in terms of free �elds. Products of ex-pressions of the form (213) are well de�ned (as absolutely convergent matrix prod-uct) and give rise to elements of (226) when integrated as in (220), provided thetime ordering condition is satis�ed. This condition states that : U1(z1) : : : Up(zp) :�:Up+1(z01) : : : Up+q(z0q) : is well de�ned whenever jzij � jz0jj for all i; j. Here Ui standsfor !; !+ or a vertex operator. This condition gives the cycle C of integration forthe expression (45) as a product of nested cycles CJi+1Ji;Ii used to integrate the factors.The resulting cycle is identi�ed with a singular vector of V (m0) 
 � � � 
 V (ms), withmi = 2Ji + 1, I0 = J1, in the topological representation space. Algebraically, the ex-pression of C in terms of CJi+1Ji;Ii is understood as follows: Identify CJi+1Ji;Ii with an elementof kerj(V (ni)
:::V (mi))Ri �= HomUq(sl2) (V (ni+1); V (ni)
 V (mi)) (227)where mi = 2Ji + 1 and Ri = Ii + Ji � Ji+1. ThenC = �CJ2J1;I1 
 1 
 � � � 
 1� : : :�CJsJs�1;Is�1 
 1�CJs+1Js;Is (228)2 HomUq(sl2)(V (ns+1); V (m0)
 V (m1) 
 � � � 
 V (ms))= kerEj(NV (mi))PRi :These quantum group intertwiners and path spaces have been investigated in [FK93].53



5 Generalized Hypergeometric Functions on the Torusand the Adjoint Representation of Uq (sl2(C ))We study the homology groups with coe�cient in local systems arising in the free�eld representation of minimal models of conformal �eld theory on an elliptic curvewith punctures. We de�ne an action of the quantum enveloping algebra Uq (sl2(C ))on a space of relative cycles, extending the results obtained previously for the sphere.Absolute cycles are identi�ed with singular vectors. In the case of one puncture, we �ndthat the resulting topological representation is essentially the adjoint representation.5.1 IntroductionThe studies [La90, FW91, SV90] indicate that there exists a dictionary between homol-ogy of certain con�guration spaces with coe�cients in local systems and representationtheory of quantum enveloping algebras [D86]. The examples of local systems providingsuch connections come from integral representation of conformal blocks of conformal�eld theory [BPZ84, DF84, GN84, ZF86, M90, CF87, FGK91]. The idea is that (insome sense) the charges generating (half of) the quantum group symmetry in the free�eld representation in conformal �eld theory are given by integrals over screening op-erators [PS90, BMP90, GP89, GS90]. In the previous chapter [FW91], we have shownthe existence of an action of Uq (sl2(C )) on certain relative locally �nite homologygroups on con�guration spaces on the sphere. In this case, the local system is given bythe integrand of the free �eld representation of conformal blocks of the SU(2) WZWmodels or minimal models.In this chapter, we consider the situation of the torus, for which one knows explicitintegral representations [F89, BF90, FG92]. We restrict our attention to the case ofminimal models, which is the simplest. The main di�erence is that the local systemis not given by a line bundle as in the case of the sphere, but rather a vector bundle.From the point of view of free �elds, this follows from the fact that the space of free�eld conformal blocks on the torus is higher dimensional.We �nd again an action of the quantum enveloping algebra of sl2(C ) on relativecycles, in such a way that absolute cycles are identi�ed with singular vectors, as in thecase of the sphere. The resulting representation is a tensor product of Verma moduleswith Uq (sl2(C )) with the adjoint action. We hope that this work will lead to a clearerunderstanding of the role of quantum groups for higher genus Riemann surfaces.
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5.2 Generalized Hypergeometric Functions on the TorusIn the free �eld representation of minimal models with central charge c = 1 � 6(p0 �p)2=(pp0) on the torus C =Z+ �Zone is led to consider integrals of the formGC(z1; : : : ; zsj� ) =2p0p�1X�=0 �� ZC� dzs+1 ^ � � � ^ dzs+r+r0 ��(W j� ) Y1�i<j�s+r+r0 E(zi; zjj� )�i�j ; (229)where �i = 8>><>>:�n0ini ; 1 � i � s;�1;�1; s+ 1 � i � s+ r;��1;1; s+ r + 1 � i � s+ r + r0; (230)�m0 ;m = (1 �m)p0 � (1 �m0)pp2p0p ; (231)parametrize the exponents, �� = ��1;�1 belonging to integrated screening variables,and ��(W j� ) = 1�(� ) exp( �i2p0p�(2W + ��)) �3(W + ��j2p0p� ); (232)W = q2p0p s+r+r0Xi=1 �izi; (233)E(zi; zjj� ) = 2�i�1(zi � zjj� )�01(0j� ) ; (234)with �(� ) = e�i�=12 1Yn=1(1� e2�i�n); (235)�3(zj� ) = 1Xn=�1 e2�izn��i�n2 ; (236)�1(zj� ) = � 1Xn=�1 e2�i(z+ 12 )(n+ 12 )��i�(n+ 12 )2; (237)the Dedekind eta function and the Jacobi theta functions. The values of the exponentsare constrained to satisfysXi=1(1� ni) + 2r = xp; sXi=1(1� n0i) + 2r0 = xp0; (238)for some integer x, reecting charge conservation. In the following we restrict ourattention to the case when r0 = 0 and n01 = � � � = n0s = 1, admitting �+ screening55



charges only. That is, we assume that�i = 8><>: (1�ni)p0p2p0p ; 1 � i � s;2p0p2p0p s+ 1 � i � s+ r; (239)with the neutrality condition s+rXi=1 �i = 0: (240)When studying integrals of this form, one is entering the following kind of problems.To begin with, assume that �1 = � � � = �n1 , �n1+1 = � � � = �n1+n2 , : : : , �n1+���+nk�1+1 =� � � = �n1+���+nk , for some k and (n1; : : : ; nk) 2 f1; 2; : : : gk, such that n1+� � �+nk�1 = sand nk = r. Let � = C =Z+ �Zbe the torus with modular parameter � . Then we havea vector of multivalued forms with components!�(z1; : : : ; zsjzs+1; : : : ; zs+rj� ) =��(W j� )� Y1�i<j�s+r E(zi; zjj� )�i�j dzs+1 ^ � � � ^ dzs+r; (241)on the con�guration spaceXn = (�s+r n [i<jfzi = zjg)=(Sn1 � � � � � Snk): (242)Since ��+2p0p(W j� ) = ��(W j� ), we can restrict � to the range 0 � � � 2p0p�1. Otherproperties of ��(W j� ) are summarized in Appendix A.We will often use the identi�cation � 7! (m;m0), � = m0p�mp0, of Z=(2pp0Z) withZ2=�, where � is the lattice generated by (p; p0) and (2p; 0).Let n0 = (n1; : : : ; nk�1) andXn0 = (�s n [i<jfzi = zjg)=(Sn1 � � � � � Snk�1): (243)The projection p : Xn ! Xn0 on the �rst n variables is a �bration with �bersXr(z1; � � � ; zs) = p�1(z1; : : : ; zs): (244)These are con�guration spaces of r indistinguishable particles on the punctured torus� n fz1; : : : ; zsg. Fix � and (z1; : : : ; zs) 2 Xn0 to obtain a vector (241) of multi-valuedr-forms on (244). The positions z1; : : : ; zs, which are presently kept �xed, should notbe confused with the positions of the screening charges zs+1; : : : ; zs+r. Let us suppressthe dependence on the former and the modular parameter in our notation. The r-forms(241) are multivalued on Xr, single valued on the universal covering space ~Xr(�) withbase point �, and de�ne a (2p0p)-dimensional representation � of �1(Xr; �) through���(!�) = 2p0p�1X�=0 !� ���(�); � 2 �1(Xr; �); (245)56



with ��(x) = x� the right action of the fundamental group on the universal coveringspace. The representation matrices can be computed by analytic continuation. Let c�,� = 0; : : : ; 2p0p�1, be singular r-chains in the universal covering space. The equivalencerelation ��(c�) �P� ���c� is compatible with the pairing< !; c >= 2p0p�1X�=0 Zc� !�: (246)In other words we can view c as a singular r-chain with coe�cients in the space of localhorizontal sections of the vector bundle of rank 2p0pLr = ~Xr(�)� C 2p0p= �; (x�; v) � (x; �(�)v): (247)We thus need to examine the singular homology group H lfr (Xr; Lr) with coe�cients inthe local system associated to the representation � of �1(Xr; �). As a support conditionwe will require that the chains are locally �nite (lf), [DM86, ES52, BM60], possiblyin�nite linear combinations of simplices, on X�r = f(w1; : : : ; wr) 2 Xrj jwi � zjj � �g.Elements of H lfr (Xr; Lr) produce, when paired with (241) a generalized hypergeometricfunction on the torus (provided the integral is convergent).5.3 Local Systems over Con�guration Spaces on the Torus5.3.1 Braid Group on the TorusLet T = S1 � S1, n 2 f1; 2; : : : g, and de�neCn(T ) = (T n n [i<jfxi = xjg)=Sn; (248)the con�guration space of n indistinguishable particles on the torus. Here Sn denotesthe symmetric group acting as �(x1; : : : ; xn) = (x��1(1); : : : ; x��1(n)). LetBn(T; �) = �1(Cn(T ); �); (249)be the braid group on the torus. A convenient choice of base point is� = [( 1N ; 1N ); : : : ( nN ; nN )] (250)for some N > n. For 1 � i � n, de�ne elements �i; �i 2 Bn(T; �) as represented bythe paths [0; 1]! Cn(T ),�i(t) = [: : : ; ( iN + t; iN ); : : : ]; �i(t) = [: : : ; ( iN ; iN + t); : : : ]; (251)57



moving the particle in position i along an A� and B�cycle, respectively. For 1 � i �n � 1, de�ne elements �i 2 Bn(T; �) as represented by�i = [: : : ; xi(t); xi+1(t); : : : ];xi(t) = 12N (2i+ 1; 2i+ 1) � 1p2N�(t);xi+1(t) = 12N (2i+ 1; 2i+ 1) + 1p2N�(t);�(t) = (cos(2�t� �4 ); sin(2�t� �4 )); (252)implementing a counter clockwise exchange of the particle in position i with that inposition i+ 1. It is convenient also to introduce the abbreviations� = �1 � � � �n�1�n; � = �n; (253)in terms of which�i = ��1i�1 � � � ��11 ��n�1 � � � �i; �i = ��1i � � ���1n�1���1n�1 � � ���1i : (254)The group Bn(T; �) is generated by �, �, and �i, 1 � i � n�1. A detailed investigationof Bn(T; �) can be found in [Bi69, S70, Cr93].5.3.2 Coloured Braid Groupoid and Local SystemLet n = (n1; : : : ; nk) 2 f1; 2; : : : gk, jnj = n1 + � � �+ nk, and de�neCn(T ) = (T jnj n [i<jfxi = xjg)=(Sn1 � � � � � Snk ); (255)the con�guration space of particles with colours f1; : : : ; kg, identically coloured parti-cles being indistinguishable. Let � 2 Cn(T ) be the base point (250). The orbit of � un-der the action of Sjnj can be identi�ed with the right coset space In = Sn=Sn1�� � ��Snk .An element [�] 2 In can in turn be described by a colour map �� : f1; : : : ; jnjg !f1; : : : ; kg. For [�], [�] 2 In, let B��;��jnj (T; �) be the space of paths starting in �� andending in ��, up to homotopies preserving the end points. De�neBn(T; �) = [[�];[�]2InB��;��jnj (T; �); (256)the coloured braid groupoid on the torus. Multiplication is composition of paths. Inparticular, B �id; �idjnj (T; �) = �1(Cn(T ); �). The coloured braid groupoid Bn(T; �) can bedescribed in terms of the braid group Bn(T; �). Let  : Bn(T; �)! Sjnj be the canonicalhomomorphism. There exist one-to-one maps��;� : fg 2 Bjnj(T; �)j[�] = [ (g)�]g ! B��;��n (T; �); (257)having the property ��;�(g0)��;�(g) = ��;�(g0g): (258)58



Using this, we can write down generators for Bn(T; �). The generators are�[�] = ���;�(�); �[�] = ��;�(�);�[�]i = �� i�;�(�i); 1 � i � jnj � 1: (259)� is the cyclic permutation �(i) = i + 1 mod jnj and �i is the ith transposition. Arepresentation of Bn(T; �) on a family of �nite dimensional vector spaces V�� indexedby [�] 2 In, is a family of maps��;� : B��;��n (T; �)! Hom�(V��; V��); (260)from Bn(T; �) to [[�];[�]2InHom�(V��; V��), the groupoid of invertible linear mappingsbetween the vector spaces V��, satisfying the representation property3��;�(g0)��;�(g) = ��;�(g0g): (261)The dimension of a representation � is d = dim(V��). A d-dimensional representa-tion � of Bn(T; �) de�nes a at rank d vector bundle over Cn(T ) with distinguishedtrivializations over the points ��, [�] 2 In.The representation �, restricted to �1(Cn(T ); �), gives a at vector bundle ~Cn(T )��1V �id. It comes with an identi�cation of the �ber over � with V �id. The identi�cation ofthe �ber over �� with V�� is uniquely given by the condition that the parallel transportalong any path � from � to �� is � �id;��(�)To do explicit calculations, it is convenient to introduce local trivializations of Lr.De�ne cells labeled by elements of In:Cn;�(T ) = f[x1; : : : ; xjnj] 2 Cn(T )j0 < x1�(1) < � � � < x1�(jnj) < 1; 0 < x2i < 1g: (262)The union of the closures of these cells is Cn(T ), and every cell contains precisely one ofthe points in the Sjnj orbit of �. Since cells are contractible, we have an identi�cationof the restriction of Lr to Cn;��(T ) with the trivial at bundle Cn;��(T ) � V��. Thistrivialization will be used often below.5.3.3 Torus with puncturesLet n0 = (n1; : : : ; nk�1), s = jn0j, and r = nk. The projection p : Cn(T ) ! Cn0(T ) onthe �rst s variables is a �bration with �bresCr(T n fx1; : : : ; xsg) = p�1(x1; : : : ; xs): (263)Note that Cr(T n fx1; : : : ; xsg) is the con�guration space of r indistinguishable particleson T nfx1; : : : ; xsg, the punctured torus. Choose a base point � = [x1; : : : ; xs] 2 Cn;id(T )3In the language of categories, Bn(T; �) is the set of morphisms of a category whose objects areelements of In. A representation is a functor to the category of �nite dimensional vector spaces.59



and let � = [xs+1; : : : ; xs+r] be the base point of Cr(T n fx1; : : : ; xsg). ThenBn0;r(T; �) =�1(Cr(T n fx1; : : : ; xsg); �) is a subgroupoid of Bn(T; �), and we have a homomorphismBn0 ;r(T; �) ! Bn(T; �). The at vector bundle corresponding to the pull back of arepresentation � is just the restriction to Cr(T n fx1; : : : ; xsg) of the at vector bundleover Cn(T ) associated to �.5.4 Topological Representations of Uq (sl2(C ))5.5 Local system from multivalued formsThe multipliers of the multivalued r-forms upon analytic continuation de�ne a par-ticular representation of the coloured braid groupoid. This representation de�nes inturn a local system over the con�guration space. The singular homology groups weinvestigate have coe�cients in this local system.Recall the basic data which we start from: n = (n1; : : : ; nk) 2 f1; 2; : : : gk, jnj =s+ r, nk = r, and (�(1); : : : ; �(k)) 2 Qk, �(k) = �+ such that Pkj=1 nk�(k) = 0. Then�i = �( �id(i)). Remember that �� : f1; : : : ; s+ rg ! f1; : : : ; kg denotes the colour mapassociated with [�] 2 In. Given these data, we considerf�� (z1; : : : ; zs+rj� ) = ��(q2p0p s+rXi=1 �izij� ) Y1�i<j�s+r E(zi; zj)�i�j ; (264)0 � � � 2p0p � 1. Fix the modular parameter � . Then f� = (f�� )0���2p0p�1 is amultivalued analytic function on the con�guration space Cn(�) with values in C 2p0p.Let � : T ! �, �(x1; x2) = x1+�x2, to obtain a di�eomorphism � : Cn(T )! Cn(�).De�ne fT = ��f�. Fix a base point � = [x1; : : : ; xs+r] in Yn := Cn(T ) such that0 < x11 < � � � < x1s+r < 1. For [�] 2 In, let fT;�� be the single-valued functionon the universal covering space ~Yn(��) with values in C 2p0p, de�ned as the analyticcontinuation of fT from the base point �� where it takes the value fT;��(��) = fT;�id(�).An element g 2 B��;��n (T; �) induces a map �g : ~Yn(��) ! ~Yn(��) through �g(x) = xg.The point xg is represented by a path from �� to ��, composed with a path from ��to p(x), p : ~Yn(��)! Yn being the covering projection. Then��g(fT;��� ) = 2p0p�1X�=0 fT;��� M ��;���;� (g) (265)de�nes a (2p0p)-dimensional representation of Bn(T; �) on V�� = C 2p0p. An explicitcalculation by analytic continuation yieldsM ��;���;� (�[�]) = ��;� exp(2�i�(��(s+ r))p2p0p �) ; (266)M ��;���;� (�[�]) = ��;�+p2p0p�(��(s+r)) expn��i�(��(s+ r))2o ; (267)M �i�;���;� (�[�]i ) = ��;� exp f�i�(��(i))�(��(i+ 1))g : (268)60



If �(��(s+ r)) = �+ is a screening charge, it follows thatM ��;���;� (�[�]) = ��;� exp(2�i�p) ; (269)M ��;���;� (�[�]) = ��;�+2p0 exp(�2�ip0p ) : (270)These matrices deserve an abbreviation since they will occur frequently below. Letq = exp(�ip0=p) and A�;� = ��;� q2 �p0 ; B�;� = ��;�+2p0 q�2: (271)with the convention q1=p0 = exp(�i=p). If �(��(i)) = (1� n(��(i)))p0=p2p0p and �(��(i+1)) = �+, it follows that M �i�;���;� (�[�]i ) = ��;� q1�n(��(i)): (272)If �(��(i)) = �(��(i+ 1)) = �+, this representation matrix takes the formM �i�;���;� (�[�]i ) = ��;� q2: (273)completing the description of the representation of Bn(T; �) associated with the mul-tipliers of fT .Let n0 = (n1; : : : ; nk�1), jn0j = s, p : Cn(T ) ! Cn0(T ), and Cr(T n fx1; : : : ; xsg) =p�1(x1; : : : ; xs). In the following, [x1; : : : ; xs] will be �xed as above. Pulling back theabove representation of Bn(T; �) with the homomorphism Bn0 ;r(T; �) ! Bn(T; �), weobtain a representation of Bn0;r(T; �). We take the tensor product of this representationwith the pull-back of the totally antisymmetric representation of Sr by the canonicalhomomorphism Bn0;r(T; �) ! Sr. The result is the representation, denoted by �,associated with the multi-valued r-forms (241). This representation induces a localsystem (at vector bundle) � : Lr(x1; : : : ; xs)! Cr(T n fx1; : : : ; xsg).Let � > 0 be a small number,D�i the open disc of radius � centered at xi, i = 1; : : : ; s,Y � = T n ([si=1Di). Denote by Y �r the con�guration space Cr(Y �) of r indistinguishablepoints on Y �. Thus elements of Y �r are subsets Z � Y � of cardinality r. Fix points y�,y+ 2 @D�1 such that y1+ < x1 < y1�, and de�ne Y ��r = fZ 2 Yrjy� 2 Zg. The bijections�� : Y �r n Y ��r ! Y ��r+1; Z 7! Z [ fy�g (274)lift to isomorphisms �� : LrjY �r nY ��r ! Lr+1jY ��r+1. The lift is of course not unique. To�x it it is su�cient to de�ne the isomorphism from the �ber of the base point to the�ber of its image. We de�ne it to be the identity map in the distinguished trivializationintroduced above. 61



5.6 Families of Loops and OperatorsWe generalize the previous construction on the sphere to the torus. To make thischapter self-contained we briey recall the notion of families of loops and topologicaloperators with quantum group relations, adapted to the torus. Let [x1; : : : ; xs] 2Cn0 ;id(T ), � > 0, Y �r = Cr(Y �), and y� 2 @Y � be as above. The position of the punctureswill be kept �xed in the following.A non-intersecting family of loops based at y� is a family 0; : : : ; r�1 of smoothhomotopically non-trivial embedded loops starting and ending at y�, with no mutualintersections except at the endpoints. Homotopies of families of loops are de�ned. Non-intersecting families of loops can be represented by embeddings � of the open r-cubewith open (r � 1)-faces Qr into Xr.Let ~A�r be the space of linear combinations P��[�] of homotopy classes [�] =[0; : : : ; r�1] of non-intersecting families of loops, with coe�cients �� in the spaceof horizontal sections of ��Lr over Qr. Horizontal sections corresponding to homo-topic families of loops are canonically identi�ed by parallel transport, so the de�nitionmakes sense. The elements of ~A�r represent locally �nite relative homology classes inH lfr (Y �r ; Y ��r ;Lr). We consider a quotient of ~A�r by a subspace which maps to zero inhomology. Let A�r = ~A�r= �, where the equivalence relation � is given by1. �[�] � �f��[� � f ] for any orientation preserving (+) or reversing (-) isometryof the cube Qr.2. �[0; : : : ; i; : : : ; r�1] = �0[0; : : : ;  0i; : : : ; r�1] + �00[0; : : : ; 00i ; : : : ; r�1], when-ever i is homotopic to the composition  0i �00i in such a way that if the homotopyis denoted by h(�; s), s 2 [0; 1], 0; : : : ; h(�; s); : : : ; r�1 is a non-intersecting familyof loops for all s 2 [0; 1[. The sections �0, �00 are the restrictions of �.3. �[0; : : : ; r�1] � 0, whenever at least p loops in the family are in the same classin �1(Y �; y�).The third identi�cation is peculiar to the case when q is a root of unity: if n loops,say 0; : : : ; n�1 in a non-intersecting family 0; : : : ; r�1 are all homotopic to a loop ,then the corresponding locally �nite homology class is proportional to the class of arelative cycle parametrized by t0 < t1 < � � � < tn�1; tn; : : : ; tr�1 2 Qr as(t0; : : : ; tr�1) 7! ((t0); : : : ; (tn�1); (tn); : : : ; (tr�1)): (275)The proportionality factor is nYj=1 q2j � 1q2 � 1 ; (276)and vanishes if n � p. We de�ne now operators Ê, F̂ , and K̂, acting on the space�1r=0A�r and compute their commutation relations. The operator Ê is a close relative62



of the boundary operator. De�neÊ : ��[0; : : : ; r�1] 7! r�1Xi=0(�1)i��1� ��� � e+i;r � �� � e�i;r� [0; : : : ; ̂i; : : : ; r�1];(277)with e�i;r : [0; 1]r�1 ! [0; 1]r the standard face maps. ̂i denotes the omission of i.Intuitively the ith particle is moved to y� and then taken out. The operator F̂ adds aloop along the boundary of the hole around the �rst puncture.F̂ : �[0; : : : ; r�1] 7! �0[0; : : : ; r�1; C ] (278)with C : [0; 1] ! Y �, C(t) = x1 + �p2�(t). Here �0 = 0; : : : ; r�1; C and �0 is thehorizontal section of �0�L�r+1 with �+� = �0 � i, where i is the inclusion (t0; : : : ; tr�1; 12).This de�nition makes sense since we can assume that 0, : : : , r�1 do not intersect Cexcept at the endpoints. The operator K̂ is simply de�ned asK̂2jA�r = q�1�n1(r): (279)Charge neutrality requires that 1 � n1(r) = Psi=2(ni � 1) � 2r. Note that both theconstruction of Ê and F̂ make use of the isomorphisms (274), relating local systemsover di�erent con�guration spaces.Theorem 5.1 The operators Ê, F̂ and K̂ satisfy the relationsK̂2Ê = q2ÊK̂2; K̂2F̂ = q�2F̂ K̂2; [Ê; F̂ ] = K̂2 � K̂�2: (280)In other words, the operators Ê, F̂ , K̂2 and K̂�2 de�ne a representation of Uq (sl2(C ))on �1r=0A�r.Proof : The proof is a repetition of that of Theorem 3.6. The �rst and the secondrelation are immediate consequences of the de�nition of Ê, F̂ , and K̂. The thirdrelation is best proved using an explicit trivialization. Without loss of generality, wecan assume that [x1; : : : ; xs; 0(12); : : : ; r�1(12)] 2 Cn;�(T ) for some [�] 2 In. Denoteby �(v) the section with the value v in the trivialization over Cn;�(T ). We can furtherassume that [x1; : : : ; xs; 0(12); : : : ;y�; : : : ; r�1(12)]2 Cn;�i(T ) for some [�i] 2 In, (y� inposition i). Let ��i be the paths t 7! [x1; : : : ; xs; 0(12); : : : ;i(12(1 � t));: : : r�1(12)].Using Ê�(v)[0; : : : ; r�1] =r�1Xi=0(�1)i(���i;��(�+i )� ���i ;��(��i ))�(v)[0; : : : ; ̂i; : : : ; r�1]; (281)63



it follows thatÊF̂�(v)[0; : : : ; r�1] = Ê�(v)[0; : : : ; r�1; C ]= rXi=0(�1)i ����0i;��0(�+i 0)� ���0i ;��0(��i 0)��(v)[0; : : : ; ̂i; : : : ; r]= r�1Xi=0(�1)i ����i ;��(�+i )� ���i;��(��i )��(v)[0; : : : ; ̂i; : : : ; r � 1; C ] +(�1)r ����0r ;��0(�+r )� ���0r;��0(��r )��(v)[0; : : : ; r�1]= F̂ Ê�(v)[0; : : : ; r�1] +�q1�n1(r+1) � qn1(r+1)�1��(v)[0; : : : ; r�1]; (282)proving the third relation. �5.7 The Torus with One PunctureWe have proved above that �1r=0A�r comes equipped with the structure of a Uq (sl2(C ))module. A legitimate question to address is what kind of module this is. In this sectionwe will consider the torus with a single puncture and �nd the adjoint representationof Uq (sl2(C )).To describe A�r as a space., we choose a basis as follows. Let A and B be loopsin Y � based at y� such that A winds around an A-cycle and B winds around a B-cycle. For jA, jB 2 f0; 1; : : : g such that jA + jB = r, let (1)B ; : : : ; (jB)B be homotopicdeformations of B and (1)A ; : : : ; (jA)A homotopic deformations of A such that (i)B lieson the left of (i+1)B and (i)A above (i+1)A , and (1)B ; : : : ; (jA)A is a non-intersecting familyof loops, also denoted by jBB ; jAA . This family of loops is drawn in Fig. 4. We chooserepresentatives in such a way that [x1; 1(12); : : : ; r(12)] 2 Cn;id(T ). We de�ne �(v) tobe the horizontal section over [jBB ; jAA ] which takes the value v in the trivializationover Cn;id(T ). Let e�, 1 � � � 2p0p be the standard basis of C 2p0p. ThenA�r = �2p0p�=1 �jA+jB=r C �(e�)[jBB ; jAA ]: (283)In this basis, the operators Ê, F̂ and K̂ are represented by the following matrices.Lemma 5.2 Applying Ê, F̂ and K̂ to the elements of the basis (283) of A�r we obtainÊ�(e�)[jBB ; jAA ] = [jB]qq � q�1 �q�4jA�3jB+3B � q�jB+1��(e�)[jB�1B ; jAA ] +[jA]qq � q�1 �qjA+2jB+1A� q�jA�2jB+1��(e�)[jBB ; jA�1A ]; (284)F̂�(e�)[jBB ; jAA ] = �q2jA+2jB�2B�1 � q2jAB�1A�1��(e�)[jB+1B ; jAA ] +�q2jAB�1A�1 �A�1��(e�)[jBB ; jA+1A ]; (285)K̂2�(e�)[jBB ; jAA ] = q�2jA�2jB�2�(e�)[jBB ; jAA ]; (286)64



Figure 4: The family of loops jBB ; jAA .with the convention that [jBB ; jAA ] = 0 if jB < 0 or jA < 0.Proof : The action of Ê is explicitly computed fromÊ�(e�)[jBB ; jAA ] = jBXi=1(�1)i ����i; �id(�+i )� ���i; �id(��i )��(e�)[jB�1B ; jAA ] +jA+jBXi=jB+1(�1)i ����i; �id(�+i )� ���i ; �id(��i )� �(e�)[jBB ; jA�1A ]: (287)The paths ��i have representation matrices���i ;�id(�+i ) = 8<:(�q�2)r�1B(�q�2)r�i; 1 � i � jB;(�1)r�1qn1(r)�1A(�q�2)r�i; jB + 1 � i � jA + jB; (288)���i ;�id(��i ) = (�q�2)i�1: (289)To compute the action of F̂ , we have to deform the added loop to the composition oftwo A and two B loops. The result isF̂�(e�)[jBB ; jAA ] = ���1 ;��(�1)�(e�)[jBB ; jA+1A ] +���2;��(�2)�(e�)([(1)B ; : : : ; (jB)B ; (1)A ; : : : ; (jA)A ; (jB+1)B ]�[(1)B ; : : : ; (jB)B ; (2)A ; : : : ; (jA+1)A ; (1)A ])����3;��(�3)�(e�)[(2)B ; : : : ; (jB+1)B ; (1)A ; : : : ; (jA)A ; (1)B ]: (290)A transition function is picked up when the cell on which the bundle is trivializedchanges. The paths �i have braid groupoid representation matrices���1 ;��(�1) = A�1; (291)���2;��(�2) = (�q2)jAB�1A�1; (292)���3;��(�3) = (�1)rqn1(r+1)�1AB�1A�1: (293)65



The last representation matrix can be simply�ed using AB = q4BA. Finally, the loopsare reordered with the help of an isometry of the unit cube. The action of K̂ followsimmediately from its de�nition. �The matrices acting on the sections areAe� = q 2�p0 e�; Be� = q�2e�+2p0: (294)Using these formulae, we conclude that the representation of Uq (sl2(C )) on �A�r canbe split into a direct sum of isomorphic representations.De�ne for n = 0; 1; 2; : : : , [n]q = qn � q�n, [n]q! = [n]q[n� 1]q � � � [2]q[1]q, [0]q! = 1.Lemma 5.3 (I) A� decomposes into a direct sum of subspacesA�;n0 = �2p�1n=0 �p�1jA;jB=0 C �(e�n0 p+np0)[jBB ; jAA ]; 0 � n0 � p0 � 1; (295)invariant under the action of Uq (sl2(C )). (II) The action of Ê, F̂ and K̂ on A�;n0r takesthe explicit form Ê�(e�n0p+np0)[jBB ; jAA ] =[jB]qq � q�1 nq�4jA�3jB+1�(e�n0p+(n+2)p0)� q�jB+1�(e�n0p+np0)o [jB�1B ; jAA ] +q�n0p=p0+n+1 [jA]q[jA + 2jB � n0p=p0 + n]qq � q�1 �(e�n0p+np0)[jBB ; jA�1A ]; (296)F̂�(e�n0p+np0)[jBB ; jAA ] =q2jA+jB+n0p=p0�n+1[jB � n0p=p0 + n � 1]q�(e�n0p+(n�2)p0)[jB+1B ; jAA ] +nq2jA+2n0p=p0�2n+2�(e�n0p+(n�2)p0)� q2n0p=p0�2n�(e�n0p+np0)o [jBB ; jA+1A ]; (297)K̂�(e�n0p+np0)[jBB ; jAA ] = q�2jA�2jB�2�(e�n0p+np0)[jBB ; jAA ]: (298)Denote A�;n0r = Ar \ A�;n0. Let Uq (sl2(C )) be the Hopf algebra with generators E,F , K�2, with the relations of Theorem 4.1, and coproduct �(E) = E 
K2 + 1 
 E,�(F ) = F 
 K�2 + 1 
 F , �(K�2) = K�2 
 K�2 (see Section 5). Let Ip be theideal generated by the central elements Ep, F p and (K2)2p � 1, and U0q (sl2(C )) =Uq (sl2(C )) =Ip. Uq (sl2(C )) acts on U0q (sl2(C )) by the adjoint action. We de�ne theidempotents Tn;! = 12p 2p�1Xm=0(!qn)�mK2m; n 2 1p0Z; ! = �1: (299)As before we set q1=p0 = exp(�i=p). These idempotents have the following propertiesK2Tn;! = !qnTn;!; Tn+p;! = Tn;qp!; Tn+n0p=p0;! = Tn;(�1)n0!; n; n0 2Z;Tn+n0p=p0;!Tm+n0p=p0;!0 = �n;m�!;!0Tn+n0p=p0;!; 0 � n;m � p � 1; n0 2Z: (300)66



For each n0 2Z, the elements Tn+n0p=p0;!, n = 0; : : : ; p� 1, ! = �1 build a basis of thesubalgebra generated by K2.De�nition: For 0 � n0 � p0 � 1, de�ne linear maps �n0 : A�;n0 ! U0q (sl2(C )) as follows:�n0�(e�n0p+np0)[jBB ; jAA ] =q� 12 jB(jB�1)+(jA�1)(�n0p=p0+n+1) [jB]q!(q � q�1)jB F jAEp�1�jBT1+n0p=p0�n;1: (301)Having introduced the maps �n0, we are ready to state the main result of thissection.Theorem 5.4 (I) For X 2 Uq (sl2(C )), and n0 = 0; : : : ; p0 � 1, the diagramA�;n0 X̂���! A�;n0�n0???y ???y�n0U0q (sl2(C )) ���!adX U0q (sl2(C )) (302)commutes. That is, �n0 is a homomorphism from A�;n0 to the module U0q (sl2(C )) withthe adjoint action. (II) If p0 is odd, �n0 is an isomorphism. If p0 is even, �n0 is two-to-one, with image the submodule fX 2 U0q (sl2(C )) jK2pX = (�1)n0Xg.Proof : (I) is checked by an explicit calculation using Lemma 5.3 and Lemma 5.2. Toprove (II), we notice that F jElTn;!, with j; l; n = 0; : : : ; p�1 and ! = �1, build a basisof Uq (sl2(C )). For p0 odd, we see from De�nition 4.4 using the third eq. of (300) that�n0 is bijective. If p0 is even, the image is the subspace spanned by the basis vectorswith ! = (�1)n0 . �Let us work out the interplay between topological and algebraic objects a littlefurther. We have introduced F̂ : A�r ! A�r+1 as the operator which adds a C -loopand identi�es the the section as described above, using the point y+. With any loop : [0; 1] ! Y � based at y� such that (12) = y+, we can associate an operator L̂() :A�r ! A�r+1, �[0; : : : ; r�1] 7! �0[0; : : : ; r�1; ], such that �+� = �0 � i, generalizingF̂ = L̂(C). Two special cases are F̂L = L̂(A) and F̂R = L̂(D) . See Fig. 5 for agraphical representation.Theorem 5.5 (I) For 0 � n0 � p0 � 1, F̂L;R maps A�;n0r to A�;n0r+1 and F̂ = F̂L � F̂R.(II) The diagrams A�;n0r F̂L���! A�;n0r�n0???y ???y�n0U0q (sl2(C )) ������!X 7!FXK2 U0q (sl2(C )) (303)67



Figure 5: The loops A; : : : ; D.and A�;n0r F̂R���! A�;n0r�n0???y ???y�n0U0q (sl2(C )) ������!X 7!XFK2 U0q (sl2(C )) (304)commute.Proof : (I) C is homotopic to the composition (�1D ) � A. Using the equivalencerelations imposed on A�;n0r+1 it follows that�[0; : : : ; r�1; C] = �0[0; : : : ; r�1; A] + �00[0; : : : ; r�1; D] (305)the sections being identi�ed as above. (II) The counterpart of F̂L on U0q (sl2(C )) followsfrom �(e�n0p+np0)0[jBB ; jA+1A ] = A�1�(e�n0p+np0)[jBB ; jA+1A ] (306)using the explicit form (301) of �n0 . The action of F̂R on U0q (sl2(C )) is computed withF̂ = F̂L � F̂R, and adF (X) = FXK2 �XFK2. �5.7.1 The Torus with Many PuncturesCombining the above results with previous work on topological representations ofUq (sl2(C )) on the disc, the representation on L1r=oA�r can be identi�ed. The result is atensor product of U0q (sl2(C )) Verma modules, one for every additional puncture, withthe algebra itself. The latter is understood as the representation space for the adjointaction. 68



Figure 6: The family of loops of eq. (307).The starting point is again an explicit description of A�r as a space in terms of abasis. Fix a non-intersecting family of loops[j22 ; : : : ; jss ; jBB ; jAA ] :=[(1)2 ; : : : ; (j2)2 ; : : : ; (1)s ; : : : ; (js)s ; (1)B ; : : : ; (jB)B ; (1)A ; : : : ; (jA)A ]: (307)It is understood that (k)i ; 2 � i � s and 1 � k � ji, are homotopic deformations of isuch that (k+1)i lies inside (k)i . See Fig. 6. Let this family be parametrized such that[x1; : : : ; xs; (1)2 (12); : : : ; (jA)A (12)] 2 Cn;id(T ): (308)De�ne a horizontal section over this family, denoted by �(v) giving it the value v inthe distinguished trivialization over Cn;id(T ). ThenA�r = 2p0pM�=1 Mj2+���+jA=r C �(e�)[j22 ; : : : ; jss ; jBB ; jAA ] (309)Generalizing the case with one puncture, we de�ne the following map.De�nition: For 0 � n0 � p0 � 1, de�ne maps �(s)n0 : A�;n0 ! V (n2) 
 � � � 
 V (ns) 
U0q (sl2(C )) as follows:�(s)n0 ��(e�n0p+np0)[j22 ; : : : ; jss ; jBB ; jAA ]� :=F j2v0(n2)
 � � � 
 F jsv0(ns) 
 �(1)n0 ��(e�n0p+np0)[jBB ; jAA ]� ; (310)where �(1)n0 denotes the map of De�nition 5.7 for the torus with one puncture. V (h) isthe U0q (sl2(C )) Verma module generated from a singular vector v0(h) with Ev0(h) = 0and K2v0(h) = qh�1v0(h). 69



Theorem 5.6 (I) For 0 � n0 � p0 � 1, the maps �(s)n0 : A�;n0 ! V (n2)
 � � � 
 V (ns)
U0q (sl2(C )) are one-to-one and onto if p0 is odd, and two-to-one if p0 is even. (II) ForX 2 U0q (sl2(C )) let �(s)(X) =Xi X(1)i 
 � � � 
X(s)i : (311)Denote Bn0 := 
sj=1V (nj)
 U0q (sl2(C )). Then the diagramA�;n0 X̂���! A�;n0�(s)n0 ???y ???y�(s)n0Bn0 �����������������!PiX(1)i 
���
X(s�1)i 
ad(X(s)i ) Bn0 (312)commutes. That is, the topological action of Uq (sl2(C )) on A�;n0 is given by the coprod-uct on the tensor product of Verma modules with the algebra itself.Proof : We will give an explicit proof for s = 2. The generalization to s > 2 is obviousand will be omitted. Since Ê�(e�n0p+np0)[j22 ; jBB ; jAA ] =[j2]q [n2 � j2]qq � q�1 �(e�n0p+np0)[j2�12 ; jBB ; jAA ] +qn2�1�2jX( [jB]qq � q�1 �q�4jA�3jB+3B � q1�jB��(e�n0p+np0)[j22 ; jB�1B ; jAA ] +[jA]qq � q�1 �qjA+2jB+1A� q�jA�2jB+1� �(e�n0p+np0)[j22 ; jBB ; jA�1A ]); (313)it follows that �(2)n0 �Ê�(e�n0p+np0)[j22 ; jBB ; jAA ]� =(E 
 1+K2 
 E)�(2)n0 ��(e�n0p+np0)[j22 ; jBB ; jAA ]� : (314)Where we identify the coproduct �(E) = E 
 1+K2 
 E. To compute the action ofF̂ , the added loop has to be homotopically deformed and split into a composition ofloops 2; B, and A. By a deformation procedure it is shown thatF̂ �(e�n0p+np0)[j22 ; jBB ; jAA ] =q2jA+2jB+2�(e�n0p+np0)[j2+12 ; jBB ; jAA ] +�q2jAB�1A�1 � q2jA+2jB�2B�1��(e�n0p+np0)[j22 ; jB+1B ; jAA ] +(A�1 � q2jA B�1A�1)�(e�n0p+np0)[j22 ; jBB ; jA+1A ]: (315)70



As a consequence �(2)n0 �F̂ �(e�n0p+np0)[j22 ; jBB ; jAA ]� =(F 
K�2 + 1
 F )�(2)n0 ��(e�n0p+np0)[j22 ; jBB ; jAA ]� ; (316)where �(F ) = F 
K�2 + 1 
 F . Finally,K̂2�(e�n0p+np0)[j22 ; jBB ; jAA ] =qn2�1�2jxq�2jA�2jB�2�(e�n0p+np0)[j22 ; jBB ; jAA ]; (317)so that �(2)n0 �K̂2�(e�n0p+np0)[j22 ; jBB ; jAA ]� =K2 
K2�(2)n0 ��(e�n0p+np0)[j22 ; jBB ; jAA ]� (318)proves the assertion since �(K2) = K2
K2 . The right action of K̂2 is a consequenceof the charge neutrality condition. �Thus we have proved that the topological action of Uq (sl2(C )) on the torus withmany punctures algebraically reproduces the coproduct.5.8 On the adjoint representationLet q = exp(i�p0=p), where p and p0 are relative prime integers with p � 2. Uq (sl2(C ))is de�ned as the unital algebra over C generated by E;F and K�2 subject to therelations K�2K�2 = 1; K2E = q2EK2;K2F = q�2FK2; [E;F ] = K2 �K�2: (319)In the following, we will consider the quotient U0q (sl2(C )) = Uq (sl2(C )) =Ip obtainedby dividing by the Ideal Ip generated by the central elements (K2)2p � 1, Ep and F p.From Uq (sl2(C )) it inherits the coproduct�(K�2) = K�2 
K�2;�(E) = E 
 1 +K2 
 E; �(F ) = F 
K�2 + 1 
 F; (320)and the antipodeS(E) = �K�2E; S(F ) = �FK2; S(K�2) = K�2: (321)Theorem 5.7 The monomials F jElK2n, 0 � j; l � p � 1, 0 � n � 2p � 1, form aPBW-basis of U0q (sl2(C )). 71



Using the notation �(X) = PiX 0i 
X 00i , the adjoint representation of Uq (sl2(C ))acting on U0q (sl2(C )) is given byadX(Y ) =Xi X 0iY S(X 00i ): (322)In particular, the action of the generators E;F and K�2 isadE(X) = EX �K2XK�2E;adF (X) = FXK2 �XFK2;adK�2(X) = K�2XK�2: (323)In order to identify the Uq (sl2(C ))-modules A�;n0, 0 � n0 � p0� 1, with U0q (sl2(C )), weconsider for each n0 the basis given by F jElTn+n0pp0 ;!, 0 � j; l; n � p � 1, ! = �1. Inaddition to the properties (300), the idempotents Tn;! satisfyETn;! = Tn+2;!E; FTn;! = Tn�2;!F; (324)which, together with [F n; E] = F n�1[n]q qn�1K�2 � q�n+1K2q � q�1 ;[En; F ] = En�1[n]q qn�1K2 � q�n+1K�2q � q�1 ; (325)and (319), allow us to compute explicitly the action of the generators. The result isLemma 5.8 Let 0 � n0 � p0�1. The action of E;F , and K2 on the basis F jElTn+n0pp0 ;!,0 � j; l; n � p � 1, ! = �1, is given explicitly byadE(F jElTn+n0p=p0;!) = F jEl+1 �Tn+n0p=p0;! � q2(l�j)Tn+n0p=p0�2;!��! [j]q[j � n � 2l � n0p=p0 � 1]qq � q�1 F j�1ElTn+n0p=p0;!; (326)adF (F jElTn+n0p=p0;!) = F j+1El �!qn+n0p=p0Tn+n0p=p0;! � !qn+n0p=p0+2Tn+n0p=p0+2;!��qn+n0p=p0+2 [l]q[l+ n + n0p=p0 + 1]qq � q�1 F jEl�1Tn+n0p=p0+2;!; (327)adK2(F jElTn+n0p=p0;!) = q2(l�j)F jElTn+n0p=p0;!: (328)5.9 Conjecture on locally �nite homologyWe conclude by stating a conjecture on the locally �nite middle-dimensional homologygroups with coe�cients in the local systems Lr. Let as before q be a root of unity,72



and p be the smallest positive integer such that q2p = 1. De�ne quantum binomialcoe�cients as "nm#q = lim�#0 [n]q�![n�m]q�![m]q�! ; q� = q(1 + �): (329)Let A be the associative Z-graded algebra with unit, generated by K2, K�2 of degreezero, E of degree -1, and Fn of degree n, n = 0, 1, : : : , with relationsK2EK�2 = q2E; K2FnK�2 = q�2nFn;EFn � FnE = Fn�1(q�n+1K2 � qn�1K�2); n � 1;FnFm = "n+mm #q Fn+m;K�2K�2 = K�2K�2 = F0 = 1: (330)This is "half" of Lusztig's construction of the quantum group at root of unity. It isobtained by formally setting Fn = F n[1]q=[n]q!, for q generic, and taking the limit whenq goes to a root of unity.There is a homomorphism � : Uq (sl2(C )) ! A given by E 7! E, K�2 7! K�2,and F 7! F1. Thus Uq (sl2(C )) acts on A via the adjoint action Uq (sl2(C )) �A! A,(x; a) 7! �j�(x0j)a�(S(x00j )), where �(x) = �x0j 
 x00j . The Uq (sl2(C )) module A is Zgraded for the grading of Uq (sl2(C )) de�ned by deg(E) = �1, deg(F ) = 1, deg(K�2) =0. Let AN be the quotient of A by the ideal generated by the central element ENp,N = 1; 2; : : : . The algebra Uq (sl2(C )) acts on AN since ENp commutes with the actionon A. Multiplication by Ep de�nes embeddings of Uq (sl2(C )) modules� � � ,! AN ,! AN+1 ,! � � � (331)These maps are of degree zero for the shifted degree on AN given by deg(x) = deg(x)+Np. De�ne the graded Uq (sl2(C )) module A1 to be the direct limit of the modulesAN with the shifted degree. A basis of A1 is given by the classes ofFjENp�l�1Tn�1;! 2 AN ; j; l 2 N; n 2 f0; 1; : : : ; p� 1g ! = �1: (332)In this expression N is any number such that Np � l � 1 � 0. The degree of (332) isj + l � 1. Denote by Ad1 the subspace of homogeneous elements of degree d.An alternative description of the Uq (sl2(C )) module A1 was essentially suggestedto us by D. Kazhdan: Let Z be the subalgebra of the center of Uq (sl2(C )) generatedby Ep. Then A1 = A
Z C [t], with adjoint action of Uq (sl2(C )), where Ep acts on Aby multiplication and on C [t] as d=dt. The isomorphism relating the two de�nitions iscl(x 2 AN) 7! x
 tN�1=(N � 1)!.For simplicity, we state our conjecture in the case of p0 odd.73



Conjecture 5.9 Suppose that p0 is odd. (I) The action of Uq (sl2(C )) on families ofloops extends to an action on H lfr (Xr;X�r ;Lr), and there is a degree zero isomorphismof graded Uq (sl2(C )) modules H lfr (Xr;X�r ;Lr) ' �p0�1n0=0Ar�11 . (II) There is a degreezero isomorphism of graded vector spaces H lfr (Xr) ' �2p0�1n0=0 Ker(E : Ar�11 ! Ar�21 ).This conjecture is parallel to the one formulated in [FW91] for the case of the sphere.To prove it one should understand better locally �nite homology. In the remaining ofthis section we describe these isomorphisms. Let, as in (268), A, B : [0; 1] ! X beA and B loops on the one-holed torus X based at a point y� on the boundary of thehole. Consider the locally compact cells in XrCl;r = f(B(t1); : : : ; B(tl); A(tl+1); : : : ; A(tr)) 2 Xrj0 < t1 < � � � < tl < 1; 0 < tl+1 < � � � < tr < 1g�; (333)where � denotes closure in Xr. We orient Cl;r using the standard orientation of theparameter space Rr 3 t, and choose as section over it the section taking the value e�over a point in one of the cells de�ned in (249), where a trivialization is �xed. Theclass in H lfr (Xr;X�r ;Lr) represented by Cl;r with this section will be denoted by C�;l;r.The Uq (sl2(C )) module �1r=0H lfr (Xr;X�r ;Lr) is a direct sum of submodules labeled byn0 = 0; : : : ; p0�1, spanned by C�;l;r with � = �n0p+np0, n = 0; : : : ; 2p�1, l = 0; 1; : : : .Each of these submodules is isomorphic to A1. The isomorphism isC�;l;r 7! �Fr�lEpN�l�1T1��=p0;1; (334)for some root of unity � depending on the choice of trivialization. The second isomor-phism is obtained through the identi�cation of Ker(E) with Ker(@�).The space of cycles obtained here is bigger than the space of cycles relevant forconformal �eld theory. The cycles for conformal �eld theory should be computed usingthe cohomological methods of [FS89a, FS92] but the details remain to be understood.By construction, there is a projective action of the mapping class group PSL(2;Z) onrelative homology, which commutes with the action of the quantum group. It will bedescribed below.5.10 Properties of ��(W j� )De�ne ��(W j� ) := e�i�(2W+��)=(2p0p)�(� ) �3(W + ��j2p0p� )= 1�(� ) 1X�1 e2�iW (n+�=(2p0p))+�i2p0p�(n+�=(2p0p))2; (335)W := p0 sXi=1(1 � ni)zi + 2p0 s+rXi=s+1 zi: (336)74



A straightforward computation yields��(W + lp0j� ) = e�i�l=p��(W j� ); (337)��(W + lp0� j� ) = e��i(lW+l2p0�=2)=p��+lp0(W j� ): (338)and ��(W j� + 1) = e�i(�2=(2p0p)�1=12)��(W j� ); (339)��(W j�1� ) = 1p2p0pe�i�W 2=(2p0p) 2p0p�1X�=0 e�i��=(p0p)�2p0p��(W� j� ): (340)To verify the last identity, note that2p0p�1X�=0 e��i��=(p0p)��(W j� ) = 1�(� )�3  W � �2p0p j �2p0p! ; (341)��(W j� ) = 12p0p 2p0p�1X�=0 e�i��=(p0p) 1�(� )�3  W � �2p0p j �2p0p! ; (342)and �(�1� ) = p�i��(� ); (343)�3(zj�1� ) = p�i�e�iz2��3(z� j� ): (344)5.11 Properties of �1(zj� )Following Jacobi one de�nes�1(zj� ) := � 1Xn=�1 e2�i(z+1=2)(n+1=2)+�i�(n+1=2)2: (345)In terms of an in�nite product�1(zj� ) = 2e�i�=6�(� ) sin(�z) 1Yn=1(1� 2e2�i�n cos(2�z) + e4�i�n): (346)It satis�es the following identities�1(z + 1j� ) = ��1(zj� ); �1(z + � j� ) = �e2�iz��i��1(zj� ); �1(�zj� ) = ��1(zj� );�1(zj� + 1) = pi�1(zj� ); �1(zj�1� ) = pi�e�iz2��1(z� j� ): (347)It has simple zeroes on the latticeZ�Z� and no others. Consider the fractional power�1(zj� )�; � 2 QnZ, a multi valued function on C nZ�Z� . Upon analytic continuationalong straight paths from z to z + 1 and z + � respectively, it has the property that�1(z + 1j� )� = e2�i�'A(z)�1(zj� )�; (348)�1(z + � j� )� = e2�i�'B(z)�2�i�z��i�� �1(zj� )�; (349)75



with 'A(z) = �n� 12 ; 'B(z) = m+ 12 ; (350)z 2 fx+ y� 2 C jm < x < m+ 1; n < y < n+ 1g; (351)as follows from an explicit calculation. Note that '#(z) is constant on every translatedfundamental domain.6 Topological Representations of Uq (sl2(C )) on theTorus and the Mapping Class GroupWe compute the mapping class group action on cycles on the con�guration space ofthe torus with one puncture, with coe�cients in a local system arising in conformal�eld theory. This action commutes with the topological action of the quantum groupUq (sl2(C )), and is given in vertex form.6.1 IntroductionWe consider topological representations of Uq (sl2(C )) appearing in free �eld represen-tations of conformal �eld theories on the torus based on SU(2). Topological representa-tions of quantum groups on the complex plane were introduced in [FW91, SV91, La90].The torus has been investigated in [CFW93].Fock space traces of products of vertex operators yield multi-valued holomorphicdi�erential forms on con�guration spaces over the torus. Quantum groups [D86, Lu90,FK93, RT91] enter through their action on a certain space A of linear forms on thespace of holomorphic multivalued di�erential forms with given monodromy. Theseforms are given by integration on products of loops. Singular vectors with respect withthis action give cycles, and de�ne thus linear forms on cohomology. We consider thetorus with one puncture together with the local system given in [CFW93], associatedto the monodromy of the di�erential forms. We restrict our attention to the quantumgroup Uq (sl2(C )) at q a 2pth root of unity. The topological action of Uq (sl2(C )) hasbeen identi�ed in [CFW93] with the adjoint representation in the sense that the spaceA is isomorphic to Uq (sl2(C )) as Uq (sl2(C ))-module with the adjoint action. The maininput from conformal �eld theory [BPZ84, DF84, ZF86, F89, BF90, SV89, G89, GK90,FS89a, FS89b] is the form of the local system.An important feature of conformal �eld theories on the torus is modular invariance[FS89b]. A natural question to pose is the meaning of modular transformations onthe side of topological representations. The �rst observation is that the local systemcoming from conformal �eld theory is compatible with modular transformations in asense to be de�ned below. As a consequence the modular group acts on the space A.The second observation is that we can explicitly compute the action of the modular76



Figure 7: The loops �, �0, �, and .group on A by contour deformation methods. Using the identi�cation of A with thequantum group algebra, we obtain the action of the modular group on the latter.Since the action of the modular group commutes with the topological action ofUq (sl2(C )), it commutes on the algebraic side with the adjoint action. The result is a"vertex" form of the generators T and S of the modular group. These generators areexpressed in terms of the universal R-matrix of an enlarged version of Uq (sl2(C )) (the"K-generated algebra") and the Haar measure on Uq (sl2(C )). A representation of themapping class group in "SOS" form arises in the study of three-manifold invariants ofReshetikhin and Turaev [RT91].We obtain as a byproduct the quantum group interpretation of modular invariance.Namely, the action of the modular group leaves invariant the subspace of singularvectors in the adjoint representation.Similar formulas have been discovered independently, in the context of braidedgroups of monoidal categories, by Lyubashenko and Majid [LM91].6.2 Con�guration spaces and local systems on the torusLet X be a torus with one puncture.6.2.1 Representation of XLet DR(w) = fz 2 C jjz � wj < rg, the open disc. We represent X = (DR(0) n[2i=1DR0(wi))= �, the disc with two holes, the boundaries of which we identify. E.g.,we take w1 = �R=3 and w2 = R=3, de�ne �(w1+R0ei('��)) = w2+R0e�i', and identify�(z) � z. Let p0 = �R serve as a base point. �1(X; p0) is generated by elements �and � as represented by the loops in X based at p0 shown in Fig. 7. For later purpose,we introduce the abbreviations �0 = ��1 � ��1 � � and  = � � ��1 � ��1 � �.77



6.2.2 Con�guration spaces and braid groups on XFor r � 1, we de�ne con�guration spacesXr = (Xr n [1�i<j�rf(z1; : : : ; zr) 2 Xrjzi = zjg) =Sr: (352)Sr is the symmetric group, acting from the right. Let �r = [x1; : : : ; xr] be a basepoint in Xr. �1(Xr; �r) is the braid group with r strings on X. We call a base pointadmissible if �R � x1 < � � � < xr � �R=3 �R0. Braid groups de�ned with respect todi�erent admissible base points are canonically isomorphic. We will always assume �rto be an admissible base point such that fx1; : : : ; xrg � @X. �1(Xr; �r) is generatedby elements �i, 1 � i � r � 1, �, and �. Intuitively, �i interchanges xi with xi+1counterclockwise, while � and � move xr along the respective loops, other componentsof �r being kept �xed. An abundance of relations hold among these generators. Wewill not present them here.6.2.3 Local systems over XrLet p be an odd positive integer. Put q = e�i=p and de�ne 2p by 2p matrices A and Bwith entries Am;n = q1�m�m;n; Bm;n =Xl2Z�m;n+2pl+1: (353)They satisfy AB = q�1BA. Let V = C 2p. The assignments�r(�i) = �q2; 1 � i � r � 1; �r(�) = A2; �r(�) = B2 (354)de�ne a 2p-dimensional representation �r : �1(Xr; �r)! GL(V ). It is the monodromyrepresentation associated with multivalued di�erential forms on Xr mentioned above.�r is the direct sum of two equivalent p-dimensional irreducible representations.Let X0r be the subspace of Xr consisting of con�gurations which contain p0 amongtheir components. We then de�ne �r : Xr�1 n X0r�1 ! X0r to be the bijection whichinserts p0. The family of representations �r, r � 1, is compatible in the following sense.Let �1(�r) : �1(Xr�1 n X0r�1; �r�1) ! �1(X0r ; �r(�r�1)) be the isomorphism induced by�r, then �r � �1(�r) = �r�1.With �r we associate the local system Lr(X) = X̂r(�r) 
�1(Xr;�r) V , a at vectorbundle over Xr with distinguished trivialization over �r, the holonomy associated withelements of �1(Xr; �r) being �r. Due to the compatibility, �r can be lifted to Lr(�r) :Lr�1(X)���Xr�1nX0r�1 ! Lr(X)���X0r . We de�ne Lr(�r)([x; v]) = [�r(x); v], which is checkedto be well de�ned.6.3 Topological representations of U redq (sl2(C ))We summarize briey the constructions leading to topological representations of thequantum group U redq (sl2(C )) adjusting the notations to the present setup.78



6.3.1 Families of nonintersecting loops with values in the local systemLet Qr =]0; 1[r[Sri=1]0; 1[� � � � � f0; 1g � � � ��]0; 1[ and 1; : : : ; r be loops [0; 1]! Xstarting and ending at p0, nonintersecting except at p0. De�ne [1; : : : ; r] : Qr ! Xrbe the corresponding embedding. Denote by [�j; �k] : Qr ! Xr, j + k = r a family ofnonintersecting loops obtained by homotopic deformation of j �-loops and k �-loopsgiven by[�j; �k](t0; : : : ; tr�1) = [�(0)(t0); : : : ; �(j�1)(tj�1); �(j)(tj); : : : ; �(r�1)(tr�1)]: (355)It represents a locally �nite r-chain in Xr with boundary in X0r .We lift it to take values in X̂r(�r). We specify the lift by choosing an admissiblepoint on its image, connecting this point to the base point by an admissible path.Then the equivalence class [[�j; �k]; v], v 2 V , de�nes a family of nonintersecting loopsin X with values in Lr(X). The space of families of nonintersecting loops in X withvalues in Lr(X) is denoted by Ar(Xr;X0r ;Lr) or shorter by Ar. Its precise de�ni-tion contains equivalence relations reecting the possibility of homotopic deformation,reparametrization, and splitting of loops (see [FW91]). The elements [[�j; �k]; en],0 � j; k � minfr; p� 1g such that j + k = r, and 1 � n � 2p, constitute a basis. Here(en)m = �n;m. A family which contains p homotopic loops is put equivalent to zero.Therefore, we restrict ourselfs to r � 2p � 2.6.3.2 Topological action of U redq (sl2(C ))The basic ingredience of topological representations are operatorsE : Ar ! Ar�1; F : Ar ! Ar+1; K2 : Ar ! Ar (356)de�ned by E[[�j; �k]; en] = �Lr(�r)�1@[[�j; �k]; en]; (357)F [[�j; �k]; en] = q�2j�2k�2[[�j; �k; ]; en]; (358)K2[[�j; �k]; en] = q�2r�2[[�j; �k]; en]: (359)They are shown to satisfy the relations of Uq (sl2(C )):K2E = q2EK2; K2F = q�2FK2; [E;F ] = K2 �K�2; (360)and also the additional relationsEp = 0; F p = 0; (K2)2p � 1 = 0; (361)de�ning U redq (sl2(C )). Thus L2p�2r=0 Ar comes equipped with the structure of a moduleover U redq (sl2(C )). We identify this representation as the adjoint representation. Let79



� : L2p�2r=0 Ar ! U redq (sl2(C )) be the map�[[�j; �k]; en] = N(j; k; n)F kTn�1Ep�1�j; (362)N(j; k; n) = (�1)jq2j+2nqj(j�1)=2 [j]q![1]jq q(j+k)(j+k�1)+(j+k)(1�n)+j(1+n): (363)An explicit computation proves that � is a homomorphism of U redq (sl2(C )) modules.Moreover, it is one-to-one and onto. HereTn = 12p 2p�1Xm=0 q�nmK2m: (364)The actions of U redq (sl2(C )) on itself by left multiplication and by right multiplication,twisted with the antipode, also have topological counterparts. The operator whichimplements left multiplication by F is called FL. The operator which corresponds toright multiplication by �(F ) is denoted by FR. On the topological side they are givenby FL[[�j; �k]; en] = qn�1�2j�2k[[�j; �k+1]; en]; (365)FR[[�j; �k]; en] = q�2j�2k�2[[�0; �j; �k]; en]: (366)Intuitively, F adds a -loop, while FL and FR add �- and �0-loops respectively. Theinterpretation of L2p�2r=0 Ar as a bimodule will not be worked out here.The important formula of this section to keep in mind is (363).6.4 Action of the Mapping Class GroupLet Di�(X) be the group of di�eomorphisms which leave @X = fz 2 C j jzj = Rginvariant. Let Di�0(X) be the subgroup of Di�(X) consisting of di�eomorphisms ho-motopic to the identity. The mapping class group of X is de�ned asM1;1(X) := Di�(X)=Di�0(X): (367)A reference on mapping class groups is [Bi74].6.4.1 Generators of M1;1(X)M1;1(X) is generated by Dehn twists. On the torus, we have two kinds of Dehntwists, T� and T�. T� is de�ned as follows. Consider the annulus fz 2 X j r + � �jz � w1j � r + 2�g with � > 0 small. We de�ne a map of this annulus to itself byT�(w1+z) := w1+ei'(jzj)z with ' a smooth function interpolating between '(r+�) = 0and '(r + 2�) = 2�. We say that T� is the Dehn twist associated with the loopt 7! w1 � (r + 2�)e2�it, t 2 [0; 1]. The Dehn twist T� is associated with the loopt 7! (w1 + r)(1� t) + (w2 � r)t. See �gure (?). The orientations we use are shown byarrows. T� and T� leave the base point �r invariant. (Recall that �r is a con�gurationon @X.) Thus we have a map from M1;1(X) to Aut(�1(Xr; �r)), the automorphismsof �1(Xr; �r), r � 1. 80



6.4.2 Compatibility of local systemsWe de�ne a representation �r : �1(Xr; �r) ! GL(V ) to be compatible with M1;1(X)if � � T ' � for all T 2 M1;1(X). This means that for every T there exists a matrixD(T ) 2 GL(V ) such that � � T (�) = D(T )�(�)D(T )�1: (368)If a representation �r is compatible withM1;1(X), then we have an action ofM1;1(X)on Lr given by Lr(T ) : Lr ! Lr; [x; v] 7! [T (x);D(T )v]; (369)which is well de�ned due to equation (368).The family of local systems �r : �1(Xr; �r) ! GL(V ), r � 1, is indeed compatiblewith M1;1(X). For the generators T� and T� the compatibility is proved by de�ningD(T�) := 2p�1Xl=0 ql(l�2)=2Al; D(T�) := 2p�1Xl=0 q�l(l+2)=2Bl: (370)and by noting that the action of T� has the form T�(�) = � and T�(�) = � � �, whilethat of T� has the form T�(�) = ��� and T�(�) = �. Note also that D(T�) and D(T�)have matrix elements D(T�)m;n = 8<:2p�1Xl=0 ql2=29=; q�m2=2�m;n; (371)D(T�)m;n = Xk2Z2p�1Xl=0 q�l(l+2)=2�m;n+2pk+l: (372)6.4.3 Action of M1;1 on Ar(Xr;X0r ;Lr)The mapping class group M1;1 acts on Ar as follows: T 2 M1;1 acts byLr(T )[[1; : : : ; r]; v] = [T � [1; : : : ; r];D(T )v]: (373)We compute the action of T� and T� on the basis elements [[�j; �k]; en] of the linearspace Ar(Xr;X0r ;Lr).Action of T�. Let us de�ne � := ���. Let r = j+k. The action of T� on [[�j; �k]; en]is seen to have the formLr(T�)�[[�j; �k]; en]� = [[�j; �k];D(T�)en]: (374)81



The �rst problem is to decompose (374) again in terms of the basis of Ar(Xr;X0r ;Lr).The decomposition is performed with the help of[[�j; �l+1; �k]; en] =[[�(0); : : : ; �(j�1); �(j); : : : ; �(j+l); �(j+l+1); : : : ; �(j+l+k)]; en] =[[�(0); : : : ; �(j); �(j+1); : : : ; �(j+l); �(j+l+1); : : : ; �(j+l+k)]; en] +[[�(0); : : : ; �(j�1); �(j+1); : : : ; �(j+l); �(j+l+1); : : : ; �(j+l+k); �(j)]�; en] =[[�j+1; �l; �k]; en] + (�1)l+k[[�j; �l; �k+1]; �j+l+k+1(�)en] =[[�j+1; �l; �k]; en] + q2(l+k)[[�j; �l; �k+1]; en+2]: (375)We use �j+k+l+1(�) = (�q)2(k+l)B2 and absorb the factor (�1)l+k by an isometry ofQj+l+k+1. The ordering of loops according to deformation and the assignement ofthe components of (t0; : : : ; tj+k+l) 2 Qj+l+k+1 to the individual loops indicated bysuperscripts should be clear from the notation used in (375). Iterate (375) to obtain[[�j; �k]; en] = minfj;p�k�1gXs=0 cs(j; k)[[�j�s; �k+s]; en+2s] (376)with coe�cientscs(j; k) = X0�i1�����is�j�s sYl=1 q2(k+j�il�1) = qs(j+2k+s�2) "js#q (377)using Gau�'s formula X0�i1�����is�j�s q�2Psl=1 il = qs(s�j) "js#q : (378)The q-binomial coe�cient is de�ned as"js#q := [j]q![s]q![j � s]q!: (379)Putting (372), (374), and (376) together, it follows thatLr(T�)�[[�j; �k]; en]� =dq�n2=2 minfj;p�k�1gXs=0 qs(j+2k+s�2) "js#q [[�j�s; �k+s]; en+2s] (380)with d = 2p�1Xl=0 ql2=2: (381)82



Thus (380) gives the matrix elements of Lr(T�) in terms of the basis with elements[[�j; �k]; en].Action of T�. Let r = j + k. The action of T� has the formLr(T�)�[[�j; �k]; en]� = [[�j; �k];D(T�)en]; (382)which we again will express in terms of the basis of Ar(Xr;X0r ;Lr). Using (375) itfollows that [[�j; �k]; en] = kXs=maxf0;j+k�p+1g bs(j; k)[[�j+k�s; �s]; en+2s] (383)with coe�cients bs(j; k) = X0�i1�����is�k�s sYl=1 q2(k�il�1) = qs(k+s�2) "ks#q : (384)Note that bs(j; k) = cs(k; 0). (382), (383), and (384) yieldLr(T�)�[�j; �k]; en]� =2p�1Xl=0 kXs=maxf0;j+k�p+1g q�l(l+2)=2+s(k+s�2) "ks#q [[�j+k�s; �s]; en+l+2s]; (385)completing the calculation of the action of T� on Ar(Xr;X0r ;Lr).6.4.4 Action of M1;1(X) on U redq (sl2(C ))We have identi�ed Ar(Xr;X0r ;Lr) as a U redq (sl2(C )) module as U redq (sl2(C )) with theadjoint action. The action of M1;1(X) on Ar(Xr;X0r ;Lr) commutes with the topo-logical action of U redq (sl2(C )). In this section, we identify the action of M1;1(X) onU redq (sl2(C )) de�ned by its action on Ar(Xr;X0r ;Lr). By construction it commuteswith the adjoint action.Action of T�. Let �r : Ar(Xr;X0r ;Lr) ! U redq (sl2(C )) be the restriction of the mapde�ned above. Then�r nLr(T�)�[[�j; �k]; en]�o = dq�n2=2 minfj;p�k+1gXs=0 qs(j+2k+s�2) "js#q�N(j � s; k + s; n+ 2s) F k+s Tn+2s�1 Ep�j+s�1; (386)using (380). We de�ne U(T�) : U redq (sl2(C )) ! U redq (sl2(C )) byU(T�) � �r = �r � Lr(T�): (387)83



Thus, what is left to compute U(T�), is the ratio of normalization constantsN(j � s; k + s; n+ 2s)N(j; k; n) = (�1)sq�s(j+2k+3s=2+n�3=2)[1]sq [j � s]q![j]q! : (388)We conclude thatU(T�)(F k Tn�1 Ep�j�1) = dq�n2=2 minfj;p�1�kgXs=0 (�1)sq�s(s+1)=2�sn[1]sq[s]q! F k+s Tn+2s�1 Ep�j+s�1; (389)giving the action of U(T�) on U redq (sl2(C )).Action of T�. Let r = j + k. Using (385), we obtain�r nLr(T�)�[[�j; �k]; en]�o = 2p�1Xl=0 kXs=maxf0;j+k�p+1g q� 12 l(l+2)+s(k+s�2) "ks#q�N(j + k � s; s; n+ l + 2s) F s Tn+l+2s�1 Ep�j�k+s�1 : (390)Insert N(j + k � s; s; n+ l + 2s)N(j; k; n) =(�1)k�s[1]k�sq q(k�s)(k�s+1)=2+(k�s)(j+n+2)+(2s+l)(2�s) [j + k � s]q![j]q! (391)to conclude that U(T�)(F kTn�1Ep�j�1) =2p�1Xl=0 kXs=maxf0;j+k�p+1g (�1)k�s[1]k�sq q(k�s)(k�s+1)=2+(k�s)(j+n+s+2)+(l+2s)(1�l)=2�[k � s]q! "j + k � sj #q "ks#q F s Tn+l+2s�1 Ep�j�k+s�1 (392)completing the calculation of U(T�).6.4.5 Action of S��We de�ne S�� := T�(T�)�1T�. The action of S�� on �1(X; p0) is given by S��(�) = �and S��(�) = �0. Recall that �0 = ��1 � ��1 � �. That is, S�� maps � to � and � to84



��1 conjugated by ��1. This transformation is known as the S-transformation. Weput D(S��) := D(T�)D(T�)�1D(T�); (393)D(S��)m;n = 2pqd2 q(m+1)(n�1): (394)D(S��) performs a discrete Fourier transformation on V . �r : �1(Xr; �r) ! GL(V ) iscompatible with S��, the equivalence being given by D(S��). We thus have an actionLr(S��) on Ar(Xr;X0r ;Lr). It has the formLr(S��)�[[�j; �k]; en]� = [[�0j; �k];D(S��)en]; (395)r = j+k. As before, we deduce from (395) an action U(S��) on U redq (sl2(C )). However,we do not expand (395) in terms of the basis of Ar(Xr;X0r ;Lr) as we did in the caseof Lr(T�) and Lr(T�), although this could be done. Instead we compute directly theimage of (395) under �r. Using[[�0j; �k]; en] = qj(j+2k+1) (FR)j [[�k]; en] (396)it follows that �r�[[�0j; �k]; en]� = (�1)k[1]j�kq [k]q![j]q!qj(j+1)=2+k(k+1)=2+2k(j+1)+n(j+k)N(j; k; n) Tn�1 Ep�k�1 F j: (397)By re-expressing (397) in terms of the basis F jTk�1Ep�l�1 and applying (�r)�1, theexpansion of (395) in terms of the basis of Ar(Xr;X0r ;Lr) could be obtained. Weconclude that �r nLr(S��)�[[�j; �k]; en]�o = 2pqd2 (�1)k[1]j�kq [k]q![j]q!qj(j+3)=2+k(k+3)=2+k(n+1+2j)N(j; k; n) K2(j+n+1) Ep�k�1 F j; (398)using 2p�1Xl=0 q(n+l�1)(j+n�1)Tn+l�1 = K2(j+n+1): (399)The �nal result is U(S��)(F k Tn�1 Ep�j�1) =2pqd2 (�1)k[1]j�kq [k]q![j]q! qj(j+3)=2+k(k+3)=2+k(n+1+2j)K2(j+n+1) Ep�k�1 F j: (400)U(S��) is the algebraic version of the S-transformation. It is a mapping of U redq (sl2(C ))to itself, one-to-one and onto, which commutes with the adjoint action.85



6.5 Identi�cation of the S- and the T -transformationWe identify the operations U(T�) and U(S��) in terms of the quasitriangular structureof U redq (sl2(C )). Let us �rst adjust the normalization of D(T�) and D(S��) as follows:D(T�)! N�d D(T�); D(S��)! d2N��2pq D(S��): (401)With this change of normalization, U(T�) and U(S��) act on U redq (sl2(C )) byU(T�)(F kTn�1Ep�j�1) =N�q�n2=2 minfj;p�1�kgXs=0 (�1)sq�s(s+1)=2�sn [1]sq[s]q! F k+s Tn+2s�1 Ep�j+s�1; (402)and U(S��)(F kTn�1Ep�j�1) =N��(�1)k[1]j�kq [k]q![j]q!qj(j+3)=2+k(k+3)=2+k(n+1+2j) K2(j+n+1) Ep�k�1 F j: (403)6.5.1 Universal elements of U redq;K (sl2(C ))Let us consider the K generated version of U redq (sl2(C )). It is known to be a ribbonHopf algebra. The universal R-matrix isR = 14p 0@p�1Xn=0(�1)n [1]nq[n]q!q�n(n�1)=2 En 
 F n1A0@ 4p�1Xm;n=0 qnm=2 Kn 
Km1A : (404)The associated central element V isV = p�1Xn=0 4p�1Xm=0(�1)n [1]nq[n]q!qn(n+1)=2+n(m+1)+m(m+2)=2 F n Hm+2n En; (405)Hn = 14p 4p�1Xm=0 q�nm=2Km: (406)6.5.2 Identi�cation of U(T�)Let N� = q1=2. Then U redq (sl2(C )) ���!U(T�) U redq (sl2(C ))???y ???yU redq;K (sl2(C )) �V�1���! U redq;K (sl2(C )) (407)86



commutes. That is, U(T�) is identi�ed with the multiplication by the inverse of thecentral element V of (404). This is shown byV �1 F k Tn�1 Ep�j�1 =p�1Xs=0 4p�1Xl=0 (�1)s [1]sq[s]q!q�s(s+1)=2�sl�l2=2+1=2 F k+s Hl+2s�1 Tn+2s�1 Ep�1�j+s (408)with Hl+2s�1 Tn+2s�1 = Hl+2s�1 (Hn+2s�1 +Hn+2p+2s�1) =�l;nHn+2s�1 + �l;n+2pHn+2p+2s�1; (409)comparing the result with (402).6.5.3 Trace on U redq;K (sl2(C ))Let � : U redq;K (sl2(C )) ! C be the linear map such that� (Ep�1F p�1Hn�1) := 1; 1 � n � 4p;� (EjF kHn�1) := 0; else: (410)� is a trace on U redq;K (sl2(C )): For X = E;F;K�1 and Y 2 U redq;K (sl2(C )) we have� (XY ) = � (Y X).6.5.4 S-transformationLetR = Pi �i
�i the universalR-matrix (404). De�ne a linear map S : U redq;K (sl2(C )) !U redq;K (sl2(C )) by S(X) :=Xj;l �j�(�l)���(�l)K�2�jX� (411)with � the trace of (410). A short computation reveals thatS(Tn�1Ep�1�rF p�1�s) =2(�1)r+s[r]q![s]q! q�r(r+1)=2�s(s+1)=2+(s�1)(2r+n�1) F r K2(1�n�r) Es: (412)We thus obtain a map S : U redq (sl2(C )) ! U redq (sl2(C )) by restriction.6.5.5 Identi�cation of S��Put the normalization constant in (401) to beN�� := [p� 1]q!2p[1]p�1q q�(p�1)(p+2)=2: (413)87



The transformation (403) is identi�ed asU(S��)�1X = S(X) (414)with S the transformation (412). To verify (414), we compute the inverse transforma-tion of (403). It is seen to beU(S��)�1(Tn�1Ep�1�kF j) = 1pN�� (�1)k[1]k�jq [j]q![k]q!q�j(j+3)=2�k(k+3)=2�jk�(n+k�1)(j+2) F k K�2(n+k�1) Ep�j�1: (415)Setting k = r and j = p � 1 � s and comparing (412) with (415), the result (414)follows.7 The Knizhnik-Zamolodchikov-Bernard Equationon the TorusIn this chapter we give a description of conformal blocks of the Wess-Zumino-Wittenmodel based on sl2(C ) (in the sense of [TUY89]) in terms of solutions of the Knizhnik-Zamolodchikov-Bernard equation. We discuss the role of a doubly a�ne version of thethe Weyl group.7.1 IntroductionTwo dimensional conformal �eld theory associates to a punctured Riemann surfacea complex vector space of conformal blocks. It also tells how the vector spaces areidenti�ed when the punctures and the complex structure are varied. For the case ofWess-Zumino-Witten (WZW) models this construction can be done in mathematicallywell de�ned terms [TUY89]. In the case of the sphere the description can be madevery explicit, in terms of the Knizhnik-Zamolodchikov di�erential equation. The aimof this chapter is to show that such a description in terms of di�erential equations isalso possible in the genus one case. The Knizhnik-Zamolodchikov equation is replacedby a genus one generalization due to Bernard [Be88a, Be88b].The construction is similar to the case of the sphere (see, e.g., [F93]) but requires atwist. The reason for this is the following: conformal blocks are de�ned as linear formson a certain in�nite dimensional space, obeying some invariance condition. Thanks tothis invariance, in the case of the sphere, a conformal block is uniquely determined by itsrestriction on a �nite dimensional subspace (of "primary states") isomorphic to a tensorproduct of �nite dimensional representations of a �nite dimensional Lie algebra. Onhigher genus surfaces this is not the case. The solution to this problem is to introduceadditional parameters, and consider parametric families of conformal blocks, that areinvariant under a Lie algebra depending on the parameters. Spaces of conformal blockscorresponding to di�erent values of the parameters are then identi�ed thanks to a at88



connection. The point is that horizontal conformal blocks are determined, as functionsof these parameters, by their values on primary states.In this chapter we consider the WZW model based on the Lie algebra sl2(C ) onthe torus. We construct conformal blocks for the torus with given family of puncturesand modular parameter as certain multilinear forms invariant under a Lie algebra oftwisted Lie algebra valued meromorphic functions. Under variations of the puncturesthey satisfy the Knizhnik-Zamolodchikov-Bernard (KZB) equation. We derive the KZBequation from the condition that conformal blocks be at with respect to the Friedan-Shenker (FS) connection. We then introduce a doubly a�ne version of the Weyl groupand formulate an invariance condition on conformal blocks as solutions to the KZBequation.Some open ends of this construction will be left untouched, including the construc-tion of integral representations [SV89, Ch91], the connection with quantum groups[FW91, SV91, CFW93], monodromy properties [TK88], and the role of integrability[TUY89].Two dimensional conformal �eld theory has its origin in the work of [BPZ84]. Itsformulation in terms of complex geometry can be found in [FS87]. The basic referencesto the WZW model are [W84, KZ84]. The notion of conformal blocks on a Riemannsurfaces was formulated in mathematical terms in [TUY89], and by Beilinson andFeigin. The KZB equation on the torus was �rst derived in [Be88a]. It has alsoappeared recently in [FG92].7.2 Lie algebra valued meromorphic functionsThe in�nite symmetry of the WZW model on the torus can be formulated in terms ofa Lie algebra of twisted meromorphic Lie algebra valued functions.Let g = sl2(C ) with Cartan generators E, F , and H, and invariant bilinear form(X;Y ) = tr(XY ), normalized such that (H;H) = 2.In our construction we will use the following kinds of con�guration spaces. Fix� 2 H+ = f� 2 C jIm(� ) > 0g, and let L(� ) =Z�Z� � C . We then de�ne4ni;j(� ) = f(z1; : : : ; zn) 2 C n j zi = zjmodL(� )g (416)and C[n](� ) = C n n ([i<j 4ni;j (� )): (417)The space C[n](� ) is a covering of the nth con�guration space over the torus �(� ) =C =L(� ). Let us also introduceD[n](� ) = f(z1; : : : ; zn; �) 2 C[n](� )� C j� 2 L(� )g (418)and �[n](� ) = (C[n](� )� C ) n D[n](� ): (419)89



The Lie algebra is now de�ned as follows. For (z1; : : : ; zn; �) 2 �[n](� ), let g(z1; : : : ; zn; �)be the Lie algebra of meromorphic functionsX : C ! g, holomorphic on C nL(z1; : : : ; zn),such that X(z + 1) = X(z); X(z + � ) = exp(2�i� adH)X(z): (420)Here L(z1; : : : ; zn) = [j(zj +L(� )) denotes the union of the punctures and their trans-lates by the lattice L(� ). The Lie algebra consists of meromorphic functions on theplane, periodic along the A-period and twisted along the B-period, with possible poleson L(z1; : : : ; zn) and no others.Let Lg = g 
 C ((t)) and Lgk̂ = Lg � C , the central extension of Lg associated tothe two-cocycle !(X 
 f; Y 
 g) = k (X;Y ) rest=0(f 0(t)g(t)) (421)with k a positive integer. With a highest weight g-module V one can associate a highestweight Lgk̂ -module V ^. The g-action is �rst extended to b+ = g
 C [[t]]� C by lettingg 
 tC [[t]] act by zero and C by multiplication. Then V ^ is given by U(Lgk̂ )
U(b+) V .We will always view g as the Lie subalgebra g 
 t0 of Lgk̂ , and V as the g-submodule1 
 V of V ^. This construction as well as properties of V ^ can be found in [K90].As an input we require a family of �nite-dimensional irreducible highest weightg-modules V1; : : : ; Vn. We can think of the module Vj as being attached to the pointzj. The next step in our construction is an action of the Lie algebra g(z1; : : : ; zn; �) onthe tensor product V1̂ 
 � � � 
 Vn̂ . Let �j(X) = X(zj + t) be the Laurent expansionof X at zj viewed as a formal power series in t. As an element of Lg it is included inLgk̂ . But Lgk̂ acts on Vj . Therefore, we can de�ne�(X) = �1(X)� � � � � �n(X): (422)A computation reveals that, in EndC (V1̂ 
 � � � 
 Vn̂ ), we have the equation�([X;Y ]) = [�(X); �(Y )] + k Xj resz=zj ((X 0(z); Y (z))): (423)But (X 0; Y ) is doubly periodic so that the sum of residues vanishes. We thereforeobtain an action � of g(z1; : : : ; zn; �) on V1̂ 
 � � � 
 Vn̂ .7.3 Meromorphic vector �eldsAnalogous to the action of Lie algebra valued meromorphic functions, there is an actionof doubly periodic meromorphic vector �elds on V1̂ 
 � � � 
 Vn̂ .Let us �rst consider any highest weight g-module V . Sugawara's construction yieldsa projective representation of Vect(S1) = C ((t))@t on V ^. Let T 1, T 2, and T 3 form anorthogonal basis of g, normalized such that (T a; T b) = 12�a;b. For example, we may putT 1 = 12(E + F ), T 2 = 12i(E � F ), and T 3 = 12H. Then one de�nes, for n 2Z,Ln = 1k + 2Xa Xm : T an�mT am : (424)90



with T am = T a 
 tm. As elements of EndC (V ^) the Ln obey the Virasoro relations[Ln; Lm] = (n�m)Ln+m + c12n(n2 � 1) (425)with central charge c = 3kk+2 . The projective representation is now given byXn �ntn+1@t 7! �Xn �n Ln: (426)Vect(S1) also acts by derivations on Lg. The explicit formula is(�(t)@t; X(t)) 7! �(t)X 0(t): (427)It extends to an action on Lgk̂ by letting vector �elds act by zero on the center.For z1; : : : ; zn 2 C[n](� ), let Vect(z1; : : : ; zn) be the Lie algebra of meromorphicvector �elds on C , holomorphic on C n L(z1; : : : ; zn), such that �(z + 1) = �(z) and�(z + � ) = �(z).For � 2 Vect(z1; : : : ; zn), let �j(�) = �(zj + t)@t denote the Laurent expansion of �at zj viewed as an element of Vect(S1). Through Sugawara's construction it is mappedto an element of End(Vĵ ). We then de�ne as above�(�) = �1(�) � � � � � �n(�): (428)It turns out that, in EndC (V1̂ 
 � � � 
 Vn̂ ), we have the equation�([�; �]) = [�(�); �(�)] + c12 Xj resz=zj (�000(z)�(z)): (429)But the sum of residues is again zero so that we obtain an action of the Lie algebraVect(z1; : : : ; zn) on V1̂ 
 � � � 
 Vn̂ . Moreover, it can be shown that�(�(X)) = [�(�); �(X)]; (430)for � 2 Vect(z1; : : : ; zn) and X 2 g(z1; : : : ; zn; �). That is, this action intertwines thenatural action of vector �elds on functions.7.4 Conformal blocksFor (z1; : : : ; zn; �) 2 �[n](� ), we de�ne the space E(z1; : : : ; zn; �) of conformal blocks asthe vector space of linear formsG : V1̂ 
� � �
Vn̂ ! C such that, forX 2 g(z1; : : : ; zn; �)and v 2 V1̂ 
� � �
Vn̂ , G satis�es hG;�(X)vi = 0. That is, G is required to be invariantunder the action of g(z1; : : : ; zn; �).We will also want to vary the parameters (z1; : : : ; zn; �). The behavior under vari-ations of these parameters is determined by a further condition. This condition tellsthat conformal blocks are at with respect to the FS connection.91



In the following, we let (z1; : : : ; zn; �) take values in an open subset U [n] � �[n](� ).We denote by P [n](� ) the setP [n](� ) = f(z1; : : : ; zn; �; z) 2 U [n] � C j z 2 L(z1; : : : ; zn)g: (431)Then we de�ne g(U [n]) to be the Lie algebra of meromorphic functions X : U [n] �C ! g, holomorphic on (U [n] � C ) n P [n](� ), such that, for (z1; : : : ; zn; �) 2 U [n],X(z1; : : : ; zn; �; �) 2 g(z1; : : : ; zn; �). It generalizes our previous de�nition.To introduce the FS connection, we require the following auxiliary function. Let� : U [n]� C ! C be a meromorphic function, holomorphic on (U [n]� C ) nP [n](� ), suchthat, for (z1; : : : ; zn; �) 2 U [n], �(z) = �(z1; : : : ; zn; �; z) satis�es �(z + 1) = �(z) and�(z + � ) = �(z)� 2�i. The example which we will have in mind is�(z) = �01(z � zj; � )�1(z � zj; � ); (432)where �1(z; � ) = #1(�z; � ) is a Jacobi theta function, see [GR80]. But the followingconsiderations will be independent of the particular choice of �.We de�ne �rst order di�erential operators on g(U [n]) by the formulasDzjX = @zjX; D�X = @�X + [H 
 �;X]: (433)We leave it as an exercise to show that they map g(U [n]) to itself.Let us now introduce �rst order di�erential operators on the space of holomorphicfunctions G : U [n] ! (V1̂ 
� � �
Vn̂ )0, the space of multilinear formas on V1̂ 
� � �
Vn̂ ,as follows rzjG = @zjG�GL(j)�1; r�G = @�G �G�(H 
 �): (434)Here �(H 
 �) is given by (422) and �(�@z) by (428).The FS connection is the connectionr =Xj dzjrzj + d�r� (435)on the in�nite rank trivial vector bundle U [n] � (V1̂ 
 � � � 
 Vn̂ )0. For G : U [n] !(V1̂ 
 � � � 
 Vn̂ )0 and X 2 g(U [n]), it obeysr(G�(X)) = (rG)�(X) +G�(DX); (436)where D denotes the expressionD =Xj dzj Dzj + d�D�: (437)This property ensures that the connection restricts properly to the subbundle of con-formal blocks. The restriction of r to conformal blocks is at.92



Let E(U [n]) be the space of holomorphic functions G : U [n] ! (V1̂ 
� � �
Vn̂ )0 suchthat, for (z1; : : : ; zn; �) 2 U [n], G(z1; : : : ; zn; �) is an element of E(z1; : : : ; zn; �). Dueto (436), the FS connection leaves E(U [n]) invariant. Elements of E(U [n]) are calledholomorphic conformal blocks.The horizontality condition is that G 2 E(U [n]) is required to satisfy the equationsrzjG = 0; r�G = 0; (438)for �xed modular parameter � . Eq. (438) completes the construction of holomorphicconformal blocks for the purpose of these notes. It is also possible to vary consistentlythe parameter � , but we will not need this here.7.5 Knizhnik-Zamolodchikov-Bernard equationIn this section we will consider holomorphic conformal blocks G restricted to the sub-space V1
� � �
Vn of V1̂ 
� � �
Vn̂ . The value of a conformal block on general vectorsin V1̂ 
 � � � 
 Vn̂ can be computed as the image of certain di�erential operators in �with coe�cients depending on (z1; : : : ; zn; �) acting on G, evaluated on certain vectorsin V1 
 � � � 
 Vn.The condition (438) can be written in a more explicit form, when the conformalblocks are restricted to the subspace V1
� � �
Vn of V1̂ 
� � �
Vn̂ . For v 2 V1
� � �
Vn,the horizontality condition rzjG = 0 reads(k + 2)@zj hG; vi = hG; (12H�1H0 + E�1F0 + F�1E0)(j)vi: (439)Recall that Vj is annihilated by En, Fn, and Hn with n > 0.To proceed we require another auxiliary function h : U [n] � C ! C . It is themeromorphic function h(�; z) = h(z1; : : : ; zn; �; z) given by the ratioh(z) = �1(z � 2�; � )�01(0; � )�1(z; � )�1(�2�; � ) (440)of Jacobi theta functions.The functions E 
 h(�; z � zj) and F 
 h(��; z � zj) are elements of g(U [n]). Asfunctions of z they have simple poles at z = zj. For w 2 V1
� � �
Vn, we then computehG;�(E 
 h(�; z � zj))wi =hG; f(E�1 + �01(�2�; � )�1(�2�; � ) E0)(j) +Xk 6=j h(��; zk � zj)E(k)0 gwi (441)and hG;�(F 
 h(��; z � zj))wi =hG; f(F�1 + �01(2�; � )�1(2�; � ) F0)(j) +Xk 6=j h(��; zk � zj)F (k)0 gwi: (442)93



But due to g(U [n])-invariance both right hand sides are zero. As a result we can expresshG;E(j)�1wi and hG;F (j)�1wi in terms of G evaluated on certain vectors in V1 
 � � � 
 Vn.For w 2 V1 
 � � � 
 Vn, the second horizontality condition r�G = 0 takes the form@�hG;wi = hG; fH(j)�1 +Xk 6=j �01(zk � zj; � )�1(zk � zj; � )H(k)0 gwi: (443)From it we obtain an expression for hG;H(j)�1wi.Both horizontality conditions together in this explicit form yield the di�erentialequation (k + 2)@zjG = (12@� + �01(2�; � )�1(2�; � ))GH(j)0 �Xk 6=jG
(k;j); (444)with 
(k;j) = h(�; zk � zj)E(k)0 F (j)0 + h(��; zk � zj)F (k)0 E(j)0 +12 �01(zk � zj; � )�1(zk � zj; � ) H(k)0 H(j)0 : (445)This equation is called the KZB equation. The tensor 
(k;j) is a unitary solution ofa genus one generalization of the classical Yang-Baxter equation. The Yang-Baxterequation is a consistency condition reecting the fact that the KZB equation comesfrom an integrable connection.The calculation of this section shows one part of the following theorem.Theorem 7.1 Let U [n] be any su�ciently small neighborhood of a point in �[n](� ). LetE0(U [n]) be the space of holomorphic functions on U [n] with values in the linear formson V1 
 � � � 
 Vn invariant under the action of the Cartan subalgebra CH . Then thenatural map E(U [n])! E0(U [n]) (446)restricts to an isomorphism between the space of conformal blocks obeying the horizon-tality condition (438) and the space of local solutions in E0(U [n]) of the KZB equation.7.6 Weyl invarianceIn this section we introduce the notion of solutions invariant under a doubly a�neversion of the Weyl group of sl2(C ).For � 2 H+, let W (� ) be the group of transformations of C given by (�; !)(�) =�� + !, where � 2 f�1g and ! 2 L(� ). That is, W (� ) is a semidirect product of Z2with Z�Z. 94



Let us �x (z1; : : : ; zn) 2 C [n](� ). For  2 W (� ), the meromorphic Lie algebrasg(z1; : : : ; zn; �) and g(z1; : : : ; zn; (�)) are isomorphic. We have explicit formulas forisomorphisms �() : g(z1; : : : ; zn; �)! g(z1; : : : ; zn; (�)) (447)for the generators (�1; 0), (1; 1), and (1; � ) of W (� ). They are given by�(�1; 0)X(z) = exp(�i2 adH)exp(�i2 adE+F )X(z) (448)�(1; 1)X(z) = X(z) �(1; � )X(z) = exp(2�iadH)X(z): (449)We have seen that g(z1; : : : ; zn; �) acts on V1̂ 
� � �
Vn̂ . This action has been denotedby �. There exists an action � of W (� ) on V1̂ 
 � � � 
 Vn̂ such that, for  2 W (� ),�(�()X)�() = �()�(X): (450)For the generators of W (� ), this action can be written explicitly in the form�(�1; 0) = 
j(exp(�i2 H0)exp(�i2 (E0 + F0)))(j); (451)�(1; 1) = id; �(1; � ) = (exp(2�i(zjH0 +H1)))(j): (452)That is, the action os W (� ) is intertwined by isomorphisms of V1̂ 
 � � � 
 Vn̂ .For G 2 E(z1; : : : ; zn; (�)), it follows that G�() 2 E(z1; : : : ; zn; �). At this pointwe want to vary the parameters again. For the generators of W (� ), we de�ne functionsg(�1;0)(z1; : : : ; zn; �) = exp(2� k �); (453)g(1;1)(z1; : : : ; zn; �) = g(1;�)(z1; : : : ; zn; �) = 1: (454)Let  be a generator of W (� ). We then de�ne transformed conformal blocks byG(z1; : : : ; zn; �) = g(z1; : : : ; zn; �)G(z1; : : : ; zn; (�))�(): (455)It can be shown that G is a holomorphic conformal block provided that G is holo-morphic conformal block. G satis�es the KZB equation if G does. A solution is thencalled invariant under W (� ) if it obeysG(z1; : : : ; zn; �) = G(z1; : : : ; zn; �): (456)The condition of invariance under the doubly a�ne Weyl group, and regularity of G asa function of � 2 C selects a �nite dimensional space of solutions to the KZB equation.If the level is a positive integer, and the highest weights are integrable (see [K84])the space of conformal blocks contains, according to [TUY89] (for � = 0, but the proofin [TUY89] extends to the case of general �) a �nite dimensional subspace of conformalblocks that are de�ned on the tensor product of irreducible quotients of Vermamodules.The horizontal sections in this subspace are conjecturally contained in the above spaceof solutions, (see [FG92], where this is proven in a slightly di�erent setting). Moreoverin this case one can write down integral representations of solutions.95



8 Conformal blocks on elliptic curves and the Knizhnik{Zamolodchikov{Bernard equationsWe give an explicit description of the vector bundle of WZW conformal blocks on ellip-tic curves with marked points as subbundle of a vector bundle of Weyl group invariantvector valued theta functions on a Cartan subalgebra. We give a partly conjecturalcharacterization of this subbundle in terms of certain vanishing conditions on a�nehyperplanes. In some cases, explicit calculation are possible and con�rm the conjec-ture. The Friedan{Shenker at connection is calculated, and it is shown that horizontalsections are solutions of Bernard's generalization of the Knizhnik{Zamolodchikov equa-tion.8.1 IntroductionThe aim of this chapter is to give a description of conformal blocks of the Wess{Zumino{Witten model on genus one curves as explicit as on the Riemann sphere.Let us recall the well-known situation on the sphere. One �xes a simple �nitedimensional complexLie algebra g , with invariant bilinear form ( ; ), normalized so thatthe longest roots have length squared 2, and a positive integer k called level. One thenconsiders the corresponding a�ne Kac{Moody Lie algebra, the one dimensional centralextension of the loop algebra g 
 C ((t)) associated to the 2-cocycle c(X 
 f; Y 
 g) =(X;Y ) res dfg. Its irreducible highest weight integrable representations of level (= valueof central generator) k are in one to one correspondence with a certain �nite set Ik of�nite dimensional irreducible representations of g . These representations extend, bythe Sugawara construction, to representations of the a�ne algebra to which an elementL�1 is adjoined, such that [L�1;X 
 f ] = �X 
 ddtf . Then to each n-tuple of distinctpoints z1, : : : , zn on the complex plane, and of representations V1, : : : , Vn in Ik oneassociates the space of conformal blocks E(z1; : : : ; zn). It is the space of linear formson the tensor product 
n1V ^i of the corresponding level k representations of the a�nealgebra, which are annihilated by the Lie algebra L(z1; : : : ; zn) of g -valued meromorphicfunctions with poles in fz1; : : : ; zng and regular at in�nity. The latter algebra acts on
V ^i by viewing L(z1; : : : ; zn) as a Lie subalgebra of the direct sum of n copies of theloop algebra via Laurent expansion at the poles. The central extension does not causeproblems as the corresponding cocycle vanishes on L(z1; : : : ; zn) in virtue of the residuetheorem.It turns out that the spaces E(z1; : : : ; zn) are �nite dimensional and are the �bers ofa holomorphic vector bundle over the con�guration space C n� diagonals, carrying theat connection d�Pi dziL(i)�1 (L(i)�1 acts on the right of a linear form) given in terms ofthe Sugawara construction. We use the notation X(i) = � � � 
 Id
X 
 Id � � � to denotethe action of on the ith factor of a tensor product.This part of the construction generalizes to surfaces of arbitrary genus (see [TUY89]).What is new is that one has to also specify local coordinates around the points zi togive a meaning to the Laurent expansion, and that the connection is in general only96



projectively at (i.e., the curvature is a multiple of the identity).To give a more explicit description of the vector bundle of conformal blocks on thesphere, and in particular to compute the holonomy of the connection, one observes thatthe map E(z1; : : : ; zn)! (
iVi)� given by restriction to Vi � V ^i is injective. Thus wecan view E as a subbundle of a trivial vector bundle of �nite rank. This subbundlecan be described by an explicit algebraic condition [FSV]. After this identi�cationthe connection can be given in explicit terms and the equation for horizontal sectionsreduces to the famous Knizhnik{Zamolodchikov equations(k + h_)@zi!(z1; : : : ; zn) = Xj:j 6=iXa T (i)a T (j)azi � zj !(z1; : : : ; zn): (457)In this equation, h_ is the dual Coxeter number of g and Ta, a = 1; : : : ;dim(g )is any orthonormal basis of g . We view here the dual spaces V �i as contragradientrepresentations. Let us now consider the situation on genus one curves, which weview as C =Z+ �Zfor � in the upper half plane. Let us denote by E(z1; : : : ; zn; � ) thespace of conformal blocks. Again, by [TUY89], this is the �nite dimensional �ber of aholomorphic vector bundle with at connection on the elliptic con�guration space C [n]of n+ 1-tuples (z1; : : : ; zn; � ) with Im(� ) > 0 and zi 6= zj mod Z+ �Zif i 6= j.The trouble is that the restriction to 
iVi is no longer injective, the reason beingthat there are no meromorphic functions on elliptic curves with one simple pole only.The way out is the following construction which brings the moduli space of at G-bundles into the game. Consider the Lie algebras L(z1; : : : ; zn; �; �), parametrized by �in a Cartan subalgebra h , of Z-periodic meromorphic functions X : C ! g with polesat z1, : : : , zn modulo Z+ �Z, such that X(t+ � ) = exp(2�i ad�)X(t).These algebras act on 
iV ^i and we can de�ne a space of (twisted) conformal blocksEh (z; �; �) as space of invariant linear forms (see 8.2.3). The original space of conformalblocks is recovered by setting � = 0.It turns out that Eh (z; �; �) is again the �ber over (z; �; �) of a holomorphic vectorbundle Eh over C [n]�h with at connection, whose restriction to C [n]�f0g is E. Thuswe can by parallel transport in the direction of h identify the space of sections E(U)of E over an open set U � C [n] with the space of sections of Eh which are horizontalin the direction of h : E(U) ' Eh (U � h )hor: (458)The point is now that the restriction mapEh (U � h )hor ! (
iVi)� 
O(U � h ); (459)to V [n] is injective (Proposition 8.9). Composing these two maps we may view the vectorbundle of conformal blocks as a subbundle of an explicitly given vector bundle on C [n]of �nite rank. Indeed we show that the image is contained in the space of functionson U � h which have de�nite transformation properties (of theta function type) under97



translations of � by Q_+�Q_ where Q_ denotes the coroot lattice. Moreover the thetafunctions in the image are invariant under a natural action of the Weyl group, and obeya certain vanishing condition as the argument approaches a�ne root hyperplanes. Weconjecture that these conditions characterize completely the image. This conjecture iscon�rmed in some cases, including a special case which arises [EK94] in the theory ofquantum integrable many body problems (see 8.4.1): we describe explicitly the space ofconformal blocks in the case of slN , n = 1, where the representation is any symmetricpower of the de�ning N -dimensional representation.The characterization of conformal blocks in terms of invariant theta functions obey-ing vanishing conditions was �rst given (in the sl2 case) by Falceto and Gaw�edzki[FG92], who de�ne conformal blocks as Chern{Simons states in geometric quantiza-tion.After the identi�cation of conformal blocks as subbundle of the \invariant thetafunction" bundle, we describe the connection in explicit terms (Theorem 8.24), andget a generalization of the Knizhnik{Zamolodchikov equations. These equations wereessentially written by Bernard [Be88a, Be88b] in a in a slightly di�erent context, andwere recently reconsidered from a more geometrical point of view in [FG92]. They havethe form (see Sect. 8.4)�@zj ~! = �X� h(j)� @�� ~! + Xl:l6=j 
(j;l)(zj � zl; �; �)~!; (460)4�i�@� ~! = X� @2�� ~! +Xj;l H(j;l)(zj � zl; �; �)~!; (461)for some tensors 
, H 2 g 
 g , given in terms of Jacobi theta functions. Here ~! isrelated to ! by multiplication by the Weyl{Kac denominator. Thus, the right way tolook at these equations is to view u as a section of a subbundle of the vector bundleover the elliptic con�guration space of n+1 tuples (z1; : : : ; zn; � ), whose �ber is a �nitedimensional space of invariant theta functions.In this chapter we do not discuss an alternative approach to conformal blocks onelliptic curves, which is in terms of traces of products of vertex operators. Bernard[Be88a] showed that such traces obey his di�erential equations. Using this formulation,integral representation of solutions were given in the sl2 case in [BF90]. To complete thepicture, one should show that those solutions are indeed theta functions with vanishingcondition.Let us also point out the paper [EFK94] that shows that the same space of invarianttheta functions with vanishing condition can be identi�ed with a space of equivariantfunctions on the corresponding Kac{Moody group.8.2 Conformal blocks on elliptic curves8.2.1 Elliptic con�guration spacesLet H+ = f� 2 C j Im � > 0g be the upper half plane and for � 2 H+ denote by L(� )the latticeZ+�Z� C . Let n be a positive integer. We de�ne the elliptic con�guration98



space to be the subset of C n � H+ consisting of points (z1; : : : ; zn; � ) so that zi 6= zjmod L(� ) if i 6= j.The space of points (z; � ) 2 C [n] with �xed � is a covering of the con�guration spaceof n ordered points on the elliptic curve C =L(� ).8.2.2 Meromorphic Lie algebrasLet g be a complex simple Lie algebra with dual Coxeter number h_ and k be apositive integer. Fix a Cartan subalgebra h of g and let g = h � (��2�g �) be thecorresponding root space decomposition. The invariant bilinear form is normalized insuch a way that (�_; �_) = 2 for long roots � (see [H80]). We choose an orthonormalbasis (h�) of h . The symmetric invariant tensor C 2 g 
 g dual to ( ; ) admits thena decomposition C = P�2�[f0gC�, with C0 = �h� 
 h� 2 h 
 h and C� 2 g � 
 g��,if � 2 �.We de�ne a family of Lie algebras of meromorphic functions with values in gparametrized by C [n] � hDe�nition: For (z; � ) = (z1; : : : ; zn; � ) 2 C [n] and � 2 h , let L(z; �; �) be the Liealgebra of meromorphic functions t 7! X(t) on the complex plane with values in gsuch that X(t+ 1) = X(t); X(t+ � ) = exp(2�i ad�)X(t); (462)and whose poles belong to [ni=1zi+L(� ). More generally, for any open set U � C [n]�hlet Lh (U) be the Lie algebra of meromorphic functions (t; z; �; �) 7! X(t; z; �; �) onC �U with values in g , whose poles are on the hyperplanes t = zi+ r+ s� , 1 � i � n,r; s 2 Z, and such that for all (z; �; �) 2 U , the function t ! X(t; z; �; �) belongs toL(z; �; �). Similarly, de�ne L(U) for an open subset U of C [n] to be the Lie algebra ofmeromorphic functions (t; z; � ) 7! X(t; z; � ) on C �U with values in g , whose poles areon the same hyperplanes, and such that for all (z; � ) 2 U , the function t! X(t; z; � )belongs to L(z; �; 0).An explicit description of these Lie algebras is given in Appendix 8.5.1. An importantproperty is that they have a �ltration by locally free �nitely generated sheaves: LetO(U) be the algebra of holomorphic functions on an open set U � C [n] � h , and forany non-negative integer j let L�jh (U) be the O(U)-submodule of Lh (U) consisting offunctions whose poles have order at most j. Similarly we de�ne L�j(U) for open setsU 2 C [n]. The assignments U ! L�j(U), U ! L�jh (U) are sheaves of O-modules.Proposition 8.1 L�jh is a locally free, locally �nitely generated sheaf of O-modules.In other words, every point in C [n] � h has a neighborhood U such that L�jh (U) 'C nj 
O(U) as an O(U)-module, for some nj . Moreover for each x 2 C [n] � h , everyX 2 L(x) extends to a function in L�jh (U) for some j and U 3 x. The same resultshold for L�j .The proof is contained in Appendix 8.5.1 (see Corollary 8.27).99



8.2.3 Tensor product of a�ne Kac{Moody algebra modulesLet Lg = g 
 C ((t)) be the loop algebra of g . Fix a positive integer k 2 N. LetLg ^ = Lg � CK be the central extension of Lg associated with the 2-cocyclec(X 
 f; Y 
 g) = (X;Y ) res(f 0gdt); (463)where the residue of a formal Laurent series is given by res(Pn antndt) = a�1. Thusthe Lie bracket in Lg ^ has the form[X 
 f � �K; Y 
 g � �K] = [X;Y ]
 fg � c(X;Y )K: (464)With every irreducible highest weight g -module V is associated an irreducible highestweight Lg ^-module V ^ of level k. Its construction goes as follows. The action ofg is �rst extended to the Lie subalgebra b+ = g 
 C [[t]] � CK of Lg ^, by lettingg 
 tC [[t]] act by zero and the central element K by k. Then a generalized Vermamodule ~V = U(Lg ^)
U(b+) V is induced. It is freely generated by (any basis of) V asa g 
 t�1C [t�1 ]-module. The polynomial subalgebra Lg P = g 
 C [t; t�1]� C of Lg ^is Z-graded with deg(X 
 tj) = �j. Since ~V ' U(Lg P̂ )
U(b+\Lg P̂ ) V , the generalizedVerma module is naturally graded. By de�nition the irreducible module V ^ is thequotient of the generalized Verma module by its maximal proper graded submodule.We will consider integrable modules, V ^ of �xed level k = 0; 1; 2; : : : . If we �x aset of simple roots �1; : : : ; �l 2 �, and denote by � the corresponding highest root, V ^is integrable of level k if the irreducible g -module V has highest weight � in the thesubset Ik = f� 2 P j(�; �i) � 0; i = 1; : : : ; l; (�; �) � kg; (465)of the weight lattice P . Let v be the highest weight vector of V and e� a generator ofg �. Then the maximal proper submodule is generated by (e� 
 t�1)k�(�;�)+1v.The grading extends to V ^[n] by setting deg(v1 
 � � � 
 vn) = �deg(vi). With ourconvention all homogeneous vectors have non-negative degree.Fix n highest weight g -modules Vj , 1 � j � n such that the corresponding Lg ^-modules V ^j are integrable of level k, and let � 2 H+ and z1; : : : ; zn complex numberswith zi 6= zj mod L(� ) if i 6= j. We think of Vĵ as an Lg ^-module which is attachedto the point zj.In the following we will use the abbreviations V [n] = V1 
 � � � 
 Vn and V ^[n] =V1̂ 
 � � � 
 Vn̂ .We now construct an action of L(z; �; �) on V ^[n]. For X 2 L(z; �; �) let �j(X) =X(zj+ t) 2 g 
C ((t)) be the Laurent expansion of X at zj viewed as a formal Laurentseries in t. Then �(X) = �1(X) � � � � � �n(X); (466)de�nes a Lie algebra embedding of L(z; �; �) into Lg � � � � � Lg . As a vector spaceLg � � � � �Lg is embedded in Lg ^� � � � �Lg ^. The embedding is of course not a Lie100



algebra homomorphism. Since Lg ^ � � � � � Lg ^ acts on V ^[n] we obtain a map fromL(z; �; �) to EndC (V ^[n]). This map will also be denoted by �. Thanks to the residuetheorem it turns out to be a Lie algebra homomorphism.Proposition 8.2 For X, Y 2 L(z; �; �),�([X;Y ]) = [�(X); �(Y )]: (467)Proof : In EndC (V ^[n]) we have the equation�([X;Y ]) = [�(X); �(Y )] + k nXj=1 rest=zj ((X 0(t); Y (t)) dt) : (468)But (X 0(t); Y (t)) is doubly periodic (by ad-invariance of ( ; )) so that the sum ofresidues vanishes. �8.2.4 Vector �eldsThe Lie algebra Vect(S1) = C ((t)) ddt of formal vector �elds on the circle acts by deriva-tions on Lg . Let us denote this action simply by (�(t) ddt ;X(t)) 7! �(t) ddtX(t). Itextends to an action on Lg ^ by letting vector �elds act trivially on the center. TheSugawara construction yields a projective representation of Vect(S1) on V ^, for any�nite dimensional g -module V . The Sugawara operators Ln 2 End(V ^) are de�nedby choosing any basis fB1; : : : ; Bdg of g , with dual basis fB1; : : : ; Bdg of g so that(Ba; Bb) = �ab, and settingLn = 12(k + h_) Xm2Z dXa=1(Ba 
 tn�m)(Ba 
 tm); n 6= 0 (469)L0 = 12[L1; L�1]: (470)These operators are independent of the choice of basis and obey the commutationsrelations of the Virasoro algebra [Ln; Lm] = (n � m)Ln+m + c12(n3 � n) with centralcharge c = k dim(g )=(k + h_). ThenXn �ntn+1 ddt 7! �Xn �nLn 2 End(V ^); (471)de�nes a projective representation of Vect(S1) on V ^, with the intertwining property[�(t) ddt ;X(t)] = �(t) ddtX(t), for anyX(t) 2 Lg ^. Note that all in�nite sums are actually�nite when acting on any vector in V ^. 101



8.2.5 Conformal blocksFor a Lie algebra module V we denote by V � the dual vector space with natural (right)action of the Lie algebra. The notation h!; vi will be used to denote the evaluation ofa linear form ! on a vector v.De�nition: The space of twisted conformal blocks associated to data g , k, V1; : : : ; Vn asabove, is the space Eh (z; �; �) of linear functionals on V ^[n] annihilated byL(z1; : : : ; zn; �; �).If � = 0, then E(z; � ) = Eh (z; �; 0) is called the space of conformal blocks at (z; � ).Let us vary the parameters: let U be an open subset of C [n] � h . Then the space ofholomorphic functions ! : U ! V ^[n]�, (i.e., of functions ! whose evaluation h!; ui onany �xed vector u 2 V ^[n] is holomorphic on U), is a right Lh (U)-module.De�nition: The space Eh (U) of holomorphic twisted conformal blocks on U � C [n]� his the space of V ^[n]�-valued holomorphic functions !, so that for all open subsets U 0 ofU , the restriction of ! to U 0 is annihilated by Lh (U 0). We also de�ne the space E(U)of holomorphic conformal blocks on U � C [n] by replacing Lh by L.With this de�nition, the assignments U 7! Eh (U), U 7! E(U) are sheaves of O-modules.Lemma 8.3 Let U be an open subset of C [n] � h (resp. of C [n]). Then ! 2 Eh (U)(resp. E(U)) if and only if ! is holomorphic on U and !(x) 2 Eh (x) (resp. E(x)) forall x 2 U .Proof : It is obvious that if ! is holomorphic and if !(x) 2 Eh (x) for all x 2 U , then! 2 Eh (U). Let ! 2 Eh (U), and x 2 U . To show that !(x) 2 Eh (x), we haveto show that every element X of L(x) is the restriction of an element of Lh (U 0) forsome neighborhood U 0 of x. But this follows from Prop. 8.1. The same applies in theuntwisted case. �8.3 Flat connections, theta functions8.3.1 The at connectionFor each open subset U of C [n] � h we have de�ned a Lie algebra Lh (U) acting onV ^[n](U), the space of holomorphic functions on U with values in V ^[n]. It is con-venient to extend this de�nition. Let G be the simply connected complex Lie groupwhose Lie algebra is g , and for (z; �; g) 2 C [n] �G, let L(z; �; g) be the Lie algebra ofmeromorphic g -valued functions X(t), on the complex plane whose poles modulo L�belong to fz1; : : : ; zng, and with multipliersX(t+ 1) = X(t); X(t+ � ) = Ad(g)X(t): (472)If U is an open subset of C [n]�G, de�ne LG(U) to be the Lie algebra of meromorphicfunctions on U � C 3 (z; �; g; t) whose poles are on the hyperplanes t = zi + n +m� ,102



n;m 2 Z, and restricting to functions in L(z; �; g) for �xed (z; �; g) 2 U . As above,we introduce the space EG(z; �; g) of L(z; �; g)-invariant linear forms on V ^[n], and thesheaf U ! EG(U) of LG(U) invariant holomorphic V ^[n]�-valued functions.Let �(z; �; t) be a meromorphic function on C [n] � C whose poles belong to thehyperplanes t = zi + n +m� and such that, as function of t 2 C ,�(z; �; t+ 1) = �(z; �; t); �(z; �; t+ � ) = �(z; �; t)� 2�i: (473)Although the construction does not depend on which � we chose, we will always set�(z; �; t) = �(t� z1; � ); (474)�(t; � ) = @@t log �1(tj� ); (475)�1(tj� ) = � 1Xj=�1 e�i(j+ 12 )2�+2�i(j+ 12 )(t+ 12 ); (476)for de�niteness.Let AY (z; �; g; t) be a meromorphic function on C [n] � G � C , depending linearlyon Y 2 g , whose poles as a function of t belong to fz1; : : : ; zng, and such thatAY (z; �; g; t+ 1) = AY (z; �; g; t); (477)AY (z; �; g; t+ � ) = Ad(g)(AY (z; �; g; t)� Y ): (478)If  (A) = Pj2Zei�(j+ 12 )2� (�A)j, we may take AY to beAY (z; �; g; t) = 11�Ad(g�1)(1 �  (e2�i(t�z1)Ad(g�1)) (e2�i(t�z1)) )Y: (479)Note that for �xed z; �; t and Y , AY extends to a regular function of g 2 G.Denote by @Y the derivative in the direction of the left invariant vector �eld on Gassociated to Y 2 g : @Y f(g) = lim�!0 dd�f(g exp �Y ), and by @zi, @� , @t the partialderivatives with respect to the coordinates zi; �; t of C [n] � C .The properties (473), (477) imply theProposition 8.4 Let U be an open subset of C [n] �G. The di�erential operatorsDziX(x; t) = @ziX(x; t); (480)D�X(x; t) = @�X(x; t)� 12�i�(x; t)@tX(x; t); (481)DYX(x; t) = @YX(x; t) + [AY (x; t);X(x; t)]; x = (z; �; g) 2 U � C ; (482)map LG(U) to itself. 103



Therefore, we have a connection D : LG(U) ! 
1(U) 
 LG(U), de�ned by D =P dzj 
Dzj + d� 
D� +P �a 
D�a , for any basis of left invariant vector �elds �a onG with dual basis �a.We proceed to de�ne a connection on EG. Consider �rst the following di�erentialoperators on the space V ^[n](U) of V ^[n]-valued holomorphic functions on the open setU � C [n] �G. rziv(x) = @ziv(x) + L(i)�1v(x); (483)r�v(x) = @�v(x)� 12�i�(�(x)@t)v(x); (484)rY v(x) = @Y v(x) + �(AY (x))v(x); x 2 U: (485)In this formula the de�nition of the operator � taking the Laurent expansion at thepoints zi (see (466)) is extended to general meromorphic g -valued functions and vector�elds considered as a function of the variable t 2 C . For a meromorphic vector �eld� = �(t) ddt on the complex plane we set �(�) = ��i(�), with �i(�) = �(zi+t) ddt 2 C ((t)) ddt .Let r : V ^[n](U)! 
1(U)
 V ^[n](U) denote the connection P dzj 
rzj + d� 
r� +P �a 
r�a,Proposition 8.5 The connections D, r obey the compatibility conditionr(Xv) = (DX)v +Xrv; X 2 LG(U); v 2 V ^[n]: (486)Proof : This is veri�ed by explicit calculation. �This has the following consequence. De�ne r on holomorphic functions ! on Uwith values in the dual V ^[n]� (i.e., such that h!(x); vi is holomorphic on U for allv 2 V ^[n]) by the formula hr!(x); v(x)i = dh!(x); v(x)i � h!(x);rv(x)i.Corollary 8.6 The connection r preserves twisted holomorphic conformal blocks, i.e.,it maps EG(U) to 
1(U)
 EG(U).Proposition 8.7 The connection r on EG(U) is at.Proof : For X;Y 2 g , the curvature F (X;Y ) = [rX;rY ] � r[X;Y ] is given by theexpression F (X;Y ) = @X�(AY )� @Y �(AX) + [�(AX); �(AY )]� �(A[X;Y ]): (487)Note that the cocycle Z( ddtAX; AY )dt; (488)vanishes: indeed, the integrand I(t) is Z-periodic and obeys I(t + � ) = I(t) + ddtg(t)for some Z-periodic function g(t) and the integration cycle  can be decomposed into104



a sum of contours bounding some fundamental domains. The contributions of the fouredges cancel by periodicity, except for a term R x+1x g0(t)dt = 0.Thus we can write F as F (X;Y ) = �( ~F (X;Y )); (489)~F (X;Y ) = @XAY � @YAX + [AX; AY ]�A[X;Y ]: (490)Now, as a simple calculation shows, ~F (X;Y ), viewed as a function of t 2 C with valuesis g , is Z-periodic, and obeys ~F (X;Y )(t+ � ) = Ad(g) ~F (X;Y )(t), as a consequence of(477). Thus F (X;Y ) is in the image of LG(U), and vanishes on invariant linear forms.A similar reasoning applies to the commutators [rzi;rX], [r� ;rX], X 2 g . Thesecommutators are also in the image of LG(U) and thus vanish on invariant forms. Weare left with the commutator [r� ;rzi], which vanishes except possibly for i = 1. Theproof that it vanishes also for i = 1 will be given later on (see 8.4.1). �The group G acts on V ^[n], since the cocycle vanishes on g � Lg ^. Denote thisaction simply G� V ^[n] 3 (h; v) 7! hv.Proposition 8.8 For all h 2 G, X ! Ad(h)X is a Lie algebra isomorphism fromL(z; �; g) to L(z; �; hgh�1). Thus the map X 7! �hX with �hX(z; �; g) = Ad(h)X(z; �; h�1gh)is an isomorphism from LG(U) to LG(U 0) for any open U � C [n] � G, where U 0 =f(z; �; hgh�1)j(z; �; g) 2 Ug. Moreover, for any X 2 LG(U), �(Ad(h)X) = h�(X)h�1,and thus �h!(z; �; g) = !(z; �; hgh�1)h de�nes an isomorphism �h : EG(U 0)! EG(U).This isomorphism maps horizontal sections to horizontal sections.Proof : The �rst statement follows immediately from the de�nitions. The fact that�(Ad(h)X) = h�(X)h�1 is also clear, once one notices that the 2-cocycle de�ning thecentral extension vanishes if one of the arguments is a constant Lie algebra element.Finally h commutes with rzi and r� , and we have rX�h = �hrAd(h)X, X 2 g . Thelatter identity follows from the equality (see (479))Ad(h)AX(z; �; g; t) = AAd(h)X(z; �; hgh�1; t): (491)Thus �h preserves horizontality. �The existence of a connection implies, as in [TUY89], that the sheaf U 7! EG(U) is(the sheaf of holomorphic sections of) a holomorphic vector bundle whose �ber over xis EG(x). This follows once one notices that EG(U) is actually a subsheaf of a locallyfree �nitely generated sheaf carrying a connection whose restriction to EG is r. Detailson this point are in Appendix 8.5.2.To make connection with the previous sections, consider the pull back of EG bythe map � 7! exp(2�i�), from h to G. It is the vector bundle Eh on C [n] � h . Let usintroduce coordinates �� on h with respect to some orthonormal basis (h�). Then thepull-back connection on Eh is given by (483), (484), and, in the direction of �,r�� = @�� � �(h��(� � z1; � )): (492)105



Moreover, we can use the connection to identify by parallel translation the space ofconformal blocks E(U) with the space of twisted conformal blocks ! in EG(U �G) (orin Eh (U � h )) such that rX! = 0, X 2 g (or r��! = 0, respectively). Here we usethe fact that G and h are simply connected.The point of this construction is given by the following result. Let V [n]�(U) be thespace of holomorphic functions on an open set U with values in the �nite dimensionalspace V [n]�. We also set, for any open subset U of C [n] �G, or C [n] � h , respectively,EG(U)hor = f! 2 EG(U)jrX! = 0; 8X 2 g g; (493)Eh (U)hor = f! 2 Eh (U)jrX! = 0; 8X 2 h g: (494)Proposition 8.9 The compositions�G : E(U)! EG(U �G)hor ! V [n]�(U �G); (495)�h : E(U)! Eh (U � h )hor ! V [n]�(U � h ); (496)where the �rst map sends a holomorphic conformal block ! to the unique twisted holo-morphic conformal block horizontal in the G (resp. h ) direction, which coincides with !on U �f1g (resp. U�f0g), and the second map is the restriction to V [n], are injective.Proof : The �rst map is an isomorphism to the space of twisted holomorphic conformalblocks horizontal in the G (resp. h ) direction. The fact that the second map is injectivefollows from the fact that using the invariance and the equation rX! = 0 (resp.r��! = 0), one can express h!; vi for any v 2 V ^[n] linearly in terms of the restrictionof ! to V [n]. �We may (and will) thus view the sheaf E of sections of the vector bundle on C [n] ofconformal blocks as a subsheaf of V [n](U � h ). The next steps are a characterizationof this subsheaf and a formula for the connection after this identi�cation.8.3.2 Theta functionsLet Q_ = fq 2 h j exp(2�iq) = 1 2 Gg be the coroot lattice of g .De�nition: Let (z; � ) 2 C [n], and V1, : : : , Vn be �nite dimensional g -modules, and ka non-negative integer. The space �k(z; �) of theta functions of level k is the space ofholomorphic functions f : h ! V [n]� such that(i) Pni=1 f(�)h(i) = 0.(ii) One has the following transformation properties unter the lattice Q_+ �Q_ � h :f(� + q) = f(�) (497)f(�+ q� ) = f(�) exp���ik(q; q)� � 2�ik(q; �)� 2�i nXj=1 zjq(j)� (498)106



The space of such theta functions is �nite dimensional, as can be easily seen by Fourierseries theory. Denote by W be the Weyl group of g , generated by reection withrespect to root hyperplanes. It is known that this group is isomorphic to N(H)=H,N(H) � G being the normalizer of H = exp(h ). For w 2 W , let ŵ 2 N(H) be anyrepresentative of the class of w in N(H)=H. The Weyl group acts on the space of thetafunctions. Indeed, if f 2 �k(z; � ), then (wf)(�) = f(w�1�)ŵ�1 also in �k(z; � ), (thecoroot lattice and the invariant bilinear form are preserved by the Weyl group), and isindependent of the choice of representative ŵ by (i). Let �k(z; � )W denote the spaceof W -invariant theta functions.Theorem 8.10 Let g = Al, l � 2, Dl, l � 4, E6, E7, E8, F4, or G2. Then the imageof �h is contained in the space of holomorphic functions ! 2 V [n]�(U � h ) such that forall (z; � ) 2 C [n], !(z; �; �) belongs to �k(z; � )W , and such that for all roots �, X 2 g �and nonnegative integers p, !(z; �; �)Xp = O(�(�)p); (499)as �(�)! 0.In the remaining cases, we haveTheorem 8.11 Let g = A1, Bl or Cl, l � 2. Then the image of �h is contained inthe space of holomorphic functions ! 2 V [n]�(U � h ) such that for all (z; � ) 2 C [n],!(z; �; �) belongs to �k(z; � )W , and such that for all � 2 �, r; s 2 f0; 1g, X 2 g � andnonnegative integers p,!(z; �; �) exp0@2�i cr;sXj zj�(j)1AXp = O((�(�) � r � s� )p); (500)as �(�)! r + s� , with cr;0 = 0, cr;1 = (r + � )�1.The proof of these theorems will be completed in 8.3.7. We conjecture that the spaceof functions described in Theorems 8.10, 8.11 actually coincides with the image of �h .This conjecture is veri�ed in a simple class of examples in 8.3.8 below.The fact that the formulation of the result is simpler for certain Lie algebras is dueto the following property shared by the Lie algebras of Theorem 8.10: for each root �and integer m there exist an element q in the coroot lattice with �(q) = m. For theother simple Lie algebras this is true only if m is assumed to be even. More on this in8.3.6.8.3.3 A�ne Weyl groupSince H acts trivially on Eh , the Weyl group acts (on the right) on the values of Eh :w acts as ŵ, and this is independent of the choice of representative.107



Proposition 8.12 Let ! 2 Eh (U � h )hor. Then, for all q 2 Q_,!(z; �; � + q) = !(z; �; �): (501)For all w 2 W , !(z; �; w�) = !(z; �; �)ŵ�1: (502)Proof : The value of ! at (z; �; � + q) is obtained from !(z; �; �) by parallel transportalong some path from � to � + q. Recall that ! is the pull back of a section ofE(U � G)hor to U � h . The image of the path in G is closed, and contractible (G issimply connected), which proves the �rst claim.From Prop. 8.8 and the fact that w � � = Ad(ŵ)�, we see that if ! is horizontalthen also �ŵ! is horizontal. But these horizontal sections coincide at � = 0, and thuseverywhere. �8.3.4 Modular transformationsThe group SL(2;Z) acts as follows on C [n] � h : if A =  a bc d! 2 SL(2;Z),A � (z; �; �) =  zc� + d; a� + bc� + d; �c� + d! : (503)Lemma 8.13 Introduce the linear functions `�(t) = 2�i�t for � 2 h . For all x 2C [n] � h , A 2 SL(2;Z), the map X ! �A(x)X with(�A(x)X)(t) = exp(� ad c `�(t))X((c� + d)t); A =  a bc d! ; (504)is a Lie algebra isomorphism from L(x) to L(Ax).Proof : This follows directly from the de�nitions. �We have de�ned an action L(x)
V ^[n] ! V ^[n], for all x 2 C [n]�h . Let us denoteit as X 
 v 7! �x(X)v (see (466)) to emphasize the x-dependence.Lemma 8.14 De�ne a linear isomorphism v ! �A(x)v from V ^[n] viewed as L(x)-module to V ^[n] viewed as L(Ax)-module: if x = (z; �; �),�A(x) = �A(x)(c� + d)�Pnj=1 L(j)0 exp �c �x(`�)c� + d ! ; �A(x) = exp ��ick(�; �)c� + d ! :(505)This map has the intertwining property�A(x)�x(X) = �Ax(�A(x)X)�A(x); (506)for all X 2 L(x). 108



Note that the choice of coe�cient �A is irrelevant for the validity of the Lemma. How-ever, it is important for compatibility with the connection, see below.We should also add a remark about the power of (c� + d). The exponent �L(i)0is diagonalizable with �nite dimensional eigenspaces. However the eigenvalues arefractional in general, and the power is de�ned for a choice of branch of the logarithmfor each A 2 SL(2;Z). This is made more systematic in the next subsection.Proof : This is again straightforward. The only subtlety is that, a priori, there couldbe a contribution from the central extension in the computation of the intertwiningproperty. However the central term appearing in this computation is proportional tothe sum of the residues of the component of @tX along �, which is doubly periodic. Bythe residue theorem, this sum vanishes. �We can thus de�ne linear maps ! 7! ��A! by ��A!(x) = !(Ax)�A(x). Lemma 8.14implies then that ��A is an isomorphism from Eh (U) to Eh (A�1(U)).Lemma 8.15 Let A� be the pull back on one-forms of the map x 7! Ax de�ned onsome open U � C [n] � h , and r : Eh (U) ! 
1(U) 
 Eh (U) be the connection de�nedin 8.3.1. We have r��A = A� 
 ��Ar: (507)This fact can be derived from a straightforward but unfortunately lengthy calculation.The main identity one uses is� tc� + d; a� + bc� + d! = (c� + d)�(t; � ) + 2�ict: (508)Lemma 8.15 ensures that ��A maps horizontal sections to horizontal sections. Moreover,since A�@�� = (c� + d)�1@�� does not have components in z or � direction, ��A mapssections which are horizontal in the h direction to sections with the same property:��A : Eh (U � h )hor ! Eh (A�1U � h )hor: (509)Let us apply this in the special case A =  0 1�1 0!.Proposition 8.16 Let ! 2 V [n]�(U) be in the image of �h . Then for all q 2 Q_,!(z; �; � + �q) = !(z; �; �) exp(�2�i(q; �)k � �i(q; q)k� � 2�i nXj=1 zjq(j)): (510)Proof : We have ��A! 2 Eh (A�1U � h )hor. Thus,��A!(z� ;�1� ; �� + q) = ��A!(z� ;�1� ; �� ); (511)109



for all coroots q, by Lemma 8.12, and (z; � ) 2 U . Explicitly,!(z; �; � + q� )�A(z� ;�1� ; �� + q) = !(z; �; �)�A(z� ;�1� ; �� ): (512)Inserting the formula for �A we obtain!(z; �; � + q� )��jL(j)0 = !(z; �; �)��jL(j)0 e�2�i(q;�)k��i(q;q)k� exp(���x(`q)); (513)with x = (z=�;�1=�; �=� ). Now we use the fact that, on V [n], �x(`q) acts as �j2�i(zj=� )q(j),and that L(j)0 acts as a multiple of the identity, to conclude the proof. �8.3.5 Monodromy (projective) representations of SL(2;Z)In this subsection, we assume that n = 1, set z1 = 0, and show that a central extensionof SL(2;Z) acts on the space of horizontal sections of the bundle of conformal blocks.The fact that we have a central extension comes from the necessity to choose abranch of the logarithm to de�ne the expression (c� + d)L0 . In fact L0 is diagonaliz-able with �nite dimensional eigenspaces, and any two eigenvalues di�er by an integer.Moreover, L0 acts by a non-negative rational multiple (Cas(V )=(k+h_)) of the identityon V � V ^ for any integrable V ^ of level k. Let L0jV = rs idV , r; s 2 N. We introducea central extension 0!Z=sZ! �s ! SL(2;Z)! 1; (514)of SL(2;Z) by the cyclic group of order s. The group �s consists of pairs (A;�) whereA 2 SL(2;Z) has matrix elements a; b; c; d and � is a holomorphic function on the upperhalf plane such that �(� )s = c� + d. The product is (A;�)(B; ) = (AB;� � A �  ).Then this group acts on V � valued functions on H+� h as above, but keeping track ofthe choice of branch:(A;�)�1!(�; � ) = !(A � (�; � ))�A(�; � )�(� )�r: (515)This action preserves the connection. (The inversion here is to correct for the \wrong"order ��A��B = ��BA, up to ambiguity in the choice of branch). Thus we conclude that�s acts on the space of global horizontal sections on H+ � h of Eh . This monodromyrepresentation restricts to the character [m] 7! exp(2�imr=s) of Z=sZ.In the case of V = trivial representation, this monodromy representation is just therepresentation of SL(2;Z) on characters of a�ne Lie algebras (see [K90]). It would beinteresting to calculate this monodromy representation explicitly for general V . Someprogress in the sl2 case was made in [CFW93], where a connection with the adjointrepresentation of the corresponding quantum group was established.110



8.3.6 The vanishing conditionLet G be a simple complex Lie group with Lie algebra g , h a Cartan subalgebra, g =h � ��2�g � a Cartan decomposition and H = exp h . Suppose that � : G ! End(V )is a �nite dimensional representation of G. Thus V is also a g -module. For K = Gor H let I(K;V ) be the space of holomorphic functions on K with values in V suchthat 8g; h 2 K, u(ghg�1) = �(g)u(h). The Weyl group W acts on I(H;V ): let ŵ be arepresentative of w 2 W in N(H). Then (wf)(h) = �(ŵ)f(w�1 � h) is well de�ned forf 2 I(H;V ), since H acts trivially on the image of functions in I(H;V ). We denoteby I(H;V )W the space of Weyl-invariant functions in I(H;V ).Lemma 8.17 The restriction map I(G;V ) ! I(H;V ) is injective. Its image is thespace I0(H;V )W of functions u in I(H;V )W such that for all positive roots �, X 2 g �p 2 N, and m 2Z Xpu(exp2�i�) = O((�(�) �m)p); (516)as �(�)! m.Proof : The behavior of functions in I(G;V ) under conjugation by N(H) implies Weylinvariance.Let X 2 g � and � 2 h . ThenAd(exp(2�i�))X = e2�i�(�)X: (517)If u 2 I(G;V ), u(exp(X) exp(2�i�)) is a holomorphic Q_-periodic function of � 2 h ,(thus a holomorphic function on H). On the other hand, by (517)u(exp(X) exp(2�i�)) = u�exp� X1� e2�i�(�)� exp(2�i�) exp�� X1� e2�i�(�)��= �(exp((1� e2�i�(�))�1X))u(exp(2�i�))= MXp=0 1p! (1 � e2�i�(�))�pXpu(exp(2�i�)); (518)for someM . We see that the latter expression is holomorphic on the a�ne hyperplanes�(�) = m, if and only if, for all p, Xpu vanishes there to order at least p.To conclude the proof, we use some facts about conjugacy classes in algebraicgroups (see, e.g., [S74], Chapter 3). Let, for each root � and integer m, H�;m � Hbe the set of elements of the form exp(2�i�) such that �(�) = m. The conjugacyclasses containing elements in Hss = H � [H�;m form the dense open subset Gss ofregular semisimple elements in G. Its complement contains the set H1 consisting ofconjugacy classes of elements of the form exp(X) exp(2�i�), where � lies on preciselyone of the distinct H�;m. This elements are regular, as they are regular in the identitycomponent of the stabilizer of exp(2�i�), (see [S74], 3.5), which is the direct productof a torus of dimension rank-1 times the SL(2) subgroup associated with �. By the111



above reasoning, a Weyl invariant function on H extends uniquely to an equivariantholomorphic function on Gss, and the vanishing conditions imply that it extends to aholomorphic functions on Gss [ H1. The complement of Gss [ H1 consists of highercodimension classes whose closure intersects H1, and of classes whose closure do notintersect Hss[H1. Counting dimensions shows that this complement is of codimensionat least two, so by Hartogs' theorem, our vanishing conditions are su�cient to have anextension to all of G. �By Weyl invariance, we may replace the set of positive roots in the formulationof the lemma to a subset of roots consisting of one root for each Weyl group orbit.Also, we may restrict the values of m, by Q_ periodicity of u(exp2�i�). Indeed, if thevanishing condition holds at �(�) = m, it also holds at �(�) = m��(q) for all q 2 Q_.We thus have the following result. The action of the a�ne Weyl group W^ =W ~�Q_ on ��Zis de�ned by(w; q)(�;m) = (w�;m� �(q)): (519)Lemma 8.18 The subspace I0(H;V )W � I(H;V )W is characterized by the vanishingcondition (516), for (�;m) in any fundamental domain for the action of W^ on ��Z.From [Bou81], we see that in the cases Al, l � 2, Dl, l � 4, E6, E7, E8, F4, G2 afundamental domain is f(�; 0); � 2 Fg, where � runs over a fundamental domain F(consisting of one or two elements) of W . If g = A1, Bl, Cl, then we have to add (�; 1)where � is a long root.As a corollary we obtain a more precise characterization of the image of ih . Let usidentify functions on H with Q_-periodic functions on h via the map � 7! exp(2�i�),and view V [n]� as a representation of G by h�(g)u; vi = hu; g�1vi.Corollary 8.19 The image of E(U) by �h is contained in the space of functions ! 2V [n]�(U � h ) such that for all (z; � ) 2 C [n], !(z; �; �) belongs to I0(H;V [n]�)W .Moreover, if ! 2 Eh (U�h )hor, then ��A! 2 Eh (A�1U�h )hor, implying further vanishingconditions: let x = (z; �; �) and A =  a bc d!. On V [n] L(j)0 acts by a scalar �j. Therestriction of ��A! to V [n] is(��A!)(x) = !(Ax)(c� + d)��j�j�A(x)e� cc�+dPj zj�(j):It follows that, for all p,!(Ax) exp(� cc� + dXj zj�(j))Xp = O((�(�) �m)p);if �(�) ! m. Changing variables, this implies that!(z; �; �) exp0@�2�i ca� c� Xj zj�(j)1AXp = O((�(�) �m(a� c� ))p):112



Since any pair a, c of relatively prime integers appear in the �rst column of someSL(2,Z) matrix, we obtain the resultCorollary 8.20 The image of E(U) by �h is contained in the space of functions ! 2V [n]�(U � h ) such that for all (z; �; �) 2 C [n], r, s, p 2Z, p � 1, (r; s) 6= (0; 0),!(z; �; �) exp(2�i sr + s� Xj zj�(j))Xp = O((�(�) � r � s� )p); (520)as �(�)! r + s� .8.3.7 Proof of Theorems 8.10, 8.11Theorems 8.10, 8.11 follow from Propositions 8.12, 8.16, and Corollaries 8.19, 8.20together with the fact that twisted conformal blocks are annihilated by h � Lh (U).8.3.8 ExamplesHere we give an explicit description of the space of conformal blocks in some specialcases. The discussion parallels the constructions in [FG92], where Chern{Simons statesin the case of sl2 are studied. First of all consider the case of one point z1 with thetrivial representation. Then the vanishing condition is vacuous, and we are left toclassify scalar Weyl invariant theta functions of level k. This space coincides with thespace spanned by characters of irreducible highest weight Lg ^-modules, in accordancewith the Verlinde formula.Next, we consider the case of one point z1, with a symmetric tensor power of thede�ning representation C N of slN .If N � 3, the problem is reduced to describing the space of Weyl invariant thetafunctions ! of level k, with the property thatep�u(�(�)) = O(�(�)p); �(�)! 0; (521)for all p = 1; 2; : : : and root vectors e� 2 g �. Actually it is su�cient to consider oneroot �, since the Weyl group acts transitively on the set of roots of slN .The symmetric power SjC N has a non-zero weight space if and only if j is a multipleof N . Let us set j = lN , and denote by �i the elements of the standard basis of C N .Then the weight zero subspace of SlNC N = (CN )
l=SN is one-dimensional and isspanned by the class of v = �
l1 
 � � � 
 �
lN . The following considerations apply also tothe case l = 0, if we agree that S0C N is the trivial representation.The Weyl group of slN is the symmetric group SN and is generated by adjacenttranspositions sj, j = 1; : : : ; N � 1. If we identify the Weyl group with N(H)=H,then a representative in N(H) of sj is given by ŝj�r = �r, if r 6= j; j + 1, ŝj�j = �j+1,ŝj�j+1 = ��j. It follows that SN acts on the weight zero space by the lth power of thealternating representation: ŵv = �(w)lv. 113



The next remark is that el+1� v = 0 but el�v 6= 0. We thus see that !(�(�)) =O(�(�)l) as � approaches the hyperplane �(�) = 0. If ! is a Weyl-invariant thetafunction, it then also vanishes to order l on all hyperplanes �(�) = n+m� , n, m 2Z.Therefore the quotient of ! by the lth power of the Weyl{Kac denominator �(�; � )is an entire function, as � has simple zeroes on those hyperplanes. Moreover, � is a(scalar) theta function of level N (the dual Coxeter number of slN), and �(w�; � ) =�(w)�(�; � ).We conclude that the space of conformal blocks at �xed � is contained in the spaceof functions of the form !(�) = �(�; � )lu(�) v; (522)where u is an entire Q_-periodic scalar function on h , such that u(w�) = u(�), for allw 2 SN and u(�+ q� ) = �(q; �; � )k�Nlu(�); (523)�(q; �; � ) = exp(�2�i(q; �)� �i(q; q)� ); q 2 Q_: (524)We have assumed here that N � 3. In the 2 case, where the vanishing condition mustbe satis�ed also at 3 other points on h , one can proceed in the same way, noticing thatthe Weyl denominator vanishes there too.A basis of Q_-periodic functions with multipliers (523) is easily given using Fourierseries. The basis elements �� are labeled by � 2 P=(k � Nl)Q_, where the weightlattice P is dual to Q_ (if k < N there are no non-zero conformal blocks). The Weylgroup acts as ��(w�1�) = �w�(�).Therefore the dimension of our space is the number of orbits of the Weyl group inP=(k �Nl)Q_. This number is well-known: a fundamental domain in P for the actionof the semidirect product of the Weyl group by the group of translations by (k�Nl)Q_is the set of weights in the (dilated) Weyl alcôve Ik�Nl, see (465).More explicitly, if �i are simple roots, !i fundamental weights with (!i; �j) = �ij,and � = �ini!i, then � 2 Ik�Nl if and only if the integers ni satisfy the inequalitiesni � 0; i = 1; : : : ; N � 1; N�1Xi=1 ni � k �Nl: (525)The number of N � 1-tuples of integers with these properties is calculated to be k �N(l � 1) � 1N � 1 ! : (526)This is the formula for the dimension of the space of Weyl-invariant theta functionsof level k extending to holomorphic functions on SLN , with values in the (l � N)thsymmetric power of the de�ning representation of slN . We now show that this coincideswith the Verlinde formula [V88], which according to [TUY89], [Fa93] give the dimensionof the space of conformal blocks. 114



Let Ik be the set of integrable highest weights of level k. It consists of dominantintegral weights � with (�; �) � k. The dimension of the space of conformal blocks withone point, to which an irreducible representation of highest weight � 2 Ik is attached,is given by the formula d� = X�2Ik N���; (527)in terms of the structure constants Nabc of Verlinde's fusion ring. A convenient formulafor these constants in terms of the classical fusion coe�cients mabc (= the multiplicityof a in the decomposition of the tensor product of b with c) was given in [GW90], and[K90], Exercise 13.35.Let Wk̂ ' W^ be the group of a�ne transformations of h � generated by the Weylgroup W and the reection s0 at the hyperplane f� 2 h �j(�; �) = k + h_g (� is thehighest root and h_ the dual Coxeter number). Let � be half the sum of the positiveroots of g and de�ne another action of Wk̂ on h � by w � � = w(� + �) � �. Let� :Wk̂ ! f1;�1g be the homomorphism taking reections to �1.Then, for all a; b; c 2 Ik, Nabc = Xw2Wk̂ mw�abc : (528)Actually, in Verlinde's formula the coe�cients Nabc are given in terms of modular trans-formation properties of characters. They are uniquely determined by the equationSdbSd0 SdcSd0 =Xa Nabc SdaSd0 ; (529)where, according to [K90], (13.8.9)SabSa0 = �b �exp��2�i a+ �k + h_�� : (530)Here, �a is the character of the representation of G with highest weight a.Let us check that the two formulas agree (this is essentially the solution to Exercise13.35 of [K90]). Let w 2 W and q 2 (k+h_)Q_ and suppose that both a and w � a+ qare dominant integral weights. Then it is easy to see from the Weyl character formula(see [H80]) that if � 2 (k + h_)�1P ,�w�a+q(exp(2�i�)) = �(w)�a(exp(2�i�)):There is a unique element in each a�ne Weyl group orbit in the shifted Weyl alcôveIk + �. Using these facts and the formula for the multiplicities in the decomposition oftensor products �b�c = �nabc�a, we deduce (528).Let us apply this to our example. Identify h � with C N =C (1; 1; : : : ; 1). Then integralweights are classes a = [a1; : : : ; an] of n-tuples of integers de�ned modulo Z(1; : : : ; 1).115



The Weyl group SN acts in the obvious way, and a weight is dominant if aj � aj+1.The a�ne reection s0 iss0[a1; : : : ; aN ] = [aN + k +N; a2; : : : ; aN�1; a1 � k �N ]; (531)and � = [N�1; N�2; : : : ; 0]. Let c = [r; 0; : : : ; 0] be the highest weight of SrC N . Thenthe decomposition rules of tensor products say that mabc = 1 if aj = bj+ lj (1 � j � N)for some integers lj such that 0 � lj � aj�1 � aj, 2 � j � N and �jlj = r. Otherwise,mabc = 0. As � = [1; 0; 0; : : : ; 0;�1], a dominant weight a belongs to Ik if and only ifa1 � aN � k.We need two properties (see [GW90]) of the coe�cientsNabc, valid for any a, b, c 2 Ik:(i) 0 � Nabc � mabc, for all a; b; c 2 Ik, and (ii) N�(a)�(b);c = Nabc where �([a1; : : : ; aN ]) =[k + aN ; a1; : : : ; aN�1]. We will also use: (iii) Each orbit of Wk̂ , acting via � on h �,contains at most one point in Ik.Let us now �x c = [Nl; 0; : : : ; 0], and do the classical calculation �rst.Lemma 8.21 Let c = [Nl; 0; : : : ; 0]. Then maac = 1 i� aj � aj+1 � l for all j 2f1; : : : ; N � 1g.Proof : The coe�cient maac is non-zero if and only if there exist non-negative integersl1; : : : ; lN , summing up to Nl, such that lj � aj�1�aj if j � 2 and [a1+l1; : : : ; aN+lN ] =a. It follows that lj = l for all j, and this solution obeys the inequality i� aj�1� aj � lfor all j � 2. �Lemma 8.22 Let c = [Nl; 0; : : : ; 0], with Nl � k and suppose a 2 Ik. Then Naac = 0if a1 � aN > k � l.Proof : In this case �(a) = [k + aN ; a1; : : : ], and since (k + aN ) � a1 < l, m�(a)�(a);c = 0,by Lemma 8.21. Therefore Naac = 0, by properties (i), (ii). �Lemma 8.23 Let c = [Nl; 0; : : : ; 0], with Nl � k. Then Naac = 1 if and only ifaj � aj+1 � l, 1 � j � N � 1, and a1 � aN � k � lProof : We need to prove only the \if" part. We do this by showing that only the�rst term in the sum (528) is non-zero. Let us suppose that a obeys the hypothesis ofthe Lemma, and that maac = mw�aac = 1, with w 6= 1 and derive a contradiction. Sinceb = w � a is dominant, and is not in Ik by (iii), we have b1� bN � k+1. Let us choosethe representative in a with aN = 0, and identify a1; : : : ; aN�1 with the row lengths ofa Young diagram. Then b is obtained by adding Nl boxes to this Young diagram, insuch a way that ai � bi � ai�1. Then w�1 with wr�1 � b = a is the unique elementmapping b to Ik. This element is constructed as follows: (i) Add, for all j, N � j boxesto the jth row of b (this adds �). (ii) Draw a vertical line at distance k + N from theend of the Nth row to the right of it; the only boxes to the right of this line are in the�rst row, and their number is at most Nl � k. (iii) Take these boxes and add them to116



the Nth row (i.e., act by s0, see (531)); permute the rows to get a Young diagram (i.e.act by an element of W ). (iv) Subtract N � j boxes from the jth row, j = 1; : : : ; n.We obtain in this way a diagram which has Nl boxes more than the original diagramwith row lengths ai and whose �rst row has bN+k+1 � k+1 boxes. The two diagramsare equivalent, meaning that the latter is obtained from the former by adding the samenumber of boxes to each row. This number is at least k + 1� a1 which by hypothesisis strictly larger than l. We need thus more than Nl boxes, and this is a contradiction.� The dimension of the space of conformal blocks can be now computed: note thata 7! a � l� (i.e. aj 7! aj � l(N � j)) maps bijectively the set of weights obeying theconditions of Lemma 8.23 onto Ik�lN whose cardinality coincides with the dimensionof the space of invariant theta functions with vanishing condition.We conclude that the space of invariant theta functions satisfying our vanishingcondition coincides with the space of conformal blocks, in accordance with our conjec-ture.8.4 The Knizhnik{Zamolodchikov{Bernard equations, and gen-eralized classical Yang{Baxter equation8.4.1 The KZB equationsThe Knizhnik{Zamolodchikov{Bernard (KZB) equations, �rst written in [Be88b], for aholomorphic conformal block ! 2 E(U) are the horizontality conditions r! = 0, where! is identi�ed with its image by �h . To write these equations explicitly, let us computethe expression of the connection r on E(U) viewed as a subsheaf of V [n](U � h ) via�h . It is convenient to introduce functions �, �w, w 2 C expressed in terms of thefunction �1: �(t; � ) = @t log �1(tj� );�w(t; � ) = �1(w � tj� )@t�1(0j� )�1(wj� )�1(tj� ) :See Appendix 8.5.1 for details on these functions. We use the notation� = k + h_; (532)and the abbreviation Xm for X 
 tm. We also identify g as a Lie subalgebra of Lg ^:X0 = X 2 g . Let C� = e� 
 e�� (see (8.2.2)). Then we can write L�1 asL�1 = 1� 1Xn=0 X�2� e�;�n�1e��;n +X� h�;�n�1h�;n! : (533)117



Now let U � C [n], and ! 2 E(U), which we identify via �h with a function on U withvalues in V [n]. We then have, for �xed u 2 V [n],�hrzj!; ui = � @@zj h!; ui � h!; (X� h�;�1h� +X� e�;�1e��)ui: (534)Recall that vectors in V are annihilated by Xn, with X 2 g , n > 0. We now use theinvariance of ! under the action of L. The functions t 7! e� ��(�)(t� zj) are elementsof L(z; �; �). They have simple poles at t = zj with residue e�. As a consequence ofthe invariance of !, we haveh!; e(j)�;�1ui = �(�(�))h!; e(j)� ui � Xk:k 6=j ��(�)(zk � zj)h!; e(k)� ui; (535)for all u 2 Nj Vj. We can use this identity to compute the value of ! on vectors e(j)�1u.The atness condition r��! = 0 translates toh!; h(j)�;�1ui = @@�� h!; ui � Xk:k 6=j �(zk � zj)h!; h(k)� ui: (536)To compute further we need the commutation relation [e�; e��] = P� �(h�)h� , thatfollows from ([e�; e��]; h�) = (e�; [e��; h� ]). We therefore obtain the formula�hrzj!; ui = � @@zj h�!; ui �X� @@�� h�!; h(j)� ui�Xk 6=jh�!;
(k;j)(zk � zj; �; �)ui (537)where � = �(�; � ) is (essentially) the \Weyl{Kac denominator" (for any choice ofpositive roots �+)q dimg24 Y�2�+(ei��(�) � e��i�(�)) 1Yn=1[(1� qn)rankg Y�2�(1� qne2�i�(�)))]; (538)(q = e2�i� ), and with the abbreviation
(t; �; �) = �(t)C0 + X�2���(�)(t)C�: (539)We also use the standard notation 
(i;j) to denote PsX(i)s Y (j)s , if 
 = PsXs
Ys. Thisnotation will be used below also in the case i = j. The � independent factors in � donot play a role here, but will provide some simpli�cations later. In deriving (537), wehave used that, by the classical product formula for Jacobi theta functions, � is, upto a � independent factor, the product ��2�+�1(�(�)). Before continuing, we can usethe formula (537) to complete the proof of Prop. 8.7.118



End of the proof of Prop. 8.7. What is left to prove is that [r� ;rz1] on E(U). But fromthe above formula forrzj it follows that �jrzj vanishes. Indeed we have !�jh(j)� = 0 byh -invariance, and the other terms cancel by antisymmetry. As r� preserves conformalblocks, we have [r�;�jrzj ] = 0, and the claim follows from the fact that r� commuteswith rzj with j 6= 1. �A more involved but similar calculation gives a formula for r� , also essentially due toBernard, which will be given here without full derivation,One of the ingredients is Macdonald's (or denominator) identity (see [K90])�(�; � ) = Xq2Q_ ei�� 12h_ (�+h_q;�+h_q) Xw2W �(w)e2�i(�+h_q;w�); (540)implying (one form of) Fegan's heat kernel identity4�ih_@��(�; � ) =X� @2���(�; � ): (541)Here, � is half the sum of all positive roots of g , W is the Weyl group, and �(w)is the sign of w 2 W . The (complex) dimension of g enters the game through theFreudenthal-de Vries strange formula (�; �)=2h_ = dimg =24.Let us summarize the results. We switch to the more familiar left action notation,by setting hX!; vi = �h!;Xvi if X is in a Lie algebra and ! is in the dual space tog -module. We also need the following special functions of t 2 C , expressed in terms of�w(t), �(t) and Weierstrass' elliptic function } with periods 1; � .I(t) = 12(�(t)2 � }(t)); (542)Jw(t) = @t�w(t) + (�(t) + �(w))�w(t): (543)These functions are regular at t = 0. Introduce the tensorH(t; �; �) = I(t)C0 + X�2�J�(�)(t)C�: (544)Theorem 8.24 The image ! by �h of a horizontal section of E(U) obeys the KZBequations �@zj ~! = �X� h(j)� @�� ~! + Xl:l6=j 
(j;l)(zj � zl; �; �)~!; (545)4�i�@� ~! = X� @2�� ~! +Xj;l H(j;l)(zj � zl; �; �)~!; (546)where ~!(z; �; �) = �(�; �)!(z; �; �), and 
, H are the tensors (539), (544), respectively.Remark. For n = 1, these equations reduce to @z1 ~! = 1, thus ~! is a V �-valued functionof � and � only, and4�i� @@� ~! =X� @2@�2� ~! � �1(� )Cas(V) ~! � X�2�}(�(�))e�e��~!; (547)119



where �(z) = z�1 � �1z+O(z2), and Cas(V ) is the value of the quadratic Casimir ele-ment C(1;1) in the representation V . This equation was considered recently by Etingofand Kirillov [EK94], who noticed that if g = slN and V � is the symmetric tensor prod-uct SlNC N , e�e�� = l(l + 1) Id on the one dimensional weight zero space of V �, andthe equation reduces to the heat equation associated to the elliptic Calogero{Moser{Sutherland{Olshanetsky{Perelomov integrable N -body system:4�i� @@� ~! =X� @2@�2� ~! � �1(� )l(l+ 1)N(N � 1)~! � l(l + 1)Xi 6=j }(�i � �j)~!: (548)See also 8.3.8 for a description of the space of conformal blocks in this case.8.4.2 The classical Yang{Baxter equationThe tensor 
(1;2) = 
(1;2)(z1 � z2; �; �) 2 g 
 g obeys the \unitarity" condition
(1;2) + 
(2;1) = 0: (549)Let us remark that the fact that the connection is at is then equivalent to the identityX� @��
(1;2)h(3)� +X� @��
(2;3)h(1)� +X� @��
(3;1)h(2)� (550)�[
(1;2);
(1;3)]� [
(1;2);
(2;3)]� [
(1;3);
(2;3)] = 0 (551)in g 
 g 
 g . This identity may be thought of as the genus one generalization of theclassical Yang-Baxter equation. It admits an interesting "quantization" [F94].8.5 Appendix8.5.1 Lie algebras of meromorphic functionsWe have the following explicit description of L(z1; : : : ; zn; �; �). Let �, �w, (w 2 C ) bemeromorphic Z-periodic functions on the complex plane, whose poles are simple andbelong to L(� ), and such that�(t+ � ) = �(t)� 2�i (552)�w(t+ � ) = e2�iw�w(t) (553)�w(t) � 1t ; t! 0: (554)Such functions exist (for w 2 C�L(� )) and are unique, if we require that �(�t) = ��(t).They can be expressed in terms of the Jacobi theta function �1:�(t) = @@tlog �1(tj� ); (555)�w(t) = �1(t� wj� )�01(0j� )�1(tj� )�1(�wj� ) ; (556)�1(tj� ) = � 1Xn=�1 e2�i(t+ 12 )(n+ 12 )+�i�(n+ 12 )2: (557)120



Here a prime denotes a derivative with respect to the �rst argument.Proposition 8.25 For � 2 � [ f0g, � 2 h , and (z; � ) 2 C [n], the meromorphicfunctions of t (de�ned as limits at the removable singularities �(�) 2Z)X(e2�i�(�) � 1)��(�)(t� z1); (558)X(��(�)(t� zl)� ��(�)(t� z1)); 2 � l � n; (559)X @j@tj ��(�)(t� zl); j � 1; 2 � l � n; (560)X 2 g � or h if � = 0, are well de�ned provided j Im�(�)j < Im � and belong toL(z1; : : : ; zn; �; � ). If � runs over �[f0g and X runs over a basis of g � (h if � = 0),then these functions form a basis of L(z; �; �).Proof : It is easy to check that these functions belong to L(z; �; �). Let L�j(z; �; �)be given by the functions in L(z; �; �) whose pole orders do not exceed j. By theRiemann{Roch theorem,d(j) := dim(L�j(z; �; �)) = dim(g )jn; (561)if j � 1. Indeed L�j(z; �; �) is the space of holomorphic sections of the tensor productof a at vector bundle on the elliptic curve by the line bundle associated to jD, whereD is the positive divisor �zi.The functions given here are linear independent, as can be easily checked by lookingat their poles, and have the property that for j � 1, the �rst d(j) functions belong toL�j(z; �; �). �To obtain a basis outside the strip j Im�(�)j < Im � we can transport our basisusing the following isomorphisms.Proposition 8.26 Let (z; � ) 2 C [n], and q; q0 2 P_. Then the map sending X 2L(z; �; �) to the function t 7! exp(2�it ad q0)X(t); (562)is a Lie algebra isomorphism from L(z; �; �) to L(z; �; �+ q + q0� ).For any open subset U of C [n], C [n]� h or C [n]�G de�ne L�j(U), L�jh (U), L�jG (U) tobe the space of functions in L(U), Lh (U), LG(U), respectively, whose pole orders donot exceed j.Corollary 8.27 The sheaves L�j , L�jh are locally free, �nitely generated for all j � 1.Moreover for each x 2 C [n]� h , every X 2 Lh (x) extends to a function in L�jh (U) forsome j and U 3 x. 121



The proof in the case of L�j is obtained by setting simply � = 0.We wish to extend this result to LG. Let us �rst notice that the function �w(t) isactually a meromorphic function of e2�iw. Thus if g = exp(2�i�), the functions in Prop.8.25 can be written as f(Ad(g); t; z; � )X, where the meromorphic function f is regularas a function of the �rst argument in the range corresponding to j Im�(�)j < Im(� ).Therefore we may extend the de�nition of the basis to give a basis of LG(z; �; g) for g insome neighborhood of g = exp(2�i�)u, with Ad(u) unipotent commuting with Ad(g)(It is clear that the multipliers are correct if g is on some Cartan subalgebra, but suchg's form a dense set in G). The pole structure does not change if the neighborhoodis su�ciently small. In this way by choosing properly the Cartan subalgebra, we �ndlocal bases of LG in the neighborhood of all points in G whose semisimple parts are ofthe form exp(2�i�) with � in some Cartan subalgebra and j Im�(�)j < Im(� ), for all� 2 �.Proposition 8.28 Let (z; � ) 2 C [n], and q; q0 2 P_. Then the map sending X 2LG(z; �; g) to the function t 7! exp(2�it ad q0)X(t); (563)is a Lie algebra isomorphism from LG(z; �; g) to LG(z; �; exp(2�i(q + �q0))g).With the Jordan decomposition theorem, we get a local basis around all points of G,and we obtain:Proposition 8.29 The sheaf L�jG ,is locally free, �nitely generated for all j � 1. More-over for each x 2 C [n] �G, every X 2 L(x) extends to a function in L�jG (U) for somej and U 3 x.8.5.2 Connections on �ltered sheavesLet S be a complex manifold, and denote by O the sheaf of germs of holomorphicsections on S. A sheaf of Lie algebras over S is a sheaf of O-modules L with Liebracket L
OL ! L a homomorphism of sheaves of O-modules, obeying antisymmetryand Jacobi axioms. A sheaf of Lie algebras L over S is said to be locally free if it islocally free as O-module, i.e., if every x 2 S has a neighborhood U such that, asO(U)-module, L(U) ' W 
O(U) for some complex vector space W In this case, L(U)is freely generated over O(U) by a basis e1; e2; : : : with Lie brackets [ei; ej] = �fkijek,(with �nitely many non-zero summands) for some holomorphic functions fkij on U .We will consider the case in which the sheaf L of Lie algebra is �ltered by locallyfree sheaves of O-modules of �nite type. In other words, L admits a �ltrationL�0 � � � � � L�j � L�j+1 � � � � � L = [1j=0L�j ; (564)with L�j locally4 isomorphic to some C nj 
 O, inclusions induced from inclusionsC nj � C nj+1 , and such that [L�j ;L�l] � L�j+l. In particular L is locally free.4i.e., every point of S has a neighborhood such that the statement holds for the restriction of thesheaf to this neighborhood 122



A sheaf of L-modules is a sheaf V of O-modules with an action L
OV ! V which isassumed to be a homomorphism of O-modules. The image sheaf of this homomorphismis denoted by LV . In the �ltered situation it is assumed further that V is �ltered bylocally free, �nitely generated O-modules:V �0 � � � � � V �j � V �j+1 � � � � � V = [1j=0V �j ; (565)and that the action is compatible with the �ltration, i.e., L�jV �l � V �j+l. In par-ticular V is locally free, and we can de�ne a dual sheaf V � locally as V �(U) =HomO(U)(V (U);O(U)). If V (U) is of the form �V 
 O(U) for some vector space �V ,then V �(U) is the space of functions u on U with values in the dual �V � such that hu;wiis holomorphic for all w 2 �V . The dual sheaf V � has a natural structure of a sheaf ofright L-modules and we have a natural pairing h ; i : V � � V ! O.We can de�ne the associated graded objectsGrL = �1j=0L�j=L�j�1; (566)Gr V = �1j=0V �j=V �j�1; (567)with the understanding that V ��1 = 0 = L��1.Then GrL is a graded sheaf of Lie algebras acting on the graded sheaf Gr V ofO-modules, and homogeneous components are locally free and �nitely generated.The sheaf of coinvariants is V=LV , and the sheaf of invariant forms E is locallygiven by U 7! E(U) = f! 2 V �(U)j! X = 0 8X 2 L(U)g: (568)In the �ltered situation, LV is �ltered, with (LV )�j = �r+s=jLrVs and we haveinduced homomorphisms(V=LV )�0 ! � � � ! (V=LV )�j ! (V=LV )�j+1 ! � � � ! V=LV = lim! (V=LV )�j :(569)Locally, (V=LV )�j(U) is the quotient V �j(U) by the submodule of linear combinationsof elements of the form Xv, X 2 L�r, v 2 V �s with r + s � j.A connection r on a sheaf of O-modules V is a C linear map V ! 
1
O V , where
1 is the sheaf of holomorphic (1; 0)-di�erential forms on S, such that for all open setsU � S, r(fv) = frv + df 
 v; (570)for any f 2 O(U), v 2 V (U). The notationr� is used to denote the covariant derivativein the direction of a local holomorphic vector �eld �: ifrv = �i�i
vi, r�v = ��i(�)vi.A connection D on a sheaf of Lie algebras is furthermore assumed to have covariantderivatives being derivations for all local vector �elds �:D�[X;Y ] = [D�X;Y ] + [X;D�Y ]; X; Y 2 L(U); (571)123



and a connection r on a sheaf of L-modules with connection D is assumed to becompatible with the action, i.e.,r�(Xv) = (D�X)v +Xr�v; X 2 L(U); v 2 V (U): (572)Such a connection induces a unique connection, also called r on V � such that for allopen U � S, u 2 V �(U), v 2 V (U),dhu; vi = hru; vi+ hu;rvi; (573)Let r be a connection on a sheaf V of O-modules. If V is �ltered by free, �nitelygenerated O-modules V �j , we say that r is of �nite depth if there exists an integer dsuch that rV �j � 
1 
 V �j+d. The smallest non-negative such integer will be calleddepth of the connection.Theorem 8.30 Let L be a sheaf of Lie algebras and V a sheaf of L-modules over acomplex manifold S. Suppose that L and V have a �ltration by locally free �nitely gener-ated O-modules, and compatible connections D and r of �nite depth. If Gr V=GrLGr Vhas only �nitely many non zero homogeneous summands, then the sheaf of invariantforms E is locally free and �nitely generated.Proof : Let z0 2 S and U be a neighborhood of z0, such that the restriction of V to Uis free. Thus there exist vector spaces �V �j, �V , such thatV �j(U) ' �V �j 
O(U) V(U) ' �V 
O(U): (574)The assumption that GrV=GrLGr V has vanishing components of degree � N meansthat if j � N and v 2 V �j(U) we have a decomposition (not necessarily unique)v = v0 +Xv00; (575)for some v0 2 V �j�1 and X 2 L(U). By iterating this we see that we can take v0 2 V �N .The �rst consequence of this is that the restriction map E(U)! V �l�(U) is injectivefor all su�ciently large l.The second consequence is that we can replace the connection by a connection whichpreserves V �l�(U) for some large l, and coincides with the given one on the image ofinvariant forms. The construction goes as follows.Let us choose a basis e1; e2; : : : of �V with the property that, for all j, a basis of�V �j is obtained by taking the �rst dim(�V �j) elements of this sequence. View �V as thesubspace of constant functions in V (U), and choose a decomposition (575) for all ei:ei = e0i +Xie00i : (576)with e0i 2 V �N (U). De�ne a new connection ~r by~rei = re0i: (577)124



This formula uniquely determines a connection ~r on the restriction of E to U . Thedual connection on V �(U), also denoted ~r is de�ned as usual by h ~r�; eii = dh�; eii �h�; ~reii. By construction, this dual connection coincides with r on invariant forms,and, if d denotes the depth of the connection r, it maps V �N+d �(U) to itself.If we introduce local coordinates t1; : : : ; tn around z0, with z0 at the origin, we seethat we have to solve the following problem: given a subsheaf E of a �nitely generatedfree sheaf F on an open neighborhood U of the origin in C n , with connection ~r onF preserving E, show that there exists an open set U 0 � U containing z0, such thatE(U 0) is a free O(U 0)-module. Write F as F0 
 O, for a vector space F0. We mayassume that U is a ball centered at the origin.Lemma 8.31 Let � be the vector �eld Pi ti@ti on C n , and ~r be a connection on a free,�nitely generated sheaf of O-modules F = F0
O on a ball U centered at the origin ofC n . For each � 2 F0 there is a unique �̂ 2 F (U) such that �̂(0) = �, and r�� = 0.The proof is more or less standard: the F0-valued holomorphic function �̂ on U is asolution of the system of linear di�erential equationsnXi=1 ti @@ti �̂(t) = nXi=1 tiAi(t)�̂(t); (578)for some holomorphic matrix-valued functions Ai, with initial condition �̂(0) = �. Itis convenient to rewrite this equation in the formddx�̂(xt) = B(x; t)�̂(xt); B(x; t) =X tiAi(xt): (579)In this form we can apply the standard existence and uniqueness theorem: the uniquesolution with initial condition � is given by the absolutely convergent Dyson series�̂(t) = �+ 1Xm=1 Z�m B(x1; t) � � �B(xm; t)�dx1 � � � dxm; (580)The domain �m of integration is the simplex 0 < x1 < � � � < xm < 1. It is clear fromthis formula that �̂ is holomorphic on U . This concludes the proof of the lemma.Let E0 be the subspace of F0 consisting of all values at 0 of sections of E(U 0) whereU 0 runs over all open balls contained in U and centered at the origin. Let e1; : : : ; erbe a basis of F0 such that the �rst s ei build a basis of E0. The homomorphism ofO(U 0)-modules � : E0 
O(U 0)! F (U 0); �
 h 7! �̂h; (581)is injective since �̂ vanishes if and only if � vanishes. We claim that the image of � isprecisely E(U 0), if U 0 is small enough. Let  2 E(U 0). Then, we can write  as (t) = rXj=1 aj(t)êj(t); (582)125



for some holomorphic functions aj(t). By assumption, aj(0) = 0 if j > s. Since~rêi = 0, we have ~r (t) = rXj=1 nXi=1 ti@tiaj(t)êj(t): (583)But ~r preserves E and, therefore, �i@tiaj(t) = 0 if j > s. It follows that aj(t) =aj(0) = 0 if j > s. We have shown that E(U 0) is contained in the image of thehomomorphism � . Now let, for j = 1; : : : ; s,  j(t) be sections of E(U 0) such that j(0) = ej. Such sections exist, by de�nition of E0, for some neighborhood U 0. Then,the construction above gives  j(t) = sXl=1 ajl(t)êl(t): (584)The holomorphic matrix-valued function (aij(t)) is the unit matrix at t = 0 and is thusinvertible for t 2 U 0, if the ball U 0 is small enough. We conclude that êj 2 E(U 0),which completes the proof. �Let us see how this applies to our situation, following [TUY89]. For us S is eitherof C [n], C [n] � h , C [n] �G, and L is the corresponding sheaf of Lie algebras, which wedenoted L, Lh , LG, respectively. The module V is the free graded O-module V ^[n]
O.The key observation is that Gr(L)j consists of the degree j part of (g 
 C [t�1 ])n 
Ofor all su�ciently large j. Moreover Gr(V ) = V canonically since V is graded, andthe action of elements of su�ciently high degrees in Gr(L) on Gr(V ) comes from theaction of g 
 C [t�1] on the factors Vĵ .The fact that Gr V=GrLGr V has only �nitely many non trivial homogeneouscomponents follows then from the fact that V ^=t�Ng 
 C [t�1] is �nite dimensionalfor all positive integers N , which is proved in [TUY89] using Gabber's theorem.9 SummaryIn this thesis we considered two classic animals in the rational conformal zoo, theminimal models [BPZ84] and the Wess{Zumino{Witten models [W84, KZ84, TK88].We restricted our attention to correlation functions in the analytic chiral sector, theconformal blocks. In both cases integral representations for the conformal blocks areknown from [DF84, ZF86, CF87, SV89, F89, BF90]. They are given by multiple con-tour integrals, which generalize Gauss' integral representation for the hypergeometricfunction. The integrals are many valued functions on con�guration spaces. Theirmonodromy yield representations of braid groups. An amazing observation is that themonodromy of these integrals, computed by contour deformation [GN84, DF84, TK88,FFK89, La90], is given by quantum group data [FW91, GS90, PS90, AGS89]. Thusone has an explicit connection to another �eld of two dimensional symmetry, the the-ory of quantum groups [D86, Ji85, Lu88, FK93, FRT87] and integrable lattice models[PS90, Pa88, Ka89]. 126



Chapter two was devoted to this connection. We introduced a topological quantumgroup action on an enlarged space of integration contours, which label conformal blocks.The physical conformal blocks were identi�ed with singular vectors in the quantumgroup module. We identi�ed the quantum group representation with a product ofVerma modules. This topological quantum group representation was our main subject.The analysis was done in entirely in terms of integral representations for conformalblocks. It did not make use of the properties of �eld operators. In chapter six andchapter seven we furthermore used a scheme which de�ned conformal blocks withoutdirect reference to �eld operators. Recall also chapter three for the operator origin ofintegral representations.This point of view leaves aside some important issues like braid group statistics[Fr88], super{selection sectors [DHR71],and their quantum symmetry [MS90, FRS89,FK93]. To make contact with these subjects one should reconstruct the conformal�eld theory [FFK89]. Another important issue also left aside is BRST-invariance.Topological representations should also have a meaning in terms of the BRST complex[F89, BMP90]. We hope to return to this question in future work.Conformal models exhibit very interesting structures when they are formulated onhigher topologies [FS87]. In chapter four we investigated the topological representationon a toroidal space-time. There it was more intricate than on the sphere. We were led tointegrate multi{component many valued di�erential forms to obtain conformal blocks.Again a fundamental question was the monodromy of the outcome. The quantum groupprovided an e�cient and beautiful answer. The monodromy was again given by an R-matrix, but this time in the adjoint representation [CFW93] rather than in a Vermamodule. We mention that R{matrix representations are a wide subject themselves,with applications to link invariants [KR88], invariants of three manifolds [RT91], statesum invariants [TV89], monodromy representations [Ko87] of braid groups, and braidgroup statistics [Fr88].Chapter �ve addressed the interplay between the topological representation andmodular transformations of space-time. It turned out that the di�erential forms fromconformal �eld theory gave rise to topological representations which worked nicelytogether with the modular group. The outcome was a representation of the modulargroup on the quantum group representation. It was given in terms of universal quantumgroup elements.Chapter six and chapter seven were devoted to a mathematical construction ofconformal blocks on the torus using methods of [TUY89]. This approach was purelyrepresentation theoretic and did not require the construction of �eld operators. Dif-fering from the sphere we were led to consider twisted conformal blocks on the torus[Be88a]. We derived the Knizhnik{Zamolodchikov{Bernard equation in this twistedframework and discussed the role of the modular group. As a byproduct we arrived ata genus one generalization of the classical Yang{Baxter equation. We remark that theanalogous construction on higher genus surfaces [Be88b] in this framework is still anopen and important problem. Progress in this direction was recently made in [I94].All this is one glimpse of the outstanding coherency and unity of two dimen-127
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