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1 Introduction

Conformal invariance has a long history in physics. Maxwell’s theory of electrodynam-
ics and also Einstein’s general relativity are examples of conformal invariant classical
field theories. Cunningham [Cu09] and Bateman [Bal0] were the first to observe that
Maxwell’s equations are covariant not only under the Lorentz group but also under the
larger conformal group. Conformal transformations are coordinate transformations
under which the metric tensor g,,(x) is multiplied by a space-time dependent scalar
factor o(x). They include in particular Poincaré transformations (homogeneous and
inhomogeneous Lorentz transformations) where the conformal factor is one. They also
include dilatations where the conformal factor is a constant different from one, and
so called special conformal transformations. As a brief introduction to conformal in-
variance in classical physics we mention the article [FRW62] by Fulton, Rohrlich, and
Witten. In two dimensions conformal invariance is a particularly powertul concept.
If one considers two real coordinates (x,y) as one complex number z = x + iy, then
conformal transformations consist of substitutions z — f(z) where f is a holomorphic
function. It is not surprising that holomorphic mappings therefore play an important
role in the electrodynamics of two dimensional systems.

The standard model of particle physics is conformal invariant as a classical field
theory if all particle masses are put to zero. In quantum field theory an early hope was
that conformal invariance might be an approximate symmetry at high energies. The
reason behind this hope was that conformal invariance should take place at energies
where the particle masses become negligible. It was argued that theories should not
have an intrinsic scale at high energies and therefore be scale invariant. Unfortunately,
renormalization tends to break scale invariance. The renormalization of a quantum
field theory amounts to the subtractions of singularities due to vacuum fluctuations on
all length scales. Their subtraction requires the introduction of a renormalization scale,
which breaks the conformal invariance. At low energies scale invariance is furthermore
broken explicitely in the standard model due to non—vanishing particle masses. Scale
transformations were subsequently refined to the renormalization group, an important
structure underlying quantum field theory. An introduction to this subject can be
found in [Co71] by Coleman.

The construction of conformal invariant solutions to quantum field equations has
remained a promising enterprise. The idea is to use the constraints imposed by con-
formal invariance to obtain truly non-perturbative information about quantized field
theories. In conjunction with the idea of operator product expansions, this program is
known in particle physics as conformal bootstrap. It still awaits its fruitful completion
in higher dimensions than two. A status of the work preceding the present boost in
two dimensions, together with references to the original articles, can be found in the
report [DMPPTT77] by Dobrev, Mack, Petkova, Petrova, and Todorov.

In two dimensions the conformal bootstrap is a story of astounding success. The
seminal work of Belavin, Polyakov, and Zamolodchikov [BPZ84] started an avalanche
of activity which is now an entire branch of theoretical physics. The wealth of results



obtained in its development has had deep impact on various branches of physics and
mathematics, and we may well expect more surprising results to come.

The motivation in physics to study two dimensional conformal invariant field the-
ories is at least threefold. One motivation is string theory. String theory, as lectured
for instance by Green, Schwarz, and Witten [GSW8T], is a candidate for a quantum
theory of all interactions including gravity. Conformal invariance comes in string the-
ory as reparametrization invariance of world sheets. Two dimensional conformal field
theories are the classical solutions of string theory. A particular conformal field theory
determines the string vacuum and encodes information about the number of space—
time dimensions and the gauge group of its low energy limit. Not every conformal field
theory however is an acceptable string vacuum. One has constraints both from the re-
quirement of internal consistency, for example the vanishing of the conformal anomaly
and modular invariance, and also from the requirement that it should reproduce the
four dimensional standard model as its low energy limit. The investigations of these
constraints is an ambitious ongoing program.

The second motivation is the study of two dimensional statistical systems at the
critical point [Ca89]. Two dimensional systems come in statistical physics and in solid
state physics in the form two dimensional films in three dimensions, layered systems
in three dimensions which are effectively two dimensional, and as surface effects of
three dimensional bulk systems. Examples of which are the quantum Hall effect and
layered models of high T, super—conductivity. From a theoretical point of view, two
dimensional systems are highly valuable as models of critical behavior because of their
solvability. They also serve as a laboratory to test approximations with exact results.

In the statistical physics of critical systems one addresses the following inter—related
questions. What is the classification of universality classes of critical behavior? What
are the criteria to decide to which universality class a given system belongs? What
are the values of critical exponents and universal amplitudes? What are the finite
size effects when a critical system is put into a finite volume? What is the effect of
perturbations which drive a system away from criticality? Conformal invariance is a
powerful tool in their investigation. The strategy is to identify universality classes with
conformal field theories. The critical exponents of a universality class are encoded
in the spectrum of anomalous dimensions of the scaling operators in the conformal
field theory. Conformal invariance puts restrictive constraints on their possible values.
Finite size effects are studied as the response of a conformal field theories to a variation
of the size and shape of the Euclidean space—time region. Last not least, the effect of
perturbations is studied by conformal perturbation theory. A basic concept in this
strategy is to view the critical system from the point of a Euclidean field theory.

Critical behavior is a collective phenomenon due to fluctuations of a statistical
system on all length scales. An illustrative example in statistical physics is the two
dimensional Ising model. Its critical properties can be investigated by means of the
renormalization group [BGZ76, WK74]. The link to conformal field theory is the
concept of scale invariance. In Wilson’s renormalization group [WK74] it comes about
as follows. Applying the renormalization group in the infra—red direction, one looks



at a system on larger and larger scales. Technically one averages out short distance
fluctuations and studies the resulting effective theory of long distance fluctuations.
After having integrated out all fluctuations between two length scales, say L; and
Ly (L1 < Ly), one compares the result with that of a pure scale transformation by
Lo/ Ly. Suppose first that your system is non-—critical in the sense that fluctuations
on a particular scale are dominating. Such a model is solved in a single step by
averaging out precisely these fluctuations. The analysis of critical systems require an
infinite number of steps, when in each step a finite portion of fluctuations is averaged.
The idea is then to study the flow of effective theories, always rescaling to a unit
scale where the effective distributions can be compared. Universality classes come
out as domains of attraction. Two different systems in the same universality class
tend to converge to the same effective distribution. Critical systems come out as
renormalization group fixed points. Applying the scale analysis to a critical system, one
flows into a fixed point which characterizes the universality class. The two dimensional
(and also the three dimensional) Ising model has such a non—trivial infrared fixed
point. This fixed point encodes the critical properties of the Ising model, for instance
its critical exponents. Their investigation is a truly non—perturbative problem. The
toolbox of the renormalization group for models in any number of dimensions contains
the e-expansion, the 1/N-expansion, and numerical techniques. All of them make
approximations which are difficult to control. In two dimensions conformal invariance
provides a method which is truly non—perturbative and exact. Critical properties are
therefore advantageously studied in terms of conformal field theory. For instance,
the critical exponents can be inferred from the spectrum of anomalous dimensions.
Conversely, if the critical indices are known from other calculations they can be used
to identify the conformal field theory. Other prominent examples besides the Ising
model are the tri—critical Ising model and the three states Potts model [Do84]. They
belong to a series of conformal field theories called minimal models [BPZ84], whose
symmetry properties form a subject of this thesis.

A critical system is scale invariant in the sense that looking upon it with a poorer
magnifying glass reproduces the same picture up to a trivial scale transformation.
Belavin, Polyakov, and Zamolodchikov [BPZ84] argue that scale invariance implies
invariance under special conformal transformations. A system which is Euclidean in-
variant to begin with is consequently invariant under the full conformal group. The
argument relies on a field theoretic description of the critical system. For the Ising
model this can be done quite explicitely, see for instance [ID89]. For a general lattice
field theory it requires to perform a scaling limit of the lattice correlation functions.
Roughly speaking, the continuum field theory is contained in their long distance be-
havior. The argument concludes that the scaling limit of a critical system is a massless
Euclidean field theory. It encloses a traceless stress—energy tensor, which generates
the space-time symmetries. Provided that the field theory satisfies general axioms it
follows that tracelessness implies conformal invariance. In two dimensions the technical
conclusion is that the stress—energy tensor is a Lie field, and that its charges satisfy
the commutation relations of two copies of the Virasoro algebra. This fact is known as



Liischer-Mack theorem [LM76] and is the starting point of [BPZ84].

Two dimensional conformal field theories exhibit a wealth of interesting structures.
A basic structure is the factorization into holomorphic and anti-holomorphic chiral
field theories. The observation is that, if one changes from real Euclidean coordinates

! 422, two dimensional conformal

z! and z? to the complex ones z = z! +iz?and z = =
field theory on the plane presents itself in terms of quantities which depend either on
z or on z. Such quantities are called chiral. In this thesis we will restrict our attention
to the holomorphic chiral sector. A more involved structure, which is a main issue
in this thesis, is the multi-valuedness of chiral conformal correlators as functions of
the insertion points. In mathematical terms, chiral conformal correlators have a non—
trivial monodromy. In two dimensions the exchange of two insertion points in a chiral
correlator depends on the path along which they are exchanged. In dimensions higher
than two any two such paths can be continuously deformed into one another. In two
dimensions this is not the case. As a consequence, the monodromy of chiral correlators
is not governed by the permutation group but rather by the braid group. In a nutshell,
two dimensional field theories allow for more than the Bose-Fermi alternative. We
mention that braid group statistics is a fascinating topic in itself, whose consequences
are far from completely explored. An illuminating reference to braid group statistics
are the lecture notes [Fr88] by Frohlich.

The conformal field theories which we will look upon below therefore furnish in-
deed monodromy representations of braid groups. The complete representation theory
of braid groups is a difficult mathematical problem. We will restrict our attention to
those representation which arise in the conformal field theory of the minimal models due
to [BPZ84] and the Wess—Zumino—Witten models [KZ84] based on SU(2). They turn
out to be so called R—matrix representations. The particular representation of the braid
group, which is realized in a given conformal field theory is an extremely important
structural datum. The investigations of this thesis were initiated by the observation
that the R—matrix representations from minimal models and Wess—Zumino-Witten
models based on SU(2) coincide with R—matrix representations of the quantum group
U, (sl3(C)). Abstractly speaking, one observed that conformal field theory comes to-
gether with data from the representation category of quantum groups. A natural
question to ask is whether this coincidence can be traced back to a quantum group
symmetry, or at least to a quantum group action on auxiliary quantities entering the
construction of chiral correlators. This question will receive a positive answer in form
of topological representations of quantum groups connected to integral representations
of chiral correlators.

Quantum groups emerged from the solution of two dimensional integrable models
by means of the algebraic Bethe ansatz. Their foundation as a mathematical object
was layed by Drinfeld [D86]. Quantum groups have undergone an intense inspection
since then. For our purposes, the notion of U, (sl5(C)) as a quantum deformation of
the universal envelopping algebra of sl will suffice. The deformation is such that the
resulting object remains a Hopt algebra. In practice, one deformes both the relations of
the Lie algebra and, for instance, the coproduct. The coproduct is necessary in order



to preserve the notion of a tensor product of two representations. The result in the case
of U, (sl3(C)) is a Hopf algebra which is coassociative but non-cocommutative. The
non—cocommutativity comes in form of a universal R—matrix which satisfies a Yang—
Baxter equation. The Yang—Baxter equation again is the link to the algebraic Bethe
ansatz [B82]. Quantum groups therefore provide a tool to solve integrable models based
on the algebraic Bethe ansatz. The representation theory of U, (sl5(C)) turns out to
degenerate in the case when the complex deformation parameter ¢ becomes a root of
one. In conformal field theory precisely this degenerate case turns out to be realized.
An account of the representation theory of U, (s/3(C)) in the degenerate case has been
given by Frohlich and Kerler [FK93]. We mention that the decomposition of its adjoint
representation in this case has been accomplished only very recently by Ostrik [096].

That such a structure plays a role in quantum theory is an exciting surprise. Since
the advent of quantum mechanics it is taught that symmetries take place in the form of
representations of symmetry groups. In the presense of a symmetry quantum states can
be organized into multiplets, which form representations of the symmetry group, and
the symmetry implies selection rules for transitions. A question which was neglected
before the appearance of quantum groups is whether one can also quantize the notion of
symmetry. The most general notion of a symmetry compatible with the framework of
quantum theory known today is that of a weak quasi—-Hopf algebra. The quantum group
U, (sl3(C)) falls into this category. An explanation of the appearance of quantum group
data in conformal field theory is to implement the quantum group as a global symmetry
algebra. The idea there is to decompose the Hilbert space of states into superselection
sectors carrying quantum group quantum numbers, and to construct field operators
making transitions between superselection sectors, subject to braid relations. This
picture has been worked out by Mack and Schomerus [MS90]. A source of troubles are
unwanted and unphysical non-decomposable finite dimensional representations.

In this thesis we proceed in a different direction. The quantum group data, braiding
and fusion rules, comes encoded in chiral conformal correlators. They form the building
blocks of a conformal field theory. The most powerful method for their investigation
are free field representations. We will address the question why quantum group data
appears in free field representations. In free field representations one works with an
enlarged theory. The quantum group turns out to act on this enlarged theory. More-
over, this action can be described explicitely, the representations can be explicitely
constructed, identified, and analyzed. The result is a topological representation.

The third motivation to study two dimensional conformal field theory and its sym-
metries is its mathematical beauty, which has attracted a lot of workers to the field.
Two dimensional conformal field theory is to a considerable extent the representation
theory of infinite dimensional Lie algebras, the Virasoro algebra, and current algebras.
As a consequence, it yields beautiful representation theoretic interpretations of critical
exponents in two dimensions. When formulated on higher topologies, intricate connec-
tions with complex geometry, for instance modular properties of higher genus surfaces,
appear. The main motivation to study higher genus surfaces comes from string theory.
But the lowest higher topology, the torus, plays also an important role in statistical



physics. About half this thesis is devoted to the modifications that come about in the
theory of topological representations in the transition from genus zero to genus one.
Last not least topological representations are a theory of a large class of special func-
tions, hypergeometric functions and generalizations thereof. As a mathematical subject
they have been established by the work of Schechtman and Varchenko [SV90] and by
Felder and the author [FW91]. The subject is still in motion. In particular topological
representations on higher genus surfaces are still to be properly understood.

2 Prologue

Two dimensional conformal field theory has its origin in the statistical physics of two
dimensional systems at a critical point. It has furthermore attracted a lot of interest
because of its applications to string theory, and also because of its mathematical beauty.
We mention the seminal paper [BPZ84], the collection [ISZ88] of reprints, and the
lectures [Gi89, Ca89, ID&I] as a first guide to the literature.

2.1 Scale Invariance

The scaling limit of a critical model defines a two dimensional Euclidean quantum field
theory. This field theory is not only invariant under the group of Euclidean motions
but also under dilatations. One can argue [BPZ84, Ca89] that it is then invariant
under the conformal group. An objective of conformal field is the classification of all
two dimensional critical phenomena. The intense work in conformal field theory since
[BPZ84] has changed the objective to a considerably broader nature. The connection
of two dimensional conformal field theory with quantum groups is a structural question
which has been posed in the course of this developement.

2.2 Energy—Momentum Tensor

We assume space—time to be two dimensional Euclidean space. Complex coordinates
are introduced by z = 1 4+ 229 and z = xy — txy. It is common strategy to consider z
and z as independent variables, and to set them complex conjugate in the very end of
the reasoning. The infinitesimal conformal transformations are given by z +— z — ez,

The corresponding generators on functions are [, = —z"*1d,. They span an infinite
dimensional Lie algebra with relations
s ] = (= 1)l 0

In field theory, co—ordinate transformations are generated by the charges constructed
from an energy—momentum tensor. In conformal field theory the energy—momentum
tensor is traceless and decomposes in a holomorphic zz—component 7'(z) and an anti—
holomorphic zz—component T(2). It has an expansion

T(z)=>_ L,z"7? (2)

neZ
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where the coefficients satisfy the relations of the Virasoro algebra

L Ll = (0= ) L (07 = )6 [ C] =00 )
Thus in conformal field theory we are not dealing with the Witt algebra (1) but rather
its central extension (3). This conformal anomaly was derived in [LM76] and is the
starting point of [BPZ84]. Analogous equations hold for the anti-holomorphic compo-
nent of the energy—momentum tensor. Eq. (3) plays the role of an infinite symmetry
algebra in conformal field theory.

2.3 Minimal Models

In a given conformal field theory, the central charge € takes a definite value ¢, and
is the most important single datum. In the Ising model ¢ = 1/2. Special values of ¢
have the important property that they yield a finite set of irreducible highest weight
representations of (3). Models with this property are called rational. First examples
are the minimal models of [BPZ84]. They have the property of being solvable in a
strong sense. Integral representations are known for their correlation functions. The
integrals have been computed explicitely in many cases. Let us briefly discuss the setup
of minimal models of [BPZ84] following [F89]. The Hilbert space of a minimal model
is a direct sum

H = @ Hn’,n & Hn’,n (4)

n',n

of irreducible highest weight representations for two copies Vir & Vir of (3). The
generators are L, and L,, acting as L, ® 1 and 1® L,, respectively. The central charge
is

6(p' —p)?
P'p

c=1- , (5)
where p’ and p are two positive integers without common divisor. They label the series

of minimal models. The highest weight module H, ,, is constructed as a quotient of a
Verma module V(h, ,,¢) with highest weight

5 W p—np)—(p—p)? ¢
i = o (6)

by its maximal proper submodule LV (h,,,¢). The representations are labelled by
pairs n’,n of integers subject to 1 < n’ < p', 1 < n < p and pn’ > p'n. A result of
[FQS86] shows that a model is unitary if and only if p = p" £ 1. For p’ = p— 1 we
obtain the series of unitary minimal models with central charge

6

=l )

11



where p = 3,4,5,.... The Ising model is the first of which with p = 3. Let us also
have a brief look at the field content of minimal models. It is convenient to introduce
the abbreviations

N=n'n), M=m'm), L=, (8)
for double indices. With each representation is associated a conformal primary field

Oy(z,2) =) CJLV,M ¢%,M(Z) ® Q%,M(g)- (9)

M,L

In the renormalization group terminology it is a scaling field. Here C ]]Q a are C-valued
structure constants. The field qﬁ%M(z) is a holomorphic chiral primary fields. It maps
Har to Hy, is zero on the other Hy, and is a conformal field of weight hp:

a2 = {40 b 1) 2 o), (10

We remark that (10) defines an action of Vir on a space of operators generated from the
primary field. The operators obtained from the primary field by acting with products
of L_,, n >0, are called descendants. The family of field operators forms a conformal
multiplet [BPZ84]. In principle all matrix elements of chiral primary fields can be
computed up to normalization constants by means of (10). The normalization constants
can be fixed by

(v, Onar()oar) = 1, (11)

where vy denotes the highest weight vector in Hys. It follows that the theory is
completely determined by the structure constants. Their evaluation is the subject of
the conformal bootstrap [BPZ84]. Correlation functions of primary fields (9) factorize
into

<(I)N1(Zl,§1) ce (I)Nk(Zl,,?k» = Z)‘MFM(ZD‘ .. 7Zk)Fu(217- .. ,Ek). (12)

The index p stands for a sequence of intermediate representations (My, ... , Mj_1). The
constants A, are products of structure constants. The factors in (12) are correlation
functions

Fu(zr o ozn) = (vatg 080 ar, (21) -+ Snat, (21) v, ) - (13)

Here My = My = (1,1) denotes the vacuum representation. The correlation functions
(13) are called chiral conformal blocks. They are the main objects of this investigation.

In principle they can be computed by doing the sum over intermediate representa-
tions. Again there exists a more powerful tool, the method of integral representations.
In a nut shell, the program is to deduce integral representations for the solutions of
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differential equations for the conformal blocks which follow from (10). The result is
generally a multiple contour integral. Boundary data is then encoded in the choice of
integration contours. At this point the quantum group enters the scene. The quan-
tum group organizes which contours yield the physical conformal blocks. By locality
(12) is required to be single valued. This is not the case for the conformal blocks
(13). They are generally multi—valued functions of the insertion points. Upon ana-
lytic continuation they define a representation of the braid group on the configuration
space of insertion points. This representation is one of the interesting features of two
dimensional conformal field theory. More on this will be said in the bulk of this thesis.

2.4 U(l)-Current Algebra

Integral representations for the conformal blocks of minimal models are efficiently de-
duced from free field representations. See [DF84, F89] and references therein. Since
they form the point of departure of this thesis, we give a briet derivation for the case
of minimal models. We do not follow the standard free field computations but rather
choose an alternative geometrical construction. We use an adaptation of the approach
n [F92] for Wess—Zumino-Witten models to the case of U(1)—current algebra. We
find it amusing by itself. It also underlies the more involved constructions of the last
chapters.

We begin with an introduction of pre-requisites, simultaneously fixing the notation.
Let ¢ = C be the complexified Lie algebra of U(1). The associated loop algebra
is Lg = C((t)), the space of complex valued formal Laurent series in ¢. The loop
algebra is again a Lie algebra, and is abelian in this case. It has a central extension
LAg = Lg & Ck. This central extension is a non—abelian Lie algebra with bracket

[f & Ck,g & Ck] =res(f'g) k, (14)

where f and ¢ are formal Laurent series, res(f) is the coefficient of ¢~!,  and ( are
complex numbers, and k denotes the central element. The derivative with respect to ¢
is adjoined as an additional element L_; through

(Lo, f@CR]=—f" (15)
In terms of the generators a, = t", n € Z, the bracket (14) becomes
[ty @] = Ny k. (16)

Analogous to (2) one associates with (16) a U(1)—current j(z) = X ,eza, 27"~ We
remark that Lg can be decomposed into n_ & g & ny, where ny = tiC[[ti]] Fur-
thermore, Lg @& CL_; is integer graded by the assignments deg(t™") = n, deg(k) = 0,
deg(L_1) = —1.

The next brick in this construction are highest weight modules V(«), where « is a
real number called the charge of the module. V(«) is defined as being generated from

13



a cyclic vector v(«) with defining properties

av(a) = 0, n>0, (17)
apv(a) = av(a), (18)

and kv(a) = v(a). The module is spanned by finite linear combinations of vectors
A_py Uopy Gy, v(a) with ny > ng > -++ > ng. The space V(a) comes equipped
with the structure of a highest weight module over the Virasoro algebra through the
following basic construction. One defines

1
L, =— Z S Gnem 2 — B0+ 1Day, (19)
2 meZ

where /3 is another real parameter. The colons mean normal ordering. They order the
annihilators a,, n > 0, to the right. For instance,

L_l = Z AQ_1_mUm. (20)

m>0

On every element of V(«) of finite weight only finitely many terms in the sum con-
tribute. Therefore, (19) is well defined on V(«). It can be shown that (19) satisfy the
relations (3) with central charge

c=1-12 3% (21)

This construction is therefore in particular suited for the case of minimal models. v(«)
is also Virasoro highest weight vector. It satisfies

L,v(a) = 0, n>0, (22)
Lov(a) = h(a,p)v(a), (23)

with highest weight
ha, ) = %ozz —af. (24)

We remark that this representations of the Virasoro algebra is not irreduciblein the case
of minimal models. The irreducible representation can be obtained through a beautiful
cohomological construction. We refer to [F89] for this so called BRST—cohomology.

2.5 Conformal Blocks

Conformal blocks were introduces as correlation functions of chiral conformal fields.
They depend on the positions of the field operators which we take to be non—coinciding.
To describe this situation, we introduce a configuration space

C =\ Ufzi = ) (25)

<J
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of n non—coinciding points in the complex plane. Chiral conformal fields come as con-
formal multiplets. This is formalized by associating with each point z; a highest weight
module V(a;). The highest weight vector v(«;) corresponds to a chiral primary field
at z;. Other vectors correspond to descendant fields. This correspondence is slightly
inaccurate because we are using Fock spaces at this moment instead of irreducible
Viraso modules. We should better speak of free field or U(1) conformal blocks.

The defining property of these conformal blocks is a U(1)-Ward identity which we
explain next. Let M(zy,...,z,) be the space of meromorphic functions, holomorphic
on C\{z1,...,2,}. They can be thought of as g-valued functions and form an abelian
Lie algebra. Let f be such a meromorphic function. At each z; we can perform a
Laurant expansion and interpret the result as an element of Lg. But Lg C LAg, although
the inclusion is not a Lie algebra homomorphism. LAg acts on V(a;). Therefore, we
have linear maps

T Mz ) — End(Viay), m(f) = f(zi+0) (26)
Doing this for all points zy,...,z, we obtain # =7 & --- B 7,, a linear map
T Mz, zn) = End(V(e) @ -+ @ Viag)). (27)

This map has the remarkable property of being a Lie algebra homomorphism. The
reason is that the residues coming from (14),

R () = $res. (19) 29

sum up to zero thanks to the residue theorem. For this purpose we better formulate
the theory on the Riemann sphere CP!, rather than on the plane C. In other words, we
have an action of the space of g-valued meromorphic functions on the tensor product
of highest weight modules.

Conformal blocks are distinguished by being invariant under this action. A confor-
mal block at fixed positions z1,... ,z, is a linear form

F:V(i) @ @ V(ia,) — C, (29)
such that for all f € M(z1,...,z,) and all elements u € V(aq) @ -+ @ V(ay,)
(Fx(f)u) = 0. (30)

The bracket (-,-) means the evaluation of a linear form on a vector. The space of these
invariant linear forms is denoted by

E(Zlv s 7Zn) = Hom/\/l(zl,...,zn)(v(al) @ ® V(Oén), C) (31)

This is equivalent to a U(1)-Ward identity. A case of particular interest is the value
of an invariant linear form on the product of all highest weight vectors

v=0v(a1) @ D v(ay). (32)
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This case corresponds to a product of chiral primary fields. An interesting question is
wether the value of a conformal block on general vectors is already fixed by its value on
the product of highest weight vectors. This is indeed the case. For f(z) = (2 — z;)7",
n > 0, it follows that

m(f)v= {“(—j?)l +2 (=)™ “g)} " (33)
i#]
(0

—n

where a
that

is meant to act on the j’th factor of v. But the Ward identity then implies

<F,a(_j7)lv> == a; (z—z)™" (F,v). (34)

i#J

[terating this procedure, we can evaluate the conformal block on any vector in the
product module.

The next question to be asked is how a conformal blocks behave under variation of
the positions z1,... ,z,. The answer to this question relies on a remarkable differential
equation, to which we turn our attention now. The idea is to view conformal blocks as
invariant sections of a vector bundle. Let /' C C!"l be an open subset. Consider then
the infinite rank trivial vector bundle

U@ Home(V(ay) @ -+ @ V(ay,),C). (35)

Let E(U) denote the space of sections F': U — Homg(V (o) @ -+ @ V(aw,),C) of this
vector bundle such that F' is holomorphic in z,...,z, and such that F(z,..., z,)
is an element of F(z,...,z,) for all (z1,...,2,) € U. Elements of E(U) are called
holomorphic conformal blocks. The trivial vector bundle (35) comes together with a
flat connection

V=Y duV., V.F=08,F-FL%Y, (36)
=1

defined on holomorphic sections. This connection is called Friedan—Shenker connection.
A straight forward computation proves that

Ve (F'7(f) =V F x(f) + FI.=(f). (37)

As a consequence (36) leaves invariant the space of sections E(U). To be precise, an
invariant section is mapped to an invariant differential form. Conformal blocks are
distinguished by the property of being horizontal sections. That is, a conformal block
is an element of F' € E(U) which satisfies

VF =0. (38)
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In the case of general current algebras, where one starts this construction from a general
simple complex Lie algebra, (38) is the celebrated Knizhnik—Zamolodchikov differential
equation [KZ84]. A more explicit form of (38) is

e (P (21, za)yu) = (F(z1,. 0y 20), LY u)). (39)

We have already seen that it is sufficient to compute the pairing with the product of
highest weight vectors (32). In this case we have that

¢ —'1%' v = q; a_& v. (40)

From (34) we then immediately deduce the U(1)-Kniznik—Zamolodchikov equation

(8738 %1

D (2150 y20)0) = (F(z1y... 4 2n),0). (41)
A T
It tells the behavior of conformal blocks upon variation of the configuration (z1,... , z,).

It is not difficult to solve in the special case that
o+ -+ o, =0. (42)

Recall that «; is the U(1)—charge of V(«a;). Eq. (42) therefore requires the total charge
to be zero. Notice that charge neutrality is required by invariance of a conformal block
under the constant function #(1). The result is

(F(z1,..yz0),0)) = [[(zi — )™, (43)
i<
choosing an overall normalization constant equal to one. Eq. (43) is a well known
expression from many body theory of U(1)—charged particles. The point with charge
neutrality is that (43) behaves at infinity like
21011 Z]¢1 & _ Zl—a? (44)
as a function of z; for fixed z3,... , z,, and is therefore regular at infinity. In the non—

neutral case (43) is still a solution to (41) but is singular at infinity. Thus it would
have to be interpreted as a conformal block with another field located at infinity.

2.6 Integral Representations

With this formalism we are ready to derive integral representations. The case of total
charge neutrality has been solved explicitely. The key idea is to reduce the general
non—neutral case to the neutral one at the expense of additional so called screening
charges. Screening charges are defined by h(a, ) = 1. That is, they correspond
to highest weight modules of conformal weight one. The solution to this quadratic

equation defines two charges
ay = [ E4/62+2. (45)
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Integral representations can be derived if the excess charge can be compensated for by
screening charges. With this we mean that we have charge neutrality in an extended
system

Zoq +ryap +r_a- =0. (46)
=1
The total number of screening charges will be denoted by r = r 4+r_. Let w{,... ,w;':r
and wy ,...,w__ be the positions of the positive and negative screening charges respec-

tively. To simplify the notation we put

_|_

z=(21,- 5 20), w=(w], ... wl jwl,. .. w ), (47)

and define furthermore

T4 ]

v:l: — Ha(_]% v(ai)®®v(ai)7 (48)
7=1

v = ]I at) v(ag) @ @ v(ag). (49)
J#

Then we define an extended conformal block, which depends on the screening charge
positions w, by

<F(Z,w),u> = <F(Z,w),u®v+®v_>. (50)

The right hand side is a charge neutral conformal block and is explicitely known. u is
an element of V(ay) @ ---@ V(ay,). As it stands (50) does not satisfy invariance under
M(z1,...,2z,) due to the presence of sreening charges. The idea is now to integrate
out the sreening charges in a way to obtain an invariant expression. Eq. (50) is by
construction invariant under the extended symmetry

©(f) = 7(f) + mu(f) (51)

in a self-explanatory notation. The problematic piece is 7, (f). Notice that we seek
invariance for functions f, which are regular on the positions of the screening charges.
The trick is best explained by computing

*(Nacv(ar) = {f(w)ao+ fw)ar} as v(ax)
= {f(w) Lo + f'(w)} v(as), (52)

where f is assumed to be regular at w. At this point it is required that the charge be
a screening charge, i.e., the conformal weight be one. As a consequence,

(Flemhmiiuo st 0r) = 3o {fluf) (Flemue ot o)}y
i—;aw]— {f(w]_) <F(Z,w),u®v+®v;>}. (53)
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The strategy is then to integrate the screening charges over contours I' = (y1,...,7,)
such that (53) is zero for all functions f € M(z). This can indeed be accomplished
and is a main theme of this thesis. Naively one would expect that any collection of
closed curves encircling the singularities would do the job. This is not the case because
the integrand is generally multi—valued and one has to account for phase factors. In
the more complicated case of the torus one even has to account for a general case of
certain matrices. Once this has been achieved one has an integral representation

(Fr(2),u) = /F<F(Z,w),u> dw (54)

with all desired properties. The integral (54) is then in particular M(z) invariant
and satisfies the flatness condition. The integrand follows directly from the neutral
expression. It is a single valued function times

[I(z = zj) H(Zz —wf ) H(Zz —wj; )T
27]

1<y ]
[T —w)™ [Twr —wi)™= J(w! —wi)™ (55)
i<j i<y i<y

Notice that aja- = —2. The single valued function comes from evaluating (50) by

means of (34). This evaluation is a form of Wicks theorem and is left to the reader.
Notice that we do not take the screening charges to be highest weight vectors.

2.7 Local Systems

Our investigation of topological representations of quantum groups begins with this
integral representation for minimal models. The function (55) is multi-valued on the
configuration space CI"*7] of charges and screening charges. We define it by analytic
continuation from a reference point. Analytical continuation associates with each loop
in the configuration space, beginning and ending at the reference point, a phase factor.
This is a one dimensional local system. With the local systems from minimal models on
CP*' we associate topologigal representations of the quantum group U, (sl5(C)). They
serve in the first place to explain what kind of integration contours yield physical con-
formal blocks. They also answer structural questions about the conformal blocks. One
such structural question is the behavior of conformal blocks upon analytic continuation
of the insertion points. For minimal models on CP! one finds an R-representation of
the braid group, where the R-matrix belongs to U, (sl5(C)). The topological repre-
sentation of U, (sl3(C)) gives an explanation of this fact. Thus conformal blocks come
encoded with quantum group data. The quantum group data can be reconstructed
to a large extent from the local system alone. In particular another class of models,
the Wess—Zumino—Witten models built on SU(2) possess the same local system and
therefore the same quantum group structure. This may be viewed as a kind of quan-
tum group universality. Quantum group symmetry was used on the side of integrable
lattice models in [PS90] to identify scaling limits. The connection between conformal
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field theory and quantum groups is therefore also a contribution to the classification
program. The constructions of this thesis are built upon integral representations of the
form (54) and generalizations thereof. A surprisingly rich structure emerges, in partic-
ular when one considers conformal field theories on a toroidal space time. Connections
with quantum groups, infinite dimensional Lie algebras, and complex geometry ap-
pear. They form a whole menu of interesting problems among which the topological
representations of quantum groups.

Except for the last two chapters, which rely on the theory of current algebras, the
basic input from conformal field theory is the local system. Each chapter is preceded
by a short introduction to the particular subject under investigation. Chapter one to
four form one logical unit, and chapter five and six another one. They can be read
independently. Chapter five is a sub—case of chapter six. We have included it in order
to make the essence readable to a broader audience.

3 Topological Representations of the Quantum Group

U, (sl5(C))

We define a topological action of the quantum group U, (s/3(C)) on a space of homology
cycles with twisted coefficients on the configuration space of the punctured disc. This
action commutes with the monodromy action of the braid groupoid, which is given by

the R-matrix of U, (sl3(C)).

3.1 Introduction

In the free field representation of conformal field theory based on SU(2) one is led to
consider integrals of the form [DF84, ZF86]

Ge(wy, ... ,ws) :/ dzy Ao oANdz f(z1, ey 2o w0r, 0 ws)
c
TT(ei— =) T — )0 T — 000 56)

<J ] i<

In this formula nq,... ,ns are positive integers, f is a single valued meromorphic func-
tion, symmetric under permutations of the z-variables, with poles on the hyperplanes
{z; = w;}. The parameter v is equal to 1/(k+2) for the Wess-Zumino-Witten (WZW)
model based on SU(2) at level k, and is equal to p’/p for minimal models with central
charge ¢ =1 —6(p — p')*/(pp').

For each integration cycle C' in the rth homology group with coefficients in the local
system given by the monodromy of the differential form in (56), G'¢ is a many valued
analytic function on the configuration space Cq, . 1(C) = {(wy,...,ws) € Clw; #
w; (1 # 7)}. To compute its transformation under analytic continuation along paths
exchanging the punctures w;, one needs to know the monodromy action of the braid
groupoid on homology. Examples of this computation by contour deformation have
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been worked out by several authors, among others [GN84, DF84, TK88, FFK89, La90],
in different languages. It generalizes the computation of Gauss for the hypergeometric
function. It has become clear that the monodromy is described by the R-matrix (more
precisely by the 6j-symbols) of the quantum group U, (sl2(C)). The topological point
of view we adopt here is closest to [PS90].

In this chapter, we propose an explanation of this fact. It consists of two parts.
First one considers a space of relative cycles on which U, (sl3(C)) acts. The action is
described purely in topological terms and commutes with the monodromy action of the
braid group. The absolute cycles are then given by the highest weight vectors in the
space of relative cycles. We have then schematically the following dictionary between
topological and algebraic entities:

Relative cycles Elements of the tensor
product of Verma modules
iV,

Absolute cycles Highest weight vectors in
iV,

Intersection pairing

Covariant bilinear form

Monodromy action of the
braid groupoid on relative
cycles

R-matrix representation of
the of braid groupoid on

Moreover, the quotient of the space of absolute cycles by the cycles in the null
space of the intersection pairing is closed under braiding and is given by the fusion rule
subquotient. More precise definitions and correspondences are explained in the bulk
of this chapter.

Our approach is rather elementary and based on the concept of families of loops
rather than on the (in some sense more natural) homology groups directly. We expect
that our construction extends to locally finite homology, but this would require a
somewhat more sophisticated machinery.

We point out that part of our results can be understood as a topological version
of results known in the literature on free field representation of conformal field theory
[PS90, GP89, BMP90] and, in particular, [GS90]. The results in [BMP90] suggest
that our construction extends to groups of higher rank. Here we present the purely
topological results in this subject, which can be read without knowledge in conformal
field theory. See [FS89a, F90, G90] for applications of these concepts to conformal field
theory. While this work was completed, we received some interesting preprints [SV90]
where related results were obtained.

This chapter is organized as follows: in section 3.2 we introduce the concept of braid
groupoid representations and local systems in a rather general context. In section 3.3
we specialize to SU(2), and explain the action of U, (s/3(C)) on relative cycles. Section
3.4 contains the discussion on intersection pairing. In section 3.5 we show that the
representation of U, (s5/3(C)) on relative cycles is isomorphic to the tensor product of
Verma modules, one for each puncture. In section 3.6 we compute the monodromy
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action of the braid groupoid on relative cycles. The appendix contains a summary of

results on U, (sl3(C)).

3.2 Local Systems on Configuration Spaces

3.2.1 Colored Braid Groupoids

Let X be a connected two-dimensional manifold, possibly with boundary, & a positive
integer (the number of colors), and ny,...,n; non-negative integers (the numbers of
strands with given color). Set n = Y n;. Define the configuration spaces

C(m)(X) = Cnlnk(X) = (Xn \ Ui<j{2i = Z]}) / (Snl XX Snk)7 (57)

where the symmetric group 5,, acts by permutations on the first ny variables, S5,,
on the subsequent ny variables, and so on. It is understood that the factors .S, with
n; = 0 should be omitted in (57). An element of C,, . (X) can also be thought as a
sequence (Z1,..., Zy) of pairwise disjoint subsets of X with cardinalities |Z;| = n,.

Fix a base point @ of C,, ., (X), and let O, be the orbit of # under the symmetric
group' S,. Thus O, can be identified with the right coset space

Or = 50 /(Sn, X oo X Sp,). (58)

The colored braid groupoid By, ., (X, x) is the space of paths in X, starting and
ending in O, up to homotopies preserving endpoints; viewed as a subgroupoid of the
fundamental groupoid of C,, ., (X). The groupoid G = B, . (X, ) is indexed by
O, and has components labeled by the endpoints:

G = Ua,ﬁEOmGaﬁa (59)

The multiplication law G,g x Gg, — G4y is the composition of paths. Since X is
connected, braid groupoids corresponding to different choices of base points are iso-
morphic. Any such isomorphism can be described as the composition with a homotopy
class of paths connecting the base points. If £ = 1, (¢ is a group, the braid group on n
strands on X. The groupoid G = B,,, ,, (X, ) can be described in terms of the braid
group B,(X,z). Let h: B,(X,2) — S, be the canonical projection homomorphism.
Then for «, f € O, there is a one-to-one map

bap 19 € Bu(X,x) o= h(g)B} — Gag, (60)
such that ¢.s(9)ds,(9') = ar(99')-
For X C C, call @ € Cp,, ., (X) an admissible base point if x is the image of a point
in C* with

Re(z1) < ... < Re(z,). (61)

YActing as 7(z1, ..., 2n) = (Zr=1(1), -+ Zr=1(n))-
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Suppose now that X = C. For any two admissible base points there is a unique homo-
topy class of paths in the space of admissible base points connecting them. Therefore
the corresponding colored braid groupoids can be uniquely identified, and we can omit
the dependence on x in the notation; with the agreement that G = B,,, _,,, (C) is defined
using any admissible base point.

An element « in O, can be described by a color map

a:{l,... ,n} = {l,...  k} (62)

such that |a~'(7)] = n;. The correspondence between o and & is the following: Let
a=7x(x), 7 €5,. Then

a(i) =X\ iff W_l(i)E{AZI:_lnj—l-l,... ,Zj:n]}. (63)

Let 0y, ¢ = 1,... ,n—1 be the standard generator of B,(C), that exchanges the ith
strand with the (¢ +1)st one, and let 7, = h(0;) denote the corresponding transposition.
Then the system

O'Z'a = ¢T¢a,a(0-i) € Gﬂ‘oz,om 1= L...,n—=1, ac 01’7 (64)

is a system of generators of G.
Let a € R. The inclusion Cp,,)({Re(2) < a}) C C»,)(C) induces an isomorphism
By ({Re(z) < a}) — B, (C). The same holds for the subset {{Re(z) > a}. Let

n;,=n.+n? t=1,... k. The inclusion

o C(ng)({?ﬁe(z) <a}l) x C(ngl)({?}{e(z) >al) — C(m)(@)
(21, 20, (4o 20— (£ U 2], .. 2, U 7)) (65)

induces an injective homomorphism of groupoids
¢+ Bup(C) % B (C) — Biwy (€) (66)

More precisely, we have a map ¢ : O' x O” — O defined by restriction to the orbits
O, 0" of admissible base points, and maps (in an obvious notation)

¢ . G/oz'ﬁ/ X G/O/z”ﬁ” — Gaﬁ7 (67)

with o = ¢(o/, ") and g = ¢(/', "), compatible with the composition law. Intuitively,
this homomorphism is simply the juxtaposition of colored braids.

3.2.2 R-Matrix Representations.

A representation of a groupoid G = U,perGop with index set 1, on a family of complex
vector spaces (V,)aer is an index preserving homomorphism from G to the groupoid
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UaperHom™(V3, Vo) of invertible linear maps of the vector spaces V,. In other words,
a representation p of GG is a family of maps

pap : Gag — Hom™(Vg, V), (68)

such that pag(9)ps(9') = pary(gg’). To simplify the notation, we will often omit the
label a3, thinking of p,s as the restriction of a map p defined on G.

Definition: Let Uy, A\ = 1,... .k be vector spaces and for each pair A, p let R,, be
an invertible element of End(U, ® U,). An R-matrix representation of the groupoid
B,,y(C) is a representation on the family of vector spaces, labeled by O,

Vo = U&(l) ®...Q0 U&(T)v (69)
such that on generators

plof) = PR AL uyy Pu@o=vou, (70)

where PR% denotes PR, acting on the 7th and jth factor in the tensor product.

Proposition 3.1 (1) Let k be a fized positive integer. A family of vector spaces
Uv, X =1,...,k and a family R), of invertible elements of End(Uy @ U,) defines
a representation pen,y of By, ., (C) for all ny, ... ny if and only if the Yang-Baxter
equation

RORURY, = Ry R R (71)
holds on Uy @ U, @ U,. (II) Let ¢ be the homomorphism (66),
B (C) X By (C) — Biy s (C), ni = n; +ny, (72)
and set p' = pgry, "= Py, p = pngy- Then, for all o/, 57 € O', o”, 3" € 0"

pap(0(9':9")) = parpr(9) @ pargn(9"), (73)
where a = ¢(a’, ") and 3 = ¢(F',3").

Example 1: Let Uy = C, A = 1,... ,k, and identify V, = C® ... ® C with C. Let
¢r, be any non zero complex numbers. Then p(of) = Ja(i)a(i+1) defines an R-matrix
representation of By, ., (C).

Fxample 2: Let A be a quantum universal enveloping algebra [D86] with universal
R-matrix R € A® A, and let py be finite dimensional representations of A on spaces
Uy. Then Ry, = p\ @ p.(R) defines an R-matrix representation of B, ., (C).
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3.2.3 Local Systems

Let (M, x) be a topological space with base point, and M its universal covering space,
with right action of w1 (M,x). M is the space of homotopy classes of paths in M
originating at x. For any representation p : m1(M,x) — GL(V) on a vector space
V one defines a local system L as the vector bundle (M x V)/ ~ over M with the
identification (1, p(n)v) ~ (mn,v), n € 7 (M, z), and projection (m,v) — m, the
covering projection on the first argument. Thus a local system is the same as a flat
vector bundle with holonomy p, and specified trivialization of the fiber over the base
point.

This construction has the following slight generalization. Let O be a finite subset of
M and (' the subgroupoid of the fundamental groupoid of M, consisting of homotopy
classes of paths whose endpoints are in O. For a € O, let M, be the universal covering
space of the space with base point (M, ). The groupmd G acts on the disjoint union
L, M, on the right by composition of paths, given by maps M, x Gopg — Mg Let p be
a representation of G = U,sec0Gap on a family of vector spaces (V4 )aco. These data
define a local system as the vector bundle

(L =0y x V) [ ~ (74)

with identification (1a, pas(nas)v) ~ (MaNap, V8), Nag € Gap. Such a local system is
the same as a flat vector bundle over M together with a family of vector spaces (V,,) and
isomorphisms of the fibers over a@ € O with V,,, such that parallel transport operators
are given by p. Local horizontal sections are continuous sections which locally can be
written as m +— (m,v), with constant v, and M covering m.

Let M, M, be topological spaces and Oy C My, Oy C M; be finite subsets. A
homomorphism of local systems L; over My to Ly over M, is a map Ly — Ly mapping
fibers to fibers linearly and sending local horizontal sections to local horizontal sections.

Lemma 3.2 Let [ be a map from My to My such that f(O1) C Oz and let f, €
Hom(V, — Vi), be linear maps indexed by Oy such that the diagram

v, p1(n) Vs
| |5 (75)

Vi) —— Vi)
p2(fon)

is commutative for all o, € O1,n € Gog. Then f lifts uniquely to a homomorphism
Ly — Ly of the local systems associated to py, ps, also denoted by f, which reduces to

fo on the fiber V,, over a € Oy.

Let p be a representation of B,,, ,,(C) and let L be the corresponding local system.
Here is an explicit description of L in terms of transition functions. Fix an admissible
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base point x, and define the cells Cf ) C Cn)(C) as follows: let o = o2, 0 € S, and
define

Coy ={(z1. .. 20) € Clup)(O)Re(25-11) < . < Relz0m1()) } - (76)

The cells C(ni) are pairwise disjoint, their union is dense in C,,)(C), and each cell
contains precisely one point in O, for any choice of admissible base point x.
Let C ,) be the closure of the cell C'f ). Fory € C OC let n be any path going

from « to y in C () and continuing from y to fin C(ﬁ Deﬁne the locally constant
transition function g.s(y) = p(n). Then L is the flat vector bundle over C,,)(C),

L =Ugeo (Cly x Va) [ ~ (77)
with identification
(y,va) ~ (y,v5), Y€ C y N C vy € Vo, vz €V, (78)

if and only if v, = gap(y)vs.

Let n be any path whose endpoints lie in UaGOC&i). Then the parallel transport
operator along n is an operator in Hom(V,, V), in the trivialization. Therefore, we
have an extension of the definition of p to all homotopy classes of paths with endpoints
in Uan C(O;%)

Let now p(,,) be the representations associated with a family of R-matrices, as
in Proposition 3.1, and L, the corresponding local systems on C,,)(C). Let a €
R,C" = {Re(z) > a}, C = {Re(z) < a}. Denote by L, ,(L{,,) the restriction of
Ln;y to Cpy(C7) (Cinyy(CT), respectively). Let L( H® L( " be the flat bundle over
C(n)(C7) X C(uyy(CT) defined by taking the tensor products of the fibers.

Proposition 3.3 The maps ¢ : C/y(C7) x Ciu)(CH) — Cny(C) lifts to a homomor-
phism

¢ L< ® L( //) — L(n,) (79)
sending local horizontal sections to local horizontal sections. The lift is fired by setting
the homomorphisms of Lemma 3.2 equal to the canonical homomorphisms V, @ Vs —
Vi(a,0)-

P?“OOf: Let C(O;L;) <= C(O;L;)QC(TL;)((C_) and C&;/) _— C&;/) ﬂC(n;/)((C‘i') Then L(<n;)®[/(>n;')
is the vector bundle

Uaeorpeon(Cluy < % Cln ™) x (Va @ Vg)/ ~. (80)

The map ¢ maps C'&;) <X C’&,) > to C'((i(;;’ﬁ), and the transition functions are given by
tensor products of transition functions. The claim follows then from Proposition 3.1
and Lemma 3.2. O

Ifny=1and n, =0, g # A, then Cy,... 1,.. o(C) = C and the fiber of Ly 1. o over
any point is canonically identified with Uy. We have the following special case of the
preceding Proposition.
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Proposition 3.4 Let a € R, A € {1,... ,k}, and zy,z_ be complex numbers with
Re(z_) < a < Re(zy). Then the maps
¢i . Cnl,,nk((c—l—) - Cnl,...,nk—l—l,...,nk((c)a (81)
¢:\|- . Cnl,...,nk((c_) — Cnl,...,nk—l—l,...,nk((c)v (82)

given by (Zy,... ., Zk) v (L1, ..., ZnU{ze}, .0, Zk), lift to homomorphisms

¢i : UA & Lih...m% - Lnl,...,n>\+1,...,nk (83)
¢_A|_ : L:17...7nk ® UA - Lnl,...,n>\+1,...,nk- (84)

These homomorphisms preserve horizontal sections and are isomorphisms on each fiber.

3.3 The Topological Action of U, (sl»(C))
3.3.1 The SU(2) case

Let us specialize the general discussion to the case of interest to us. Let D be the unit
disc {|z] < 1}, and wy, ... ,w, be s distinct points in its interior. Define X, (w1, ... ,w;)
to be the fiber over (wiq,... ,w,) of the fibration C.1 1(D) — Ci.1(D). In other
words, X, (wq,...,w,) is the space of subsets of D\ {wq,...,w;} with r elements.
Let ny,... ,ng be positive integers, and ¢ € C\ {0}. The family of one-dimensional
R-matrices

Rll = _q27 Rl] = le = ql_njv ] = 27 N 17 (85)

defines a representation of B, 1, 1(C), and a local system over C,; . 1(C) (and also on
Cra...1(D), by restriction). Let L,(w1,... ,ws) be the restriction of this local system to
X, (w1,...ws). We will often omit the w dependence in the notation, and write X,, L,
when no confusion arises.

In the following construction it is useful to choose also two points on the boundary
of D. For definiteness, choose Py = 1, P_ = —1. Denote X* = {Z € X,|Z > P.}. By

Proposition 3.4, the inclusions
XAXES XA 72 ZU{P) (36)

lift to homomorphisms ¢4 : LT|XT\X7EE — LT+1|X;E+1'

3.3.2 Families of Loops.

In the following we fix s distinct points wy, ... ,w, in the interior of the unit disc, and

denote by X the set D\ {wy,... wy}.

Definition: A non-intersecting family of loops in X, based at the point P_. is a finite
sequence Yo, - .. ,Yr—1 : [0,1] = X of curves in X such that
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L 75(0) = 7;(1) = P_; 4;(t) # P- for ¢ €]0, 1],
2. If t,5 €]0,1] and ~;(t) = 7x(s) then t = s and j = k,

3. For all j, the homotopy class of 7, is non-trivial.

A non-intersecting family of loops can also be represented as a map I' from the r-cube
10,1[" to X,. It is the restriction of a continuous map I' defined on the open r-cube
with open r — 1-faces

r

Q. =10, 17U [ J (J0,1[x ... x {0,1} x ... x]0,1]) (87)

=1
defining an inclusion I' : ), — X, of a closed subset of X,.

Definition: A homotopy of non-intersecting families of loops is defined to be a homotopy
h :]0,1["x[0,1] — X, such that for all s € [0,1], A(-,s) is a non-intersecting family of
loops. Two families I', I" are said to be homotopic if there is a homotopy A such that
h(-,0) =T and A(-,1) =T1".

Consider the space A, = A,(wy,...,w,) of finite linear combinations
> A, (88)
T

where [I'] = [vo,...,7,—1] are homotopy classes of families of loops and Ar are horizon-

tal sections of the pull-back bundle I'*L, over the contractible space ()., modulo the
equivalence relations:

L. A[['] ~ £f*A[l" o f], for any orientation preserving (+) or reversing (—) isometry
f of the cube.

2. If, for some ¢, 7; is homotopic to the composition ~/ * v with homotopy #; :
[071] X [071] — X and Yos - .- 7;72'('75)7"' » Yr—1, (0 <s< 1)7 Yos - .- 772{7"' » Yr—1;
Yoo+ 5 Voo, Ye—1 are all non-intersecting families of loops, then

)‘[707 s 777“—1] ~ )‘/[707 s 772{7 s 777“—1] + )‘//[707 s 772{/7 s 777“—1]7
(89)

where X', A" are defined by restriction of A.

It is understood that horizontal sections over homotopic families of loops are canon-
ically identified by parallel transport, so that the expressions (88) make sense.

Let € be sufficiently small that the closed discs of radius e centered at w; are disjoint
and contained in the interior of the unit disc. Let X, X~ be the spaces obtained from
X,, X by removing points {z1,...,2.} such that |z, — w;| < e. Elements of A,
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represent relative locally finite cycles in HY (X, X=; L,) with coefficients in the local
system L,. Thus we have a linear map

or t Ap(wr, ... ws) — Hif(Xf,Xf_; L,). (90)

On the other hand, we can also view a family I as a map I’ from 10, 1[" to X~ by the
formula

T: (oo boy) = =L vo(to)s oo s 11 (teet) s (91)

and a section A of I'*L, is mapped under ¢_ to a section of f*LT_H, and we also have
a linear map

Yrr t Ac(wr, . w,) — H (X5 L) (92)

3.3.3 Operators

We define a set of operators acting on @A, and then compute their commutation

relations.
Let ~ be the path

v:10,1] — X, t s —emit (93)

Let ¢ :]0,1["—]0, 1["*! be the inclusion (tg,...,t,—1) — (to,... ,t,—1,1/2). Define a
linear operator F': A, — A, 1 that adds a loop:

F )‘[707 777“—1] = )‘/[707"' 777“—177]7 (94)
where X is the section over ),41 such that ¢ A = X o7 on ]0,1[". This definition
makes sense since we can assume that the representative 7y, ... ,7,_1 does not intersect

~ except at the endpoints.

Introduce the face maps [0,1]" — [0, 1]"+,
ef (toy .- strr) = (Lo, s ticy, Lty toy), (95)
e (toy o ste1) = (oy ooy tiia, Ostiy o sty 1), (96)
and the linear operator that kills a loop
r—1 '
E:Avo, oo 9] — ;(—1)%:1()\ o e;»':T —Aoe )Yy s Fire e s Yrmil]s .

(" denotes omission). The third operator is the diagonal operator K2, defined on A, as
K? = g>m=2r (93)

The relation between £ and the boundary operator is explained by the
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Proposition 3.5 The diagram
A, == HY (X7, X5 L)

EJ Ja* (99)

A —— HL(X[75L)

15 commautative.

3.3.4 Relations
Theorem 3.6 The operators I, F, K*? obey the relations

K*E = ¢?EK* K*F =q*FK* EF—-FFE= — K2, (100)
We have a representation of the quantum group U, (sl3(C)) on @TAT(wl, ey W)
Proof: The first two relations follow from the definition. The third relation is best
checked in an explicit trivialization. We can assume that {70(%), e Y1 (%)} is in
some cell C%. Denote by 1 the horizontal section of F*LT, which takes the value 1 over
the point (%, ceey 2) in the trivialization over C. Let nf be the paths
1 1 1
=0t e 2 g, 101
H{%(Q), Y (2( i)) y 1(2)} (101)
. f o . . . l l
going from the cell C'? to the cell containing the point {P_,’yo (2) yeee sy Yre1 (2) } We
have the explicit expressions
F1[707 777“—1] = 1[707 777“—177]7 (102)
r—1
E1[yo,- -1l = 2 (=1 (e () = pr(07)) Lo, -+ Aty o370
=0 (103)
Denoting by ¥ the paths ¢ — {70 (%) yee e Yool (%) Y (%(1 + t)) }, we find representa-

tion factors p,11(nt) = ¢~ ") (—¢®)" and p,o1(n7) = pryi(nT)™'. We then compute,
EFlh/Ov s U= 1] = E1[707 s 777“—177]

—Z D (pe ) = pe i) 1os A5 11 3] +

(—1) (o) = pe(n7)) 105 -+ 5701
=I'E 1[707 777“—1] +
(qE(m—l)—ZT _ q—z(ni—1)+27) Loy - e s Yret]- (104)

The proof is complete. O
From Proposition 3.5 and Theorem 3.6 follows:

Corollary 3.7 Singular vectors in A,(wy,... ,ws) (i.e., vectors in Ker FE) represent
absolute cycles in HY (X5 L,).
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3.4 Intersection Pairing
3.4.1 Reflection and Duality

Let L be the local system dual to L,, i.e., the flat line bundle with holonomies p'(n) =
p(n)~', (which is the representation obtained from p by replacing ¢ by its inverse),
and let 8 be the reflection sending = + 1y to —x + 2y. The reflection § maps orbits of
admissible base points to orbits of admissible base points and preserves holonomies,

p'(0on)=p(n), (105)

and lifts therefore to an involutive homomorphism of local systems
: L (wy,...,ws)— L(0wy,...,0w,). (106)

The lift is specified by setting the maps 8, of Lemma 3.2 equal to the identity.

Denote by Al (w;y,...,w;) the space of linear combinations Y- Ap[l'] with [I'] ho-
motopy classes of non-intersecting families of loops based at P,, and Ar horizontal
sections of I'*L/ (w1, ... ,w,), modulo the above equivalence relations. The reflection ¢
induces an isomorphism

O: A (wy, ... ,ws) — AL(bwy, ..., 0w,), All] — OA[0 o T, (107)

which defines an action of U, (s/3(C)) on G A!.

3.4.2 Intersection Pairing

In this subsection we assume that all families of curves are smooth maps on ]0, 1[".

Let I' be a family of curves based at P~ = —1 and 1" be a family of curves based
at Py. Suppose that I" and I" intersect transversally in a finite number of points lying
in the interior of X. Thus the set of (¢,1') such that I'(#) = I"(#') is finite, contained in
10, 1["x]0,1]", and the tangent map DI' x DI" is non-singular at any such (¢,¢'). The
intersection index §(¢,t') at (£,1') is then defined to be 1 if the tangent map preserves
the orientation, and —1 otherwise. The orientation of T X, = C" is conventionally
defined via the identification

(14 iy, e Fiy) = (X1, o s T Y1y 5 Yy) (108)
of C" with R?",
Definition: The intersection pairing is the complex bilinear form

(,): D A(wr,... ,w) X DAL (wr,... ,w.) — C, (109)

which is zero on A, x Al,,r #=r', and such that

([(LIh=1 QELNID=(=1)" > ()W), N (1)
(64T (=" (1) (110)
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on A, x Al; (, ) denotes duality of fibers.

It is possible to give a more explicit formula for ( , ). Let 4(¢) be the tangent vector
at t to a smooth curve ~.

Proposition 3.8 Suppose that ' = ~o,... ,vy,—1 and IV =~f, ... ,v._; intersect transver-
sally.  Let T;; CJ0,1[x]0,1] be the set of (t,t') such that v(t) = +'(t') and o;; =
sign 'Jm(:yl(t)’y;(t’)) be the intersection index of v; and ’y} at (t,t"). Let form € S,,
TW:{(tvt/) 6]071[ ]0 1[ |(]7 ;])ETjﬂjv jZO,--- ,7“—1}. (111)
Then
(A[L], M[IM]) = )" Y sign w Z H gz (A1), N (). (112)
TESy NeTr j=0

Proof: The condition I'(t) = I'(#') is equivalent to v;(¢;) = 7;,(t,) for all j and some
permutation 7. Thus

{(,1I1(1) = T'(#)} = Ures, Tr, (113)

and T, N T, = for # # 7', by the second property of non-intersecting families of
curves. For (£,1') € Ty, §(¢,1') is the sign of the determinant of the matrix

6iiRe(Fi(t;))  OmRe(i(t5))
(@/Jm(%(tj)) 6m,/5m(7;(tj))) (114)

which is easily put in block form by permuting rows and column, and the result follows.

4

Theorem 3.9 Fiz wy,... ,ws, let (, ) be the intersection pairing corresponding to
Wi, ... ,ws and let (, )g be the intersection pairing corresponding to Ows, ... ,0ws. (I)

For all a € A.(w1,...,ws), b€ A.(Qwn, ..., 0w,),
(a,0b) = (b,0a),. (115)
(II) Let T denote transposition with respect to (, ). Then
Et=F F'=FE K=K (116)

i.e., (1, ) is a covariant bilinear form.

Proof: (1) Set a = M[I'1] and b = Ay[I'z]. Looking at the definition of intersection
pairing, we see that since # preserves the pairing between fibers, it is sufficient to prove
that the intersection index §(¢1,%3) is the same on both sides of the equation. Let
(t1,12) be an intersection point of I'y with #I'y. Identify the tangent space at a point
of the unit r-cube in a canonical way with R”, and the tangent space at a point in X,
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with R?" as above. Then the intersection index occurring on the left hand side is the
sign of the determinant of the r x r matrix DI'; x 0,DT; : R” x R” — R*". The matrix
0. is the diagonal matrix with entries 1,... ,1,—1,...,—1. We have

det(DFl X G*DFQ) = (—1)Tdet(0*DF1 X DFQ)
= (=1)"*"det(DI; x 6,DT'y)
The sign of the last determinant is the intersection index occurring on the right hand
side. (2) K*T' = K? follows immediately from the definition. Next, we show that
FT = E. The third relation follows then from (1). Let ' = ~o,... ,7,_1 be a family of

loops based at P_ and 1" = ~§,... ,v._; one based at P.. Let us, as in the proof of
Theorem 3.6, denote by 1 the section of I'*L, (w1, ... ,w,), which takes the value 1 over

"2
be in a cell. Suppose that +; intersects 4% in a point which is in some cell C*, and let
t,t" denote the value of the parameters at the intersection point. Denote by 7;; the
path s — (%(1 —s)+ ts) and by 7/; the path s — ~/ (%(1 —3s)+ t’s). Then we have

the explicit expression

(I[F],l Z sign T Z H UJ?TJP T]ﬂT] ( ],m) (118)

TES, NeTr j=0

the point (%, e l) in the trivialization over ~, (%), P (%), which is assumed to

Let 4 be the path ¢ — —exp(2rit). We have to compute

(F1[707 777“—1]71[7(/)7 777{]) = (1[707 777“—177]71[7(/)7 777{])
(119)

It can be assumed, by possibly applying a homotopy, that + intersects each v} at
exactly two points, namely when the parameter # of 7! is close to zero, with positive
intersection index, and when ¢ is close to one, with negative index (see Fig. 1). In

both cases the parameter ¢ of v is close to % Therefore the corresponding paths 7,5, 7,

associated to these intersections, can be replaced by the trivial path and by the paths

* defined by
—>{76<%),...,7; (%(1:|:t)),...,’y;<%)}. (120)

We are in position to complete the calculation:

(Fl[’}/o,... 77T—1] 1[7(/)7"' 777{ 1]) =

T‘HZZ )" 'sign (7)

1=0 rE€S,
r—1
Z (P;(m/ ) Pr 772 ) H Tj75P T]ﬂT])pl(T]{ﬂrj) =
(¢t Ty 7=0
(1005 -+ et )s 1 -+ 70)) (121)
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Figure 1: The points of intersection of ~
with 7.

3.5 Tensor Products and Coproduct

In this section we give explicitly the structure of GA,(w1,... ,w,) as a U, (sl3(C))
module.

3.5.1 The module G A, (w,... ,w;)

The spaces A,(w,...,w,) constitute a complex vector bundle over C; . 1(D). This
bundle comes with a flat Gauss-Manin connection induced by the connection of L, ;.
The holonomy of this connection will be computed in the next section. Let us notice
that the spaces A,(wy,...,w;,) are isomorphic (although not canonically isomorphic),
and we can fix wy,... ,w, as we like. For definiteness, we choose wy,... ,w,; to be
admissible, so that Re(w;) < ... < Re(ws). To describe A, (wy,... ,ws) as a linear
space, we choose a basis as follows. Fix a non-intersecting family of loops ~q,... ,7s,
so that 7; winds around w; as shown in Fig. 2a. Introduce the shorthand notation

[ 7] (122)

to denote a homotopy class of non-intersecting families of loops, constructed as follows:
Let %'(]) (1 <i<s,1<j <) beslight homotopic deformations of 4; such that %'(])
lies inside 72(j+1)7 and such that 7{1), e ,’y{“), oo 0 Al is a non-intersecting
family of loops. Let [y{,...,77¢] be the associated homotopy class. Define a horizontal
section denoted by 1 over this family to be the section which takes the value 1 with

respect to the trivialization over a point with coordinates obeying

Re(wr) < Re(z1) < ... <Re(z,) < Re(wy) <

Re(zr41) < ... < Re(z,) < Re(ws) < ... (123)
It r1,...,rs Tun over all non-negative integers with total sum r, the families of loops
Lyt ... 0] form a basis of A, (wq,... ,w,).
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Figure 2: The loops used to define a basis of A,(w1,...,ws) and A (w1,... ,ws).

Theorem 3.10 The U, (sl3(C))-module B A, (w1,... ,ws) is isomorphic to the tensor
product of Verma modules

Vip @...0 V,, (124)

with action of U, (5l3(C)) given by the s-fold coproduct A®). IfRe(w;) < ... < Re(w,),

an isomorphism is explicitly given by
] e Fliog, @@ Frooy,. (125)

Proof: For s = 1, we have 1[y]] = F1[+;7'], by definition of F. For higher r, we
have to show that the action of the generators on the basis is indeed given by the
coproduct. For the (diagonal) generators K*, K2 this follows from the definition. For
the other (raising and lowering) operators, the proof follows from contour deformation.
To compute the action of F' we must deform the added loop = to the composition of
loops homotopic to vs, ... ,71:

Fl[’ﬁlv s 7725] = Zail[’ﬁlv SR 77?i+17 s 7725]' (126)
=1

The coefficient «; is, up to a sign, the transition function we pick up by going from
the point where the section 1 over v;',... ,~l¢,v is trivialized to the point where the
section 1 over 47", ... 47t .. 47¢ is trivialized. The sign is (—1)*>"s, and comes

from reordering the loops. Thus «; = qzﬂ>i(1_nr2”) and we get the result
F=>12..0l0FQK?0...0 K (127)
Similarly, by computing the contribution proportional to 1[yj',... v/ "' ... ,~47] of
E1[y, ..., 7], we see that we get the same terms as in the computation of F[y']
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except for the factor ¢~ 25<i1=m=29) that we pick up by going from the vicinity of w;
to P_, and we obtain the result:

E=Y K*9..0K'0El®...0L (128)

This concludes the proof. [

Remark: We see that the tensor product also has a topological interpretation: let
Sy, S_ be the upper and lower halves of the unit circle. We can think of D\{w1,... ,ws}
(with w; # wj, ¢ # 7 and w; € int D) as the result of glueing s punctured discs D\ {0}
in such a way that S, of the ¢th disc is identified with S_ of the ¢ 4+ 1st disc. This
construction gives an identification of A,(w1,...,ws) with A1(0)®...® A1(0) so that
Lty ..o 0] is identified with 1[y"] @ 1[v?] @ ... @ 1[y"].

The module Al (ws,... ,ws), being isomorphic to A,(fwy,... ,0w,), also has the
structure of a tensor product of Verma modules. In order to achieve compatibility
between tensor product structure and bilinear form, one has to choose the isomorphism
in a special way. Let 4/ be the non-intersecting family depicted in Fig. 2b, and, as above,
define [(71)™, ... ,(72)"] and a horizontal section 1 taking the value 1 with respect to
the trivialization over a point with

Re(z1) < ... < Re(z,,) < Re(wy) < Re(z41) < ... < Re(z,,) < Re(ws) < ...
(129)

Let furthermore A be the automorphism of U, (sl5(C)) defined on generators by
MH)=H, ME)=K7?*E, MF)=FK (130)
The following dual version of Theorem 3.10 is proven exactly as Theorem 3.10.

Theorem 3.11 The U, (sl2(C))-module Al (wy,... ,ws) is isomorphic to the tensor
product of Verma modules

Vi, @...0 V,, (131)

with action of U, (sl5(C)) given by the twisted coproduct \=' o A o X, If Re(w;) <
.. < Re(wy), an isomorphism is explicitly given by

)™ e ()] 0, @ FP, (132)

3.5.2 Tensor Products and Intersection Pairing

The isomorphisms described in the preceding Theorems define intersection pairing as

a bilinear form (, Yon V,,, @ ... @ V,..

Theorem 3.12 The intersection pairing coincides with the product of the Shapovalov
bilinear forms on V,, . In particular, it is symmetric and degenerate. Il reduces to a
non-degenerate symmetric bilinear form on the fusion rule subquotient.
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Proof: For s = 1, the highest weight vector v, of V, has (v,,v,) = 1 and one
has BT = F, FT = FE, K* = K?, which are the characterizing properties of the
Shapovalov bilinear form on the Verma module V,,. The choice of identification of
A, Al with the product of Verma modules is chosen in such a way that the weight
(=1)"4(¢, t')(A(t), N (') of each intersection point factorizes into s factors equal to the

weights of the corresponding intersections in ([v;"], [7’77’/']). O

K3

3.5.3 The Local System

The result of Theorem 3.10 can be cast into the formalism of local systems. To be more
precise, introduce the dependence of the labels nq,... ,ns explicitly in the notation:

A, = A (wr, .. wsng, ..., ng). (133)

Fix a base point (w?,...,w?) such that Re(w,) < ... < Re(w;). The spaces (133)
the connection on L, ;. The fiber over (w{, ..., w?) is identified with V,,, @...®@ V,,
by the explicit isomorphism of Theorem 3.10. Similarly, for any permutation a € S
we can identify the fiber over a(w?, ... ;w?) with Vi @ .- @ Vy, ., using the trivial
identification

AT(wg—1(1)7... ,w&o_)l(s)|n1,... ons) = Ap(wy, ... ,w2|na(1),... s Ma(s))-

(134)

3.6 Monodromy Action of the Braid Groupoid and Universal

R-Matrix
In the following we will consider the configuration space C,, ... n.,, (D) with D = {z €
Cllz] <1},np=rand ng=...=ns= 1.

Let p : Cr1,..1(D) — Ci..1(D) be the projection given by omitting the first r
entries of (z1,...,2,,w1,... ,ws). p defines a fiber bundle over C;, 1(D) with fibers
pHwy,. .., ws) = X, (wy, ... ,ws). In particular, Xy (wy, ... ,ws) = D\{w,... ,ws}is
the punctured unit disc. In the following we will restrict our attention to {wy,... ,ws} C

int D.
Fix a base point « = (wq,... ,ws) € Ci. 1(D), with Re(w;) < ... < Re(w,). We

and o € ;. Here 0 : [0,1] — Cq,.. 1(D) is a smooth parametrized curve with of(0) =
az and of (1) = max, which implements a counter clockwise exchange of wq-1(;y and
wa—l(H_l).

Let the representation space V, associated with o € S, be A, (wa-1(1y, ... ,Wa-1(5)).
It admits the explicit decription as linear span

Ar(wa—l(l), - ,wa—l(s)) = @Cl[(’}/l )jl R (’}/S)js]a. (135)
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The sum is over (j1,...,7s) € {0,...,p — 1}* such that j; + ...+ j; = r. Thus we
have an identification A, (ws-101),... ,Wa-1(5)) = CNU) with N(r,s) = (: j i) The
simplest nontrivial case is s = 2 with N(r,s) = r + 1. Let [07] be represented by the
deformation homomorphism p([o?]) : V, — V. associated with o. Introduce the

g-number notation [n], = ¢" — ¢ ", and, for k =0,... ,n,
n [n]q[n_l]q---[n_k‘l'l]q
= ) 136
R = )

Proposition 3.13 (/)

| Lot DUy - () )a =

S0 (o (30

q%k(’f—l)q%(naml)—1—2(Ji+1—k))(na(i)—1—2(ji+k))
jir1] o
| T = G = 00 (137
q (=0

(11)
o[0T () - (70 =

Ji
DU () (i) (1) e
k=0
(_1)kq_%k(k_1)q_%(na(i+l)_1_2ji+1)(na(i)_1_2ji)
j' k-1
M [1[rae) = Gi = ). (138)
q (=0

Proof: Without loss of generality we can restrict the proof to the case s = 2, ¢ =1,
and a = id. The loops used in this proof are represented in Fig. 3. The matrix
representation of [o] is computed by consecutive deformations and subdivisions of the
individual loops in

p([aﬂ)l[(vq)jl(vé)j2]:: qg(nl—l—leMn2—1—2]2)qfﬂn1—1)—2ﬁj21[(7?)j1QBI)E]T‘

(139)
Subdivide the last #;-loop in a ~9- and a fy-loop to obtain
(y2)" (B1)"2], =
—q 2T () (5127 4 1 (2) 7 (B0)2 7" ol (140)
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1\ M

Figure 3: The loops appearing in the proof of Proposition 3.13. The points marked
with a cross are the points used to define the section 1.

Iterate this subdivision until there is no 3;-loop left over. The result is

| 1(y2) ()] =
SO (=1)kg Y > L (3 (B H, (141)
k=0 0<iy <. <ip<ja—1

The sum over ordered k-tuples is now performed with Gauss’ formula
3 2l it = =) m : (142)
0< <<t <g2—1 q

Then subdivide the B3-loops in ;- and ~s-loops. This decomposition yields
(92) 5 (82)27"], =

3 g2k (m =1=2(j1+k)=1) [Jz Z_ k] 1 [(71)j2—k—l(72)]1+k+l] _ (143)

-
(=0 q

Insert (142) and (143) into (141), and reorder the double sum to obtain

1(y2) ()] =
i(_1)qu(j2—2n2+1)—(j2—k)(n1—1—2(j1+k)) |:§j‘|
k=0 q
k
N [ RGO E (144
(=0 q

Then perform the second sum with the ¢-binomial formula

L k-1
S (1) g iz k) m = (=1)FgFm=R)t3k(k-1) [1[n2 — (G2 — D],
pt g =0 (145)
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Insert (144) and (145) into (139) to find (137). The matrix representation of [o]™" is
computed following the same lines. O

The important consequence of Proposition 3.13 is that the deformation homomor-
phism p([07]) : Vi — V.4, written as an operator, has a universal form which resembles
the universal R-matrix of the quantum group algebra U, (sl3(C)). Let p € NU{oo} be
the smallest positive integer such that ¢%# = 1.

Theorem 3.14 Denote by X; the operator 1 @ ... 012X ®@1®...®1, acting on the
vth factor of V,, @ ... @ V.. Take 1 <ny,... ,ns <p—1. Then

- trk-1y (4 — VR AT T—
p([of) = 292 [4],! /RN O R (146)
k=0 q-
and
1 = v e (@ — a7 HF LY, H;
plloi ) = (- It bt )
k=0 q-

Proof: Recall the definition of the operators E;, F;, H;, and of 7;. They act as

ila[nagy — Ji]

EA()™ o () ]a = () ) T () s
11 (148)
FAI)™ () ]a = U)o () (1) s (149)
Hll(n)" - (9] = (Ragy — 1= 25)1[(0)" - - ()] (150)
and
()" ()] = ()" - (15) e (151)

Compare (137) and (138) with (150) and (151) to conclude (146) and (147). O
The content of Theorem 3.14 exceeds pure nomenclature since the operators F;, F;,
and H; have a topological interpretation. They satisfy the commutation relations

[H;, B;] = 28;6;;, [Hi, Fj) = =2F6;,, [Ei, F;] = [Hj],05,. (152)

We have identified A, (wq(1), ... , Wa(s)) with the tensor product Ve @ -+ ® Vo of
U, (sl3(C)) Verma modules, the identification being

1[(71)j1 . (%)js] — Fjlvna(l) ®...0 Fjsvna(s). (153)

Moreover, we have identified F; € Hom(A,(waqy, -+ » Wa(s))s Arc1(Wa(r)s - -+ Wa(s)))
with the element

Ei—10..0F®...01 (154)
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of U, (512(C))®5. Here E stands in the ¢th entry. Similarly we have proceeded with F;
and F;. 7; is identified with the ¢th transposition. We have proved that this identifica-
tion is a quantum group algebra homomorphism and a module isomorphism.

The observation of this section is now that

p[efFY = 1lo...0RP)' 0.0l (155)

with R € U, (512(C))®2 the universal R-matrix in an obvious normalization and R~!
its inverse, acting on the ¢th and (¢ + 1)st entry.

It follows that p defines an R-matrix representation of By 1(X). The Yang-Baxter
equations for the topological R-matrix follows from properties of the universal R-
matrix.

Having constructed an N(r, s)-dimensional R-matrix representation of By 1(D),
we also have a rank N(r,s) local system L] (D) over Cy (D). Let Cf (D) be
the intersection of the cell C7 ; with C; (D).

13 a(D) = (Uaes,OF_L (D) % €V [ (156)

with the equivalence relation over Cf (D) N CT*T (D) given by multiplication with
the matrices (137) and (138) respectively. The fiber space p™ (wa-1(1), ... ; Wa-1(5)) s
Ar(Wa=1(1)s - - ., Wa-1(5)). The parallel transport matrix associated with of in the basis
(136) is the universal R-matrix in the representation Na(i) @ Na(i41)-

This representation of the braid groupoid is not irreducible in general. In particular,
it has as invariant subspaces the null space of the bilinear form ( , ), which defines a
subbundle of our flat bundle, invariant under parallel transport.These subspaces are
described explicitly in the Appendix.

3.7 Locally finite homology

We have worked on the spaces A, rather than on homology groups directly. We now
formulate some conjectures on the relation to homology, and the structure of the corre-
sponding locally finite homology groups. These conjectures follow from the assumption
that our quantum group action extends to an action on homology, and by applying
the computations of [F'S89a, F90], which are not completely rigorous, to the situation
studied here. As usual, we assume that s distinct points w;,... ,ws in the interior of
the unit circle, s positive integers nq,... ,n,, and a complex number ¢ # —1,0,1 are
given. If ¢ is a root of unity, we furthermore assume that 1 < n; < p—1, where p is the
smallest positive integer such that ¢*» = 1. For ¢ small enough, the locally compact
spaces X¢ D X~ are defined as in (86), and we have a local system L, over X¢.

Conjecture 3.15 If q is not a root of unity, the map
@r 2 Ap(wr, .. wy) — HY(XE XL, (157)

is an isomorphism of vector spaces.
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If ¢ is a root of unity, let U(f (s/2(C)) be Lusztig’s version of U, (sl5(C)) [Lu90], with
generators H, E, I, E¥/[p]!, F?/[p]!. Let V' be the Verma module over the quantum
group U(f (s/2(C)) with vacuum vector v,, so that Hv, = (n — 1)v,, and Fv, =
E?/[p)'lv, = 0. There is a canonical Hopf algebra homomorphism U, (sl3(C)) —
U(f (515(C)), so that VI is also an U, (sl5(C)) module. For any FH-diagonalizable
U, (sl3(C)) module M, denote by (M), the eigenspace of H to the eigenvalue n.

Conjecture 3.16 If ¢ is not a root of unity, there are isomorphisms

HY (X XT3 L) S (Vi @0 @ Vi sn—omars (158)
HY (X5 L) = Ker Bl(Va, @ .o @ Vi) sni—s—2r- (159)

If q is a root of unity, there are isomorphisms

HI (XL XT3 L) S (V@ @V )snemar, (160)

s

HY (X5 L) S Ker E|(VE@ ... @ VE)sn—smar (161)

3.8 Appendix

We summarize some known facts about U, (sl3(C)), following essentially [D86, RT91,
Lu90].

Fix a non-zero complex number ¢. Let U, (sl3(C)) be the algebra with unit over C
with generators F, I, H, and relations

[H,E)=2E, [H F]=-2F [E F]l=¢"-q¢". (162)

We often denote K2 = ¢™. Of course ¢ is not well-defined in the algebra, but its action
on modules where H takes integer values is. A more precise definition is the following:

let U, (s{2(C)) be the complex algebra with unit with generators F, I, H, K* K =2 and
relations

[H,E]=2E, [H F]=-2F [E F]=K—FK7"
K*K2=K2K?=1, KH=HK" (163)

U, (sl3(C)) is a Z-graded algebra, with the assignment deg(F) = —deg(F) = 1,
deg(H) = deg(K*?) = 0. Let G, be the category of Z-graded left U, (s5l3(C))-modules
M = @, ez M, such that:

1. For all ¢ € M there exists an N such that EV¢ = 0.
2. HM, = nM, and K*M, = ¢q"M,,.

The degree of homogeneous element of a module in G, is called weight. Following
common usage, we refer to objects in G, as (Z-graded) U, (sl3(C))-modules.

Let n be an integer, and ¢ € C\ {0}. The Verma module V,, is the quotient of
U, (s12(C)) by the left ideal generated by F, K*—¢"~' and H — (n— 1), with left action
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of U, (s5l3(C)). The module V,, is in (¢, and is generated by a highest weight vector v,
(=image of 1) of weight n — 1. A basis of V,, is given by the vectors Fiv,, j = 0,1,...
and one has the explicit formulae

Y

EFiy, = MF]‘—%}H, HFv, = (n—1—2j)Fiu,. (164)
q9—q
The notation we use here for g-numbers are

NN S b I V]| VR ERR A ey
bl=Uli=d —q7, Mq— -1, ]

G =[G — 1. 200, ol = L. (165)

If g is a root of unity we define a number p as the smallest positive integer such that

g =€/ (166)
for some integer p’ > 0. If ¢ is not a root of unity we set p = oc.

Proposition 3.17 (1) If ¢ is not a root of unity, V, is irreducible for n < 0. [t
contains a proper submodule SV, generated by the singular vector* F™v,, ifn > 1. The
quotient V,, / SV, is an irreducible n-dimensional representation.

(I1) If ¢ = e™'/? is a root of unity, then 'V, contains a proper submodule SV, generated
by the singular vector Fv,,, where 1 <n < p and n = n(mod p). The quotient V,,/SV,,
is irreducible, of dimension n.

The Shapovalov form on V,, is the symmetric bilinear form ( , ): V, x V, — C,
uniquely characterized by

L. (vg,v,) =1 and

2. (E&m) = (&), (HE ) = (&, Hn), 6 € V.

The null space of (, ) is SV,.
The action of U, (s12(C)) on tensor products of modules in (7, is defined by the coas-
sociative coproduct A : U, (slx(C)) — U, (sl2(C)) @ U, (slx(C)) defined on generators

as

ANH)=Ho1+10H, AK®) = K @ K*2,
ANEY=E@1+K*®E, ANF)=F@K?*+1QF. (167)
The action on tensor products with s factors is given by A : U, (sl5(C)) — U, (sl5(C))®

@ U, (s15(C)) with AT = (A @ 1)A, A® = A, The universal R-matrix of
U, (s13(C)) is the formal series

R = f: Lk(k-1) (q - q_l)k lH(X)HEk FF
_ 5o e @ e (168)
k=0

ZA singular vector is a vector annihilated by E.
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This series is well defined on any tensor product module in G, since only finitely many
terms are non-vanishing when R acts on a vector. Also, singular denominators cancel.

Let (, ) denote the product of Shapovalov forms: (, ): V,, @...@V,, xV,, @
o0V, = C

Proposition 3.18 Let R i1 =1®...01 Q0 R®1®...®@1 be the R matriz acting on
the ith and (i+1) st factor in V,, @...@V,, and P, ;11 the transposition {1 @...Q & —
5§D .06 @60 ...®&. Then
(Riir1&,m) = (& P Bigpr Pripan) (169)
foralléneV,, @...0V,,.
Let W,(V,, @...@V,.) be the space of singular vectors of weight n—11in V,,, @...®
V... The family of vector spaces Wn(Va(m) ®...0 Va(ns)), a € S, carries an R-matrix

goos

3.18 we have

Proposition 3.19 Let F,(V,, @...® V,.) be the quotient of W, (V,, @ ... @ V,.) by
the null space N of (, ) restricted to W,,(V,, @ ... @ V,..). The representation of
Bi,..1 on {W,a(Vany) @ ... @ Via(no)) faes. reduces to a well-defined representation on
(Vo) @ - @ Via(no)) faes. -

The subquotient F,,(V,, @...® V,,) is called the fusion rule subquotient of V,,, @
... @ V,, with weight n — 1. It can be characterized more explicitly.

Proposition 3.20 Let p —1 > ny,ng,n > 1. Then
N =dimF,(V,, @ V,,)

ning
1 iy = el + 1 <n < min(ny +ng —1,2p —ny —ny — 1),
10 otherwise. (170)

Thus, if N7, =1, there is a singular vector in V,,, @V, of weight n — 1, which is
not in the null space of (, ). Correspondingly we have a homomorphism

077”}1,7%2 : Vn - an ® VTLQ' (171)

Suppose in the following that p — 1 > ny,... ,ns,n > 1. Introduce the path space

P, ... ng as the space of complex linear combinations of sequences (my, ... ,m,_s)
of integers in [1,p — 1] such that N} —~= N7l = NP2 =1 (2<1<s—2).

Proposition 3.21 The homomorphism

Pﬁl,...,ns — W,(V,, ®...0 V..),
(my,... ,meg) = (1@...01aC" 1 )...(1aCl )COF . Vn,
(172)
composed with the canonical projection W, — F,,, gives an isomorphism
P (Vi @ @ Vo). (173)
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The proofs of the last two propositions can be extracted from [FK93], noticing that
since the vectors of the form & @ ... @ { with some &; € SV}, are in the null space of
(, ), we can replace everywhere V,, by the irreducible quotient V,,/SV,,.

4 Fock Space Representations of Agl) and Topolog-

ical Representations of U, (sl5(C))

We apply the topological representations of U, (s/2(C)) to the Fock space representa-
tions of the untwisted affine Kac-Moody algebra Agl)
in quantum group Verma modules determine Fock space representations of BRST op-

erators, primary fields, and conformal blocks.

. We show how singular vectors

4.1 Fock Space Representations of A(ll)
Let us recall the basic facts about Fock space representations of Agl). The algebra Agl)
is generated by J% a € {4+, —,0} and n € Z, and a central element K with relations

no

nY“m nY’“m

JE I =200 A nb. K, [K,JY=0 174
[ ) Y Y ¥ n b

n’Ym n+m

0 R = £ 0 T0) = S8,

supplemented by a derivation d satistying
[d,J!] = —nJ?, [d,K]=0. (175)

Following [Wa86, BF90, FF89], we then require a bosonic w —w* system together with
a free bosonic field ¢. Let I'' be the algebra generated by w, and wl, n € Z, with

n >’
relations

[wn,w+] = On—my  |[Wnywm] = [w"’,w;] = 0. (176)

m

Furthermore, we require a Fock space F'! with vacuum vector v! such that, for 0 < n,
wopv' =whe! = 0. (177)
Let I'? be the algebra generated by a,, n € Z, with relations

[ty @] = 16—, (178)
2 _ [kx2
and I, the Fock space of charge J/v, where v = /%%, generated from a vacuum

vector U?Lk satisfying, for 0 < n,

%5n70037k. (179)

2
Clnvth —
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Then define I' = I''* @ I'? and Fyp = F'® F}k This tensor product of Fock spaces

comes equipped with the structure of a highest weight module over Agl) at level k
through the following construction due to [Wa86]. Let us introduce field operators

w(z) = i w2z wh(z) = i whz="t (180)

n=—0oo n=—0oo

i)=Y @, (181)

n=—0oo

and ¢(z) such that j(z) = ¢0¢(z). In terms of these we can compose currents

JH(z) = wh(2) @ 1d, (182)
JO(Z) =: w(z)uf" z): @id+~vid @ j(2), (183)
J7(2) = = (rw()%wF (2) : +hOw(2)) @ id — 2y w(z) @ (). (184)

Then it can be shown that the coefficients of the developments
JUz)=>Jiz ! (185)
satisfy the relations (174). The free field stress energy tensor
n . 1. 92 1.
T(z)=—:0w(z)w(z): @ud+ §zd® 2j(2)7 s —=0y(2) (186)
v
agrees with the Sugawara form. Expanding, as usual,

T(z)= i L,z"""2 (187)

n=—0oo

Fj ), also becomes a highest weight module over the Virasoro algebra Vir with central
charge ¢ = 3k/(k + 2). The generators of Agl) have the explicit form

Jt=wl®id, (188)
Jg = Z : wmw:_m c@id 4+ ® ay, (189)

J =— ( Z :wmwnw:_m_l : —knwn) @ ed — 27 Z Wi @ Qe -
m,l=—0co m==00 (190)

The generators with n = 0 generate an sl; subalgebra. [y is, in particular, a module
over sly. The vacuum is also an sl highest weight vector with

JJ’UM = 0, J(?UJJC = Jvth. (191)
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As an sly-module, Fj; thus contains a highest weight representation with spin J gen-
erated from the vacuum. This representation is irreducible since (J5)?*/T' = 0. The
basic objects in the following constructions are vertex operators, which we take to be

defined as

Vlk( )=
I I
exp | —bo | exp | —In(2)ag | exp Z a_y, exp | —— Z an .
v v V= n (192)
Here [an,b] = 6,0 and we have an operator from F77, to F7,;,. To be precise,

Vik(z) =: exp(i%qﬁ(z)) . defines a bilinear form on (F7j, ;)" @ I, (restricted dual).
Finally let

Vig(z) = Vig(z)zh™ o, (193)

splitting off the factor which depends on the zero mode of j(z).

4.2 Intertwiners

As a first application of the topological representations, we construct operators map-
ping one Fock space to another which intertwine the representations of Agl) and, con-
sequently, Vir. As a basic ingredience, introduce

V7(z) = uf"(z) @ Vo x(2), (194)

the screening operator. V~(z) maps Fy; to Fj_q1x. Its operator product expansion
with the stress-energy tensor (186) is given by

T(z)V (w) = #V_(w) + !

(=~ w)?

0 — V7 (w) +0(1), (195)

z —w Jw

where O(1) sums up regular terms. It shows that V'~ has conformal weight 1. The
operator product expansions of V'~ with the currents have the form

JT)V - (w) = O(1), (196)
J7(2)V " (w) = 2728%{2_w¢d®v_17k(w)}, (197)
JU)V - (w) = O(1). (198)

They follow from basic operator product expansions of the free field, diverging terms
cancelling each other neatly. Due to the total derivative, V' =(z) does not intertwine

the action of Agl) on Fj, with that on Fj_q ;. To produce intertwiners we have to
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integrate products of screening operators. This gives

ng = /OV_(Zl)V_(ZR) le dZR

:/C:V_(Zl)...v_(ZR): H (Zi—zj)7_2d21...d23

1<i<j<R
R
= / V7 (z1)...V (zR) : H z; Y H (z; — Z]‘)W_2 dz...dzR,
© i=1 I<i<j<R (199)

a map from Fji to Fy_p.

Taking matrix elements, these integrals give rise to topological representations of
U, (slx(C)) at ¢ = exp(%), possibly a root of 1. Let Xg(0) = (D\{O})R\Ulgsjgg{zi =
z;}/Sr be the configuration space of R indistinguishable screening charges in the disc
D = {]z] < 1}, punctured at 0. Fix a point p_ on the boundary of D, e.g., p_ = —1.
Let Ly be the local system determined by the multi valued form on Xg, obtained by
evaluating the integrand on Fock vacua. Note that different values of J yield different
Lg.

Let Ar(0) be the space of linear combinations of families I' of non-intersecting
loops in Xp based at p_ together with sections of I'*Lr modulo equivalence relations
reflecting the possibility to homotopically deform or reparametrize I'. Let E Ar(0) —
Apr-1(0), P Ar(0) — Agr4+1(0), and K? . Ar(0) — Ag(0) be the topological opera-
tors introduced above. They satisfy the U, (sl5(C)) relations. E is the combinatorial
boundary operator composed with a map which identifies (R — 1)-chains in X with
(R — 1)-chains in Xp_1. We have shown that

KE = ?ER?, K*F =q¢2FK? [E,F]=K?— K2, (200)
endowing P%_, Ar(0) with the structure of a module over the quantum group algebra
U, (sl3(C)). In the application we have in mind, ¢ = 1. In this case, EP = 0 and
K = 1. This is proved by an explicit computation using a basis to describe Ar(0,w)
as a space. Families of loops which contain p homotopic deformations of a single loop
represent null homologous cycles. To prove this one retracts the p loops to p points
on a single loop path ordering the arguments. The prefactor from the path ordering
vanishes. This can be taken into account by adding another relation in the definition of
the space Ar(0). This relation puts families of loops which contain p homotopic loops
equivalent to the null family. As a consequence, then also B =0. Using a generalized
version of Poincare duality this could possibly be understood in terms of the kernel
of the topological intersection pairing. For ¢ a root of unity the conclusion is that we
find a representation of the reduced quantum group algebra U;ed (sl2(C)), the algebra
obtained from U, (sl3(C)) dividing by the ideal generated by the central elements E?,
FP and K* —1. Let us only consider this case in the following. For a detailed account
on U7 (sl3(C)) and its representation theory we recommend [FK93].

As a quantum group module, %_:10 ARr(0) is isomorphic to the U;ed (s/2(C)) Verma
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module V(n), n = 2J 4 1, generated from a singular vector vg(n) such that
Eve(n) =0, K?v(n)=q" tvg(n). (201)

Let o : @h_y Ar(0) — V(n) be the isomorphism. For 0 < R < p— 1, we define weight

spaces V(n)p = CFfuvg(n). K? acts on V(n)r by multiplication with ¢"~1=2f.
Restricting our attention to the most interesting case, let 29* = k 4+ 2 = p be a

positive integer and let n € Z. The BRST construction of [BF90, FF89] then produces

unitary integrable irreducible highest weight representations of Agl) with1 <n <p-1,
n = 2J + 1, on the homology. Here we work directly with the representations on the
Fock spaces.

Theorem 4.1 (1) Consider Q) as a map from V(n) to the space of linear operators
Homc(Flk, FJ_RJg). Then

Q(R) cker (B :V(n)p — V(n)p-1) — HomA(ll) (Fyk, Fi-r) (202)

maps to the space of Agl) intertwiners. (Il) Let n = 2J + 1 and n = nmod, 0 < n <
p—1. Forn =20,

ker(E) = Cug(n). (203)

For1<n<p-—1

Y

ker(E) = Cuvg(n) & CF"vg(n). (204)

(II1) For 1 <n < p—1, the only non-vanishing intertwiner besides the identity is Q(CR)
with R =n and C' = ¢~ (F"vo(n)), unique up to a normalization constant.

Thus the structure of singular vectors in U, (s/3(C))-Verma modules, in our case a
root of 1, provides all data needed to decide wether intertwiners exist and, furthermore,
gives explicit formulas for them.

Corollary 4.2 (1) Forn =2J+1, let F,, = Fy. For1 <n < p—1, the non-vanishing
intertwiners form an infinite sequence

(p—n) (n)
R ) AN (N (205)

(II) This sequence is a complex.

The homology of this complex is isomorphic to the irreducible Agl) highest weight
module of weight J and level k. Further intertwiners can be constructed out of cy-
cles with np path ordered arguments, n € {1,2,...}. They correspond to powers

of generators F?[p]!”" in Lusztig’s version of U, (s/5(C)). They can be used to con-

struct complexes whose homology gives non-integrable Agl) modules [BMP90]. Here
[n] = ¢" —¢7" and [n]! = [1]...[n].
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4.3 Chiral Primary Fields

The second apphcatlon of topological representations concerns the construction of chi-
ral primary fields ¢7; ( ) Fre @ Uy — Fy - U is a representation of A( ) at level 0
to be defined below. Consider operators

¢I,M(Z) =: (,U(Z)I_M . ®‘/I,k(2)7 (206)
mapping Fji to Fyir,. The operator product expansion with 7'(z)

I+ 1)/(29%)

(2 —w)?

T () = D) + D) £ O(1)  (207)

shows that v ,(2) has conformal weight h; = I(I 4 1)/(2+?). The operator product
expansion with the current J%(z) has the form

T () rp(w) = —— Z S, (w) DD (T + O(1). (208)

u——I

DU (J%) is a spin I representation matrix of sly. For u € Uy, the representation space
of the representation D), define

w) = Z Y (w)uy,. (209)

p==1

The operator product expansion implies that
[Tz i (usw)] = ¢ (DD (s w) w™. (210)
With these preparations in mind let us consider the operators
é1.(w)T / b1 () (21) .. V™ (zp)dz ... den (211)

from Fjj to Frp with K = J + I — R. Using Wick’s theorem

R min{I— R}
etz = >, C—p,v) >
=1 v=0 IcC{l,....R}
Il =v
: w(w)I_R_“"'” H wh(z): H (z —w)™? (212)
i€l i€{1,...RN\T
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we normal order the integrand. C(I — p,v) is a combinatorial factor counting the
number of contractions. The result is

®) min{l—pu,R}
dru(w)e” = /C dzy...dzp Z C(I —p,v) Z
v=0 IcA{l,...,R}
Zl=v
: w(w)I_R_“"'” Hw"’(zi) P ® ‘N/Lk(w)f/_Lk(zl) e ‘N/_Lk(ZR) L qplnT a0
1€

R 1 R —2 —2
=" II (w—=)"lw-2"" I (z=—-2)".

i=1 ie{1,...RN\T i=1 1<i<j<R (213)

The chain C' is taken to be an element of Ag(0,w). The local system Lg(0,w) involved
in the definition of Ag(0,w) is determined by the monodromy of the multi valued R-
form obtained by evaluating the integrand on Fock vacua. As a U, (sl3(C))-module,
the space @?:_02 AR(0,w) has been shown to be isomorphic to the tensor product of
Verma modules V(n) @ V(m). Let (V(n) @ V(m))y be the weight space on which K?
acts by multiplication with ¢"tm—272F,

Lemma 4.3 Consider ¢;(w)® as a map from V(n) @ V(m) to the space of bilinear
operators Home(Fyp @ Up, Fcg) with K = J 4+ 1 — R. Here Uy is the sly representa-

tion space. For o(C') € ker (E (V(n)@V(m))g — (V(n)® V(m))R_l), we find the

commutation relation
R
12, 610 w) ) = 61 (DD (I )us 0) (214)

For C' a chain, which represents an absolute cycle in homology, we obtain a chiral
primary field. Its construction goes as follows. Expanding

Srui)f) = Y by ()i (215)
it follows that
2 1)) = b1 (DD (T yu) 0 (216)
Let
Up = Uy @ w s thiths Clyp, w1 (217)

be the Agl)—module with J* acting as DU (J%) @ w", d as wd/(0w), and K as zero.
Then

€@ (u@w M) g ()¢ (218)
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defines a map from Fj; @ U; to Fr . To be precise, for u € Uy,
or(u; w)(CR) € Home(Fp, Fr) @ w_hf""'hj"'hI(C(w, w™ ), (219)

is a formal power series in w whose coefficients are linear operators from the Fock space
Fj1, to the Fock space F . For u®@ e € Uy, we obtain a well defined operator through

dr(u @ 6)(CR) = % j{ or(u; w)(CR)e(w)dw. (220)

Here C' is moved with w through the Gauss-Manin connection on C\ {0}. That is, we
(1)

associate operators to Laurent polynomials e. This map is an A;"’ homomorphism.

Theorem 4.4 Consider qb(IR) as a map from (V(n) @ V(m))y to the space of bilinear
operators Home(Fyp @ Ur, Frp) with K = J+1— R. Then

qb(IR) : ker (E (V(in)@V(im))y — (V(n) @ V(m))R—l) — HOHIA(ll) (P @ Ur, Fp)
(221)

maps to the space of Agl)-intertviners.

The general decomposition of the tensor product of Verma modules V(n) @ V(m),
which contains among other things the structure of singular vectors, has been carried
out in [FK93]. For the sake of brevity, it cannot be reproduced here. Let us only
mention the following partial results.

Proposition 4.5 Letn =2J4+1, m=2I+1,1<nm<p—1, and 0 < R < n,m.
Then

ker (E F(V(n) @ V(m))g — (V(n) @ V(m))R—l) =

C (é 2 P o (n) @ Flvo(m)) (222)

with x;, 0 <1 < R, determined by xo = 1 and the recursion relation
[R - l]q[n — R+ l]qxl + qn_l_Q(R_l_l)[l + 1]q[n -1 - 1]qxl+1 =0, (223)
where [x], = ¢" — ¢ .

The intertwiner corresponding to this cycle is denoted by qﬁ?l(u @ €) with K =
J+ I — R. It is unique up to a normalization constant which can be fixed as follows
using the three point function

K J ]]7 (221)

(VK kA 45?:[(6#3 W) k) = th_hI_tha%} [ A v op

involving a (classical) sly Clebsch-Gordan coefficient and the fusion coefficient N}‘I
The three point function is conveniently normalized such that the fusion coefficient
takes the values 0 or 1. 91(“ @ €) is the chiral primary field in the Fock space
representation.
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Proposition 4.6 Let n = 2J+ 1, m = 21 + 1, and | = 2K + 1 be such that 1 <
j‘] to be admissible if | — J) < K < I+ J,
I+J+KeZ, and I+ J+ K < p—2. Then the chiral primary field has the following
properties: (I) For ( j(] ) not admissible, N}‘ = 0. (ll) For ( j(] ) admissible,
N =1.

-

n,m,l < p—1. Define a triple

The quantum group data encoded in the fusion rules of g‘l(w) is here inherited
from the representation V(n)@V (m). The most important property of qﬁg‘l(w) is BRST
invariance. It is a necessary condition to proceed through the BRST construction. Let
us mention that BRST invariance also has a cohomological meaning on the quantum
group level.

Conformal blocks are vacuum expectation values of products of chiral primary fields.
A product

¢§+Il(u5 @ €s) - - 4%,5(“2 ® 62)45%,11(”1 ® €1) (225)

defines an element of
HomA(ll)(FJhk@U[l ®---®U[S,FJS+17;€). (226)

Using (213), such operators can be expressed in terms of free fields. Products of ex-
pressions of the form (213) are well defined (as absolutely convergent matrix prod-
uct) and give rise to elements of (226) when integrated as in (220), provided the
time ordering condition is satisfied. This condition states that : Uy(z1)...Uy(z,) 1 x:
Ups1(21) ... Upgq(z;) : is well defined whenever |z;| > |z}| for all ¢,;. Here U; stands
for w,w™ or a vertex operator. This condition gives the cycle C' of integration for
the expression (45) as a product of nested cycles C:]];Jll, used to integrate the factors.
The resulting cycle is identified with a singular vector of V(mg) @ --- @ V(m,), with
m; = 2J; + 1, Iy = Jy, in the topological representation space. Algebraically, the ex-

pression of €' in terms of Ci“}j is understood as follows: Identify Ci“}: with an element

of

ket (n)ye..vim)), = Homuy, sy (V(niga), Ving) @ V(my)) (227)

7

where m; =2J;+1 and R, = I; + J; — J;11. Then

C (Crhela-el).. . (¢, . ol)c (228)
Homy, (s1,) (V(ns41), Vo) @ VI(m) @ -+ @ V(m,))

m

SR

These quantum group intertwiners and path spaces have been investigated in [FK93].

33



5 Generalized Hypergeometric Functions on the Torus
and the Adjoint Representation of U, (sl5(C))

We study the homology groups with coefficient in local systems arising in the free
field representation of minimal models of conformal field theory on an elliptic curve
with punctures. We define an action of the quantum enveloping algebra U, (sl5(C))
on a space of relative cycles, extending the results obtained previously for the sphere.
Absolute cycles are identified with singular vectors. In the case of one puncture, we find
that the resulting topological representation is essentially the adjoint representation.

5.1 Introduction

The studies [La90, FW91, SV90] indicate that there exists a dictionary between homol-
ogy of certain configuration spaces with coefficients in local systems and representation
theory of quantum enveloping algebras [D86]. The examples of local systems providing
such connections come from integral representation of conformal blocks of conformal
field theory [BPZ84, DF84, GN84, ZF86, M90, CF87, FGK91]. The idea is that (in
some sense) the charges generating (half of) the quantum group symmetry in the free
field representation in conformal field theory are given by integrals over screening op-
erators [PS90, BMP90, GP89, GS90]. In the previous chapter [FW91], we have shown
the existence of an action of U, (s/3(C)) on certain relative locally finite homology
groups on configuration spaces on the sphere. In this case, the local system is given by
the integrand of the free field representation of conformal blocks of the SU(2) WZW
models or minimal models.

In this chapter, we consider the situation of the torus, for which one knows explicit
integral representations [F89, BF90, FG92]. We restrict our attention to the case of
minimal models, which is the simplest. The main difference is that the local system
is not given by a line bundle as in the case of the sphere, but rather a vector bundle.
From the point of view of free fields, this follows from the fact that the space of free
field conformal blocks on the torus is higher dimensional.

We find again an action of the quantum enveloping algebra of sl5(C) on relative
cycles, in such a way that absolute cycles are identified with singular vectors, as in the
case of the sphere. The resulting representation is a tensor product of Verma modules
with U, (s/3(C)) with the adjoint action. We hope that this work will lead to a clearer
understanding of the role of quantum groups for higher genus Riemann surfaces.
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5.2 Generalized Hypergeometric Functions on the Torus

In the free field representation of minimal models with central charge ¢ = 1 — 6(p’ —
p)?/(pp’) on the torus C/Z + 77Z one is led to consider integrals of the form

Gel(z1y. oo 25]T) =
2pp 1
I R I | G C
H=0 1<i<j<s4rtr! (229)

where

Qpl i, 5 1 < <s,
a; =01, s+1 <1 <s+4r, (230)
a1y, s+r+1<i:<s+r+7r,
(1L =m)p’' = (1 =m')p
e Vir
parametrize the exponents, ax = 41 41 belonging to integrated screening variables,
and

(231)

1 .
A, (W|r) = ) exp{2 - (QW—I-TIM)} O5(W 4 7p|2p"p7), (232)
s+r+r!
W =4/2p'p Z oG 2, (233)
%@ zl7)
Bz, 2i|r) = 2mi s — ST 234
with
77 _ 7T'ZT/12 H 27TZT7’L (235)
03(Z|T) — Z e?ﬂ’izn—ﬂ’iﬂ'n2 7 (236)
— Z 2mi( Z-l— ) 7T'ZT(7’L-|— )2 7 (237)

the Dedekind eta function and the Jacobi theta functions. The values of the exponents
are constrained to satisfy

S S

> (1 —ni)+2r = ap, S(1—nl)+2r =ap, (238)

for some integer x, reflecting charge conservation. In the following we restrict our
attention to the case when v = 0 and n} = --- = n/, = 1, admitting a4 screening
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charges only. That is, we assume that

Aomdp' << g
N | (239)
L 1<i<s+r,

\/2p'p

IA

®
4
INA

with the neutrality condition

s+r

> a;=0. (240)

When studying integrals of this form, one is entering the following kind of problems.
To begin with, assume that oy =+ =, Q11 = = Qpygngs - o s Qg 41 =

= Qpy qogny, for some k and (ny,...,n) € {1, 2,... }¥ such that ny+---+nz_; = s
and ny = r. Let ¥ = C/Z + 77Z be the torus with modular parameter 7. Then we have
a vector of multivalued forms with components

W21y ooy Zs|Zsq1y ooy Zogr|T) =
A (W|r) x H E(zi,zj|m)" % dzgpr A - - Adzggr, (241)
1<e<j<s+r
on the configuration space
Xo = (B \Uici{zi = 21)/(Sny X -+ X Spy). (242)

Since A qo,,(WT) = AL (W]T), we can restrict g to the range 0 < g < 2p'p—1. Other
properties of A,(W|r) are summarized in Appendix A.

We will often use the identification p +— (m,m’), g = m'p—myp’, of Z/(2pp'Z) with
Z*/\, where A is the lattice generated by (p,p’) and (2p,0).

Let n’ = (nq,...,n5-1) and

Xor = (B \Uigj{zi = 21)/(Sn, X -0 X S, ) (243)
The projection p : X,, — X, on the first n variables is a fibration with fibers
Xo(z1, 5 2) = p 2,y 25) (244)

These are configuration spaces of r indistinguishable particles on the punctured torus
Y\ {z1,...,2}. Fix 7 and (21,...,25) € X, to obtain a vector (241) of multi-valued
r-forms on (244). The positions z1, ..., zs, which are presently kept fixed, should not
be confused with the positions of the screening charges z511, ..., z54,. Let us suppress
the dependence on the former and the modular parameter in our notation. The r-forms
(241) are multivalued on X,, single valued on the universal covering space )N(T(*) with
base point *, and define a (2p'p)-dimensional representation p of 71(X,,*) through

2p'p—1

qﬁ;(”u) = Z Wy pW(U), S Fl(XTv *)7 (245)

v=0
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with ¢,(2) = xo the right action of the fundamental group on the universal covering
space. The representation matrices can be computed by analytic continuation. Let ¢,
w=0,...,2p'p—1, be singular r-chains in the universal covering space. The equivalence
relation ¢,(c,) ~ 3, puwcy is compatible with the pairing

2p'p—1
<wes= Y / w,. (246)
p=0 v

In other words we can view ¢ as a singular r-chain with coefficients in the space of local
horizontal sections of the vector bundle of rank 2p'p

L, =X,(+) xC¥?/ ~.  (zo,v) ~ (z,p(c)v). (247)

We thus need to examine the singular homology group H'/(X,, L,) with coefficients in
the local system associated to the representation p of 71(X,,*). As a support condition
we will require that the chains are locally finite (If), [DM86, ES52, BM60], possibly
infinite linear combinations of simplices, on X¢ = {(w1,...,w,) € X,| |w; — z;| > €}.
Elements of HY(X,, L,) produce, when paired with (241) a generalized hypergeometric
function on the torus (provided the integral is convergent).

5.3 Local Systems over Configuration Spaces on the Torus
5.3.1 Braid Group on the Torus
Let T'=S* x S' n e {1,2,...}, and define

Co(T) = (T"\ Vicj{z: = 2;})/ 5, (248)
the configuration space of n indistinguishable particles on the torus. Here S, denotes
the symmetric group acting as 7(21,...,2n) = (Tr-1(1)5+ - -» Tr=1())- Let

Ba(T,*) = m(Ca(T), %), (249)

be the braid group on the torus. A convenient choice of base point is

1 1 n o n

k= [(ﬁ,ﬁ),---(ﬁ,ﬁ)] (250)

for some N > n. For 1 < i < n, define elements «;, 3; € B,(T,*) as represented by
the paths [0,1] — C,(T),
i i ()

(G 0L (251)
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moving the particle in position ¢ along an A— and B—cycle, respectively. For 1 <1 <
n — 1, define elements o; € B, (T, *) as represented by

g, = [ . .,wi(t),$i+1(t), .. .],

1 . . 1

T (t) = %(2@' +1,20+1) 4 ﬁA(t),
A(t) = (cos(2rt — Z),sin(%’t - %)), (252)

implementing a counter clockwise exchange of the particle in position ¢ with that in
position ¢ + 1. It is convenient also to introduce the abbreviations

Q=01 Op_ 10y, 8= B, (253)

in terms of which

=00y a0, fi=o7t ol forl o (254)

The group B, (T, *) is generated by «, 3, and 0;, 1 <7 < n—1. A detailed investigation
of B,(T,*) can be found in [Bi69, S70, Cr93].

5.3.2 Coloured Braid Groupoid and Local System
Let n = (ny,...,n%) € {1,2,...}*, |n| = n1 + -+ + ng, and define
Co(T) = (TN Uicj{ws = 2;})/(Suy % -+ % Sy), (255)

the configuration space of particles with colours {1,...,k}, identically coloured parti-
cles being indistinguishable. Let * € C,(T') be the base point (250). The orbit of * un-
der the action of Sp,| can be identified with the right coset space I,, = S, /5, X+ - X S,,.
An element [7] € [, can in turn be described by a colour map 7 : {1,...,|n|} —
{1,...,k}. For [x], [¢] € L,, let Br;’r?(T,*) be the space of paths starting in 7+ and
ending in o*, up to homotopies preserving the end points. Define

Bn(T7 *) — U[r],[U]EInBZTﬁ(Tv *)7 (256)

||

the coloured braid groupoid on the torus. Multiplication is composition of paths. In
particular, BfSiid(T,*) = m1(C,(T),*). The coloured braid groupoid B, (T,*) can be
described in terms of the braid group B, (T, *). Let ¢ : B,(T,*) — S}, be the canonical
homomorphism. There exist one-to-one maps

57 {9 € By (T, #)[[o] = [¥(g)7]} — BI7(T' %), (257)

having the property
bv(9')b7(9) = 65(d'9). (258)



Using this, we can write down generators for B, (T, *). The generators are

ol = g (), B = 6= =(3),
0_2[71'] = ¢Fﬂr,7(0—i)7 1 S U S |n| — L (259)

€ is the cyclic permutation €(¢) = ¢ + 1 mod |n| and 7; is the ith transposition. A
representation of B, (T,+*) on a family of finite dimensional vector spaces V; indexed
by [#] € I, is a family of maps

pr By (T,*) — Hom™(Vz, V5), (260)

from B, (T,%) to U sler, Hom™(Vz, V5), the groupoid of invertible linear mappings
between the vector spaces V;, satisfying the representation property®

pra(9' ) p77(9) = prz(d'9) (261)

The dimension of a representation p is d = dim(V;). A d-dimensional representa-
tion p of B,(T,*) defines a flat rank d vector bundle over C,(T') with distinguished
trivializations over the points m, [7] € I,,.

The representation p, restricted to m1(C,(T), *), gives a flat vector bundle C,(T') X,
Vig- Tt comes with an identification of the fiber over * with Viy. The identification of
the fiber over m* with V% is uniquely given by the condition that the parallel transport
along any path 5 from * to 7+ is pg ~(n)

To do explicit calculations, it is convenient to introduce local trivializations of L,.
Define cells labeled by elements of I,:

The union of the closures of these cells is C,(7T'), and every cell contains precisely one of
the points in the S}, orbit of *. Since cells are contractible, we have an identification

of the restriction of L, to C,(T') with the trivial flat bundle C,(T) x Vz. This
trivialization will be used often below.

5.3.3 Torus with punctures

Let n' = (ny,...,n4-1), s = |n'|, and r = ny. The projection p : C,(T) — Cn/(T') on
the first s variables is a fibration with fibres

Co(T\A{z1,. . zs}) = p N, .oy xs). (263)

Note that C,.(T \ {x1,...,2,}) is the configuration space of r indistinguishable particles
on T\{x1,...,2s}, the punctured torus. Choose a base point * = [x1,..., 2] € Cpia(T)

3In the language of categories, B, (T, *) is the set of morphisms of a category whose objects are
elements of 7. A representation is a functor to the category of finite dimensional vector spaces.
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and let « = [¥541,...,2s4,] be the base point of C,.(T'\ {x1,...,25}). Then By . (T,%) =
T (Co(T\ {1,...,25}),%) is a subgroupoid of B, (T, *), and we have a homomorphism
B (T,%) — B,(T,%). The flat vector bundle corresponding to the pull back of a
representation p is just the restriction to C.(T"\ {x1,...,xs}) of the flat vector bundle
over C,(T) associated to p.

5.4 Topological Representations of U, (sl5(C))

5.5 Local system from multivalued forms

The multipliers of the multivalued r-forms upon analytic continuation define a par-
ticular representation of the coloured braid groupoid. This representation defines in
turn a local system over the configuration space. The singular homology groups we
investigate have coefficients in this local system.

Recall the basic data which we start from: n = (ny,...,nz) € {1,2,...}*, |n| =
s+r,ng=r, and (a(l),...,a(k)) € QF, a(k) = a; such that Zle nra(k) = 0. Then
a; = a(id(¢)). Remember that 7 : {1,...,s+r} — {l,..., k} denotes the colour map
associated with [r] € [,. Given these data, we consider

s+r

Lzl m) = Au20p Y Jauzilr) T Bz 2™, (264)
=1

1<e<j<s+r

0 < p < 2p'p — 1. Fix the modular parameter 7. Then f* = (fE)OSMggp/p_l is a
multivalued analytic function on the configuration space C,(¥) with values in c'r,

Let ¢ : T — X, ¢(at, 2?) = a' 4722, to obtain a diffeomorphism ¢ : C,.(T) — C,.(X).
Define fT = ¢*f*. Fix a base point * = [z1,...,25y,] in Y, := C,(T) such that
0 < a2; < - < a,, < 1. TFor[r] € I, let f7 be the single-valued function
on the universal covering space f/n(ﬂ'*) with values in C?'?, defined as the analytic
continuation of f7 from the base point 7* where it takes the value f1'™(7x) = f1id(x).
An element g € BZ7(T,*) induces a map A, : Y, (7%) — Y, (o%) through A, (z) = zg.
The point xg is represented by a path from 7+ to o*, composed with a path from ox
to p(x), p: Y/n(ﬂ'*) — Y, being the covering projection. Then

N = 30 1T M g) (265)

defines a (2p'p)-dimensional representation of B, (T,*) on V; = C¥®'?. An explicit
calculation by analytic continuation yields

TN a(7(s+7))
My#v (Oé[ ]) = 511# exp {QFZWIM} R (266)
MEZBT) =8, oy P {—mia(R (s + 1))} (267)
M7 (o) = 6, , exp {mia(7(i))a(7(i + 1))} . (268)
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If a(7(s+r)) = ay is a screening charge, it follows that

Miﬁ(am) = 6, €xXp {271'@'%} , (269)

/
MIT (B = 6, o exp {_zm'%} : (270)

These matrices deserve an abbreviation since they will occur frequently below. Let
q = exp(rip'/p) and

3 =

Ay = Oup qu ; By = 0upt2p q—z' (271)

with the convention ¢'/?" = exp(xi/p). If a(7(7)) = (1 — n(7(:)))p'/v/2p'p and a(7(i +
1)) = a4, it follows that

M (08 = b, 4100 212
If a(7(2)) = a(7(i + 1)) = a4, this representation matrix takes the form

MIT (ol =6, ¢ (273)
completing the description of the representation of B, (T *) associated with the mul-
tipliers of f7.

Let n = (n1,...,ng-1), [0/| = s, p: Cu(T) — Co(T), and C. (T \ {x1,...,25}) =
p~'(z1,...,75). In the following, [z, ..., 2] will be fixed as above. Pulling back the
above representation of B, (T,*) with the homomorphism B, (T, %) — B,(T,x*), we
obtain a representation of B, (T, *). We take the tensor product of this representation
with the pull-back of the totally antisymmetric representation of S, by the canonical
homomorphism B, ,(T,*) — S,. The result is the representation, denoted by p,
associated with the multi-valued r-forms (241). This representation induces a local
system (flat vector bundle) 7 : L (21,...,25) = Co (T \ {x1,...,25}).

Let € > 0 be a small number, D the open disc of radius € centered at z;, e =1,...,s,
Ye=T\ (UL, D;). Denote by Y the configuration space C,(Y*) of r indistinguishable
points on Y. Thus elements of Y, are subsets Z C Y of cardinality r. Fix points y_,
y+ € D5 such that y} < xy < yl, and define V= = {Z € Y;|yx € Z}. The bijections

b YAYESYE, 7o ZU () (271)
lift to isomorphisms ¢4 : L, |Y\ Y& — L, |V,55. The lift is of course not unique. To
fix it it is sufficient to define the isomorphism from the fiber of the base point to the
fiber of its image. We define it to be the identity map in the distinguished trivialization
introduced above.
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5.6 Families of Loops and Operators

We generalize the previous construction on the sphere to the torus. To make this
chapter self-contained we briefly recall the notion of families of loops and topological
operators with quantum group relations, adapted to the torus. Let [z1,...,2,] €
Coria(T), e >0,V =C.(Y), and yx € Y be as above. The position of the punctures
will be kept fixed in the following.

A non-intersecting family of loops based at y_ is a family ~o,...,7,—1 of smooth
homotopically non-trivial embedded loops starting and ending at y_, with no mutual
intersections except at the endpoints. Homotopies of families of loops are defined. Non-
intersecting families of loops can be represented by embeddings I' of the open r-cube
with open (r — 1)-faces @, into X,.

Let AS be the space of linear combinations Y Ar[I'] of homotopy classes [I'] =
[0, .-,7—1] of non-intersecting families of loops, with coefficients Ar in the space
of horizontal sections of I'*L, over (),. Horizontal sections corresponding to homo-
topic families of loops are canonically identified by parallel transport, so the definition
makes sense. The elements of 121; represent locally finite relative homology classes in
HY (Y Y L,). We consider a quotient of 121; by a subspace which maps to zero in
homology. Let Af = 121; / ~, where the equivalence relation ~ is given by

L. A[l'] ~ £f*A[l" o f] for any orientation preserving (+) or reversing (-) isometry
of the cube Q,.

2. A0y ey Vive o osYr=1) = N[Y0y eV vema) + XN v0s -0 oo Ye—1], When-
ever v, is homotopic to the composition v/ 04" in such a way that if the homotopy
is denoted by A(-,s), s € [0,1], v0, ..., h(-,8),...,7r—1 is a non-intersecting family
of loops for all s € [0,1]. The sections X', A" are the restrictions of A.

3. Mo, .-+, ¥r—1] ~ 0, whenever at least p loops in the family are in the same class
in T (Y y-).

The third identification is peculiar to the case when ¢ is a root of unity: if n loops,
say 7o, - - -, Yn—1 10 a non-intersecting family 7o, . .., v,—1 are all homotopic to a loop 7,
then the corresponding locally finite homology class is proportional to the class of a
relative cycle parametrized by tg <t; < - <t,_1,tn,...,t,_1 € @), as

(tore o tret) = (F(to)s o Y (tet )y A () 4 (Ere1)) (275)

The proportionality factor is

n 27 _ 1
1 : (276)
21

and vanishes if n > p. We define now operators E, F, and [{’7 acting on the space

o oA and compute their commutation relations. The operator F is a close relative
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of the boundary operator. Define

r—1

E : )‘F[707 s 777“—1] = Z(_1)2¢:1 ()‘F o ez-'l,_r - )‘F o ei_,r) [707 s 7’%7 s 777“—1]7
=0 (277)

with e, ¢ [0,1]"7" — [0,1]" the standard face maps. 4; denotes the omission of ;.
Intuitively the ¢th particle is moved to y_ and then taken out. The operator F adds a
loop along the boundary of the hole around the first puncture.

A

Fo Ao, o] = Mo, o o1, ] (278)

with v¢ : [0,1] = Y, q¢(t) = 2y + %A(t). Here IV = 70,...,7_1,7c and X is the
horizontal section of "L, with ¢1 A = X oé, where i is the inclusion (to,...,t,_1, %)
This definition makes sense since we can assume that 7, ... , 7,_1 do not intersect v¢
except at the endpoints. The operator K is simply defined as

K2y = g7t7m0), (279)

Charge neutrality requires that 1 — nq(r) = 37 ,(n; — 1) — 2r. Note that both the
construction of £ and F' make use of the isomorphisms (274), relating local systems
over different configuration spaces.

Theorem 5.1 The operators E, Fand K satisfy the relations

A

K?E =@ ER?, K*F=q¢*FK? [E,F]=K*— K2 (280)

In other words, the operators E, F, K? and K2 define a representation of U, (sl5(C))
on G2 AL,

Proof: The proof is a repetition of that of Theorem 3.6. The first and the second
relation are immediate consequences of the definition of E, F, and K. The third
relation is best proved using an explicit trivialization. Without loss of generality, we
can assume that [zq,... ,:1;5,70(%), e ,77,_1(%)] € C,.(T) for some [x] € [,. Denote
by A(v) the section with the value v in the trivialization over C, .(T'). We can further
assume that [21,...,25,%(3),- - Y=r -, Yr=1(3)]€ Cno,(T) for some [oy] € I,,, (y— in
position 7). Let 5 be the paths ¢ — [zy,.. g 0(3)s (G £ 1), i (3)]-
Using

A

E)\(U)["}/o, s 777“—1] =
r—1

Y (=1 (poia(nf) = poca(n MO0, - - -2 Fis - - Yo (281)

=0
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it follows that
EF}‘(U)[707 s 777“—1] = EA(U)[707 SR 777“—1770]

= 30 (por w05 = parar(n7)) M) 0s - A - %]

= 21 (Prunn) = po ) M) 0+ B33 = Lore] +

(=1)" (por 2 (0F) = poto (1)) M) 05 - -+ o]
= FEN©)[0, - 1] +
(ql—m(r-l-l) _ qm(r-l-l)—l) )\(U)[’Yo, . 777“—1]7 (282)

proving the third relation. O

5.7 The Torus with One Puncture

We have proved above that $52,AS comes equipped with the structure of a U, (sl5(C))
module. A legitimate question to address is what kind of module this is. In this section
we will consider the torus with a single puncture and find the adjoint representation
of U, (sl5(C)).

To describe A¢ as a space., we choose a basis as follows. Let 44 and ~g be loops
in Y based at y_ such that v4 winds around an A-cycle and v winds around a B-

cycle. For ja, jp € {0,1,...} such that j4 + jg = r, let 7](3),...,7](34 5) he homotopic
deformations of v5 and 71(4 ), e ,71(4“‘) homotopic deformations of v4 such that 7](3) lies
on the left of ’y(l—H) and ’yX) above 71(4 ), and 7](3), e ,71(4 ) is a non- intersecting family

of loops, also denoted by ~#,~%*. This family of loops is drawn in Fig. 4. We choose
representatives in such a way that [:1;1,71(%), e ,’yT(%)] € Cpia(T). We define A(v) to

be the horizontal section over [vi,~v%*] which takes the value v in the trivialization
over Cpia(T). Let e,, 1 < p < 2p'p be the standard basis of C2'?. Then

A @pr @JA-I-JB =r (C)‘(eu)hgav 7,];114]' (283)
In this basis, the operators E, F and K are represented by the following matrices.

Lemma 5.2 Applying E, Fand K to the elements of the basis (283) of AL we obtain

Bl 7] = L2 (a0 — i) e ok +
Ja . L
q[_;q—l (q]A+2]B+1A_q ja 2]B+1) )\( )[7B 771]4,4 1]7 (284)
Xy A7) = (¢35 7287 — ¢ B AT ) M)y T k] +
(¥4 BT AT = A7) Me) 9, 74, (285)
K2Ne )P 7] = ¢ 2475572\ e ) v v, (286)
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Figure 4: The family of loops ’yjng, ’yff.

with the convention that [yif,v#] =0 if jg <0 or j4 <O0.
Proof: The action of E is explicitly computed from

A s , -
EXe) 2 A1) = 3 (=1 (povianF) = povian)) Me) i~ 4] +
=1
Jjatis ) ) —
S (=1 (prrsaln) = paysa(ni)) Mew) i 4%, (287)
1=jp+1

The paths nf have representation matrices

po (nF) = (=)' B(—=¢7*)", - 1<i<js
T (7O A=) et LS <gatie (ogg)
Povia(n) = (—¢7*)'". (289)

To compute the action of F, we have to deform the added loop to the composition of
two 74 and two vp loops. The result is

FXe )87 = por s ()M e ) 72 +

p@,w(nz)k(eu){[vg), LN S Y L L

o A0 0 -
P O D O | o O B S N (R S (290)

A transition function is picked up when the cell on which the bundle is trivialized
changes. The paths 7; have braid groupoid representation matrices

pc?l,??(ﬁl) = A_17 (291)
Py = (=" Y4BT AT, (292)
Prsring) = (—1) g U ABTIATL (293)
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The last representation matrix can be simplyfied using AB = ¢* BA. Finally, the loops
are reordered with the help of an isometry of the unit cube. The action of K follows
immediately from its definition. O

The matrices acting on the sections are

2u

Ae,=q7 e, Be,=q e qap. (294)

Using these formulae, we conclude that the representation of U, (sl3(C)) on G AS can
be split into a direct sum of isomorphic representations.
Define for n =0,1,2,..., [n], = ¢" — ¢7", [n],! = [n]g[n — 1], - - - [2],[1],, [0],! = L.

Lemma 5.3 (1) A decomposes into a direct sum of subspaces

A = @ B mo CAemwtprn )70, 0SSP =1, (299)

n=0

invariant under the action of U, (sl2(C)). (II) The action of E, I and K on A" takes
the explicit form

A

E)‘(e—n’p-l-np’) [7{33 ) 7,];114] =

[]B] s . . .
ﬁ{q HATITEN (e nyp) — T M ecwrpnn) } 0]+

—n'p/p'+n+1 [14lglia + 298 — n'p/p +n], \
e (

q9—4q 4 |
a7 =

q e—n’p+np’)[7]]§Ba 7,];114_1]7 (296)

gt i —n'p p = M e -2 ) E T ] +
{qz“JrQn/p/p/_QnH)\(e—n'p+(n_2)p') - qzn/p/p/_Zn)\(e—n'p+np')} v, v,
(207)
[()‘(e—n’p-l-np’)[ﬁBBa%]alA] = q_sz_sz_z)‘(e—n’p-l-np’)[’ﬁBB77,]4A]- (298)

Denote AS™ = A, N A", Let U, (5l,(C)) be the Hopf algebra with generators £,
F, K% with the relations of Theorem 4.1, and coproduct A(E) = F® K*+1® E,
AF)y=F@K?*+1®F, A(Kﬂ) = K*2 g K*2 (see Section 5). Let [, be the
ideal generated by the central elements EP, I'* and (K?)* — 1, and U} (sl5(C)) =
U, (sl2(C)) /1,. U, (sl3(C)) acts on US (s/2(C)) by the adjoint action. We define the
idempotents

2p—1
127

—m 172m 1
Thow (wg™)""K*™, n € ]?Z, w==£l. (299)

As before we set ¢'/?" = exp(mi/p). These idempotents have the following properties

-2 !
KThw =" Thw, Toipw = Tngro,  Togwpiprw = Tn,(—l)"'wv n,n €4,

Tn—l—n’p/p’,me-I—n’p/p’,w’ = 5n7m5w7w/Tn+n/p/p/7w, 0<nm<p—1, n' € 7Z.
(300)
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For each n' € Z, the elements T}, 1, /pr s n = 0,...,p — 1, w = £1 build a basis of the
subalgebra generated by K?2.

Definition: For 0 < n’ < p' — 1, define linear maps ¢, : A9" — U7 (s1,(C)) as follows:

P A ( €—n'ptnp’ ) [71]53 ) 7,];114] =

L : o B, : 4
g~ 2/l (a=1)(=n'p/p'+n+1) %FJAEP_PJB T gntpp'—n1 - (301)

Having introduced the maps ¢,/, we are ready to state the main result of this
section.

Theorem 5.4 (I) For X € U, (sl,(C)), andn’ =0,...,p" — 1, the diagram

Aem Ae,n’

wl fbn/ (302)
Uy (s12(0)) o Uy (s12(0))
commutes. That is, ¢, is a homomorphism from A" to the module U? (s12(C)) with

the adjoint action. (II) If p' is odd, ¢, is an isomorphism. If p' is even, ¢, is two-to-
one, with image the submodule {X € U} (sl,(C)) |[K*PX = (=)™ X1,

Proof: (1) is checked by an explicit calculation using Lemma 5.3 and Lemma 5.2. To
prove (IT), we notice that FYE'T, ,, with j,[,n =0,...,p—1 and w = £1, build a basis
of U, (sl3(C)). For p' odd, we see from Definition 4.4 using the third eq. of (300) that

¢ 18 bijective. If p’ is even, the image is the subspace spanned by the basis vectors

!

with w = (=1)". O

Let us work out the interplay between topological and algebraic objects a little
further. We have introduced F' : Al — AP, as the operator which adds a ~yc-loop
and identifies the the section as described above, using the point y,. With any loop
v :[0,1] — Y* based at y_ such that (1) = y;, we can associate an operator ﬁ(’y) :
AL — A, Ao, Ye—1] = M[Y0s -5 r—1.7], such that ¢ A = X o4, generalizing
Fo= f/(yc). Two special cases are Py = [A/(’yA) and I = [A/(’yp) . See Fig. 5 for a
graphical representation.

Theorem 5.5 (1) For 0 < n' < p' —1, FLR maps A" to A;fll and F' = Iy — Fg.
(II) The diagrams
Fr

A A

wl fbn/ (303)
Up (s12(C)) ———— U] (s1(C))

X—FXK?
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Figure 5: The loops v4,... ,vD.

and
As™ e, Ao
%J fbn/ (304)
U? (s12(C)) Pop— U? (s12(C))
commule.

Proof: (I) 4¢ is homotopic to the composition (v5') o y4. Using the equivalence

relations imposed on A;fll it follows that
Ao - s yr-1590] = Mo+ -1 74l + X0, -+ -1, 70] (305)

the sections being identified as above. (II) The counterpart of Fyoon US (s12(C)) follows
from

)‘(e—n’p-l-np’)/[’VJjBBv 7,];1A+1] = A_l)‘(e—n’p+np’)[7§337 7,];1A+1] (306)
using the explicit form (301) of ¢,,. The action of Fr oon U7 (sl5(C)) is computed with
F'=Fp — Fg, and adp(X) = FXK? — XFK? O

5.7.1 The Torus with Many Punctures

Combining the above results with previous work on topological representations of
U, (s12(C)) on the disc, the representation on @:2, AS can be identified. The result is a
tensor product of US (s/2(C)) Verma modules, one for every additional puncture, with
the algebra itself. The latter is understood as the representation space for the adjoint
action.
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Figure 6: The family of loops of eq. (307).

The starting point is again an explicit description of Af as a space in terms of a
basis. Fix a non-intersecting family of loops

[ v =
[751)7"' 775]2)7"' 7751)7"' 77.§j5)77(Bl)7"' 77gB)771(41)7"' 771%714)]' (307)

It is understood that %(k)7 2<i<sand 1 <k <y, are homotopic deformations of ~;
such that ’y(kH)

7

lies inside %(k)‘ See Fig. 6. Let this family be parametrized such that

1 AV
(1235 (5) TGN € Cum (D). (308)

Define a horizontal section over this family, denoted by A(v) giving it the value v in
the distinguished trivialization over C, 7(7'). Then

2p/p N . . .
A=D D O i (309)
u=1 jo4-+ja=r

Generalizing the case with one puncture, we define the following map.

Definition: For 0 < n’ < p' — 1, define maps qﬁfj) C A S Ving) @ - @ Ving) ®
US (s/2(C)) as follows:

68 (Memntprmp )8 - A8 A1) =
FPug(ny) @ @ Fvo(ns) @ 68 (Memwppmp )05, 1] - (310)

where qbfll,) denotes the map of Definition 5.7 for the torus with one puncture. V(h) is
the US (s/2(C)) Verma module generated from a singular vector vo(h) with Eve(h) =0
and K2vg(h) = ¢"too(h).
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Theorem 5.6 (I) For 0 <n' <p' —1, the maps (/57(15,) P A S V()@@ Ving) @
U (s12(C)) are one-to-one and onto if p' is odd, and two-to-one if p' is even. (II) For

AVX) = xP e 0 x?. (311)
Denote B" = ®§:1V(nj) ® US (sl2(C)). Then the diagram

Ae,n’ X Aem

Pbiﬁ) (312)

3. xWe0xE D gad(x )

commutes. That is, the topological action of U, (sl3(C)) on A" is given by the coprod-
uct on the tensor product of Verma modules with the algebra itself.

Proof: We will give an explicit proof for s = 2. The generalization to s > 2 is obvious
and will be omitted. Since

EMentprn )09 78 75" =

[72]q [n2 — J2] 1 e
L I N s prnn ) VT VYR

q—q!
o Usle i y o
¢ ”X{iq_qq_l (g7 9275558 — g 792 ) Memwprnp )98 7H 75 +
4 . o -
T EI e % s I

it follows that

6 (EMewppnn )78, 710]) =
(B 01+ K20 )5 (Mecwpn) 18,7, 74]) - (314)
Where we identify the coproduct A(E) = F ® 1+ K? @ E. To compute the action of

F, the added loop has to be homotopically deformed and split into a composition of
loops ~2,v8B, and v4. By a deformation procedure it is shown that

FXMe—wprnp ) 73", 78 74 =
GIAAERN (et )T A
(4B AT = g5 B MLy )8 78 71

(A" — ¢4 BT AN e—wrpnp ) 09 8 (315)
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As a consequence
O (FMemwprny )08 78 7i1]) =
(FoK24+10 F)l) (Mecwprm) 08,98, 711) - (316)
where A(F) = F @ K=+ 1@ F. Finally,
K2N(e—npinp )37 78 74'] =
qn2_1_2jmq_QjA_QjB_z)‘(e—n’p-l-np’)[7%277]B37 vil, (317)
so that
65 (K2Nemmpnn )8 77 1]) =
K? @ K265 (Memwppnn )8 78 711]) (318)
proves the assertion since A(K?) = K*@ K? . The right action of K?is a consequence
of the charge neutrality condition. [

Thus we have proved that the topological action of U, (sl3(C)) on the torus with
many punctures algebraically reproduces the coproduct.

5.8 On the adjoint representation

Let ¢ = exp(inp’/p), where p and p’ are relative prime integers with p > 2. U, (sl3(C))
is defined as the unital algebra over C generated by E,F and K*? subject to the
relations

KK =1, K*E={FEK?,
K*F =¢?FK? [E,F]=K?— K™ (319)

In the following, we will consider the quotient U (sl5(C)) = U, (sl5(C)) /1, obtained
by dividing by the Ideal I, generated by the central elements (K?)* — 1, E? and FP.
From U, (sl5(C)) it inherits the coproduct

A(K*) = K* @ K+,
AB)=E0l+ KB, A(F)=FoK?+10F, (320)

and the antipode
S(E)=—-K™E, S(F)=-FK* S(K*)=K%, (321)

Theorem 5.7 The monomials F'E'K?, 0 < 5,1 <p—1,0<n <2p—1, form a
PBW-basis of U} (sl5(C)).
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Using the notation A(X) = Y, X! ® X/, the adjoint representation of U, (sl(C))
acting on U} (sl5(C)) is given by

ady(Y) = ngYS(X;’). (322)

In particular, the action of the generators £, F' and K*? is

adp(X) = EX — K*’XK7*E,
adp(X) = FXK?* - XI'K?,
adpe(X) = KE2X K72, (323)

In order to identify the U, (5/5(C))-modules A", 0 < n/ < p' — 1, with U7 (s1,(C)), we
consider for each n’ the basis given by FjElTn+n/p s 0<5ln<p—-1,w==l In

!

addition to the properties (300), the idempotents T, satisfy
ETn,w — n—|—2,wE7 FTn,w — n—2,wF7 (324)
which, together with

(o, 1) = o), S

q—q! ’
n—l[{2 _ —n+1[{—2
[E", F] = E"[n],2 7 : (325)
q—q

and (319), allow us to compute explicitly the action of the generators. The result is

Lemma 5.8 Let 0 < n' < p'—1. The action of E, F', and K? on the basis FjElTn+u ,
» Y

0<j,ln<p—1,w==l, is given explicitly by

ad (P E'T ) = FE (Tt — U g —) —
T —n—20—n'p/p —1
w []]q[] n _? p/p ] +n/p/p/7w7 (326)
q9—dq
adF(FjElTn+n’p/p’,W) — F]-I-IEI (qu—l—n/p/p/Tn—l—n’p/pQw . qu-l—n/p/p/-l—zTn-l—n’p/p’-l-?,w) _

q Fj—lElTn

oo 14l w/p 4+ 1],
qn-l—n p/p'+2 [ ]q[ + nq";Zf?l/p + ]q F]El_lTn-l—n’p/p/"'va’ (327)
ad 2 (FUE T ynipr) = D FIE T, 0 (328)

5.9 Conjecture on locally finite homology

We conclude by stating a conjecture on the locally finite middle-dimensional homology
groups with coefficients in the local systems L,. Let as before ¢ be a root of unity,
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and p be the smallest positive integer such that ¢* = 1. Define quantum binomial
coefficients as

m T [n]q! g = q(1+ 0. (329)

10 n = ml, M),

Let A be the associative Z-graded algebra with unit, generated by K2, K =2 of degree
zero, I of degree -1, and F,, of degree n, n =0, 1, ..., with relations

K*EK?=¢FE, K*F,K?=q¢"F,,
EF, —F,E=F,_ ("MK~ ¢ 'K™%), n>1,
n-+m

m ] } Fn—l—m7

KE¥KF = KPRKE =y =1. (330)

F.F, = l

This is "halt” of Lusztig’s construction of the quantum group at root of unity. It is
obtained by formally setting F,, = F"[1],/[n],!, for ¢ generic, and taking the limit when
g goes to a root of unity.

There is a homomorphism ¢ : U, (sl3(C)) — A given by F — FE, K*? — K*2,
and F'+— Fy. Thus U, (sl3(C)) acts on A via the adjoint action U, (s/3(C)) x A — A,
(z,a) = Yj(xl)au(S(27)), where A(x) = Ya’ @ 2%. The U, (slz(C)) module A is Z
graded for the grading of U, (sl5(C)) defined by deg(FE) = —1, deg(F') = 1, deg( K*?) =
0.

Let Ay be the quotient of A by the ideal generated by the central element EVN?,
N =1,2,.... The algebra U, (5l5(C)) acts on Ay since EN? commutes with the action

on A. Multiplication by E? defines embeddings of U, (s/3(C)) modules
s Ay e Ay e (331)

These maps are of degree zero for the shifted degree on Ay given by deg(x) = deg(x)+
Np. Define the graded U, (sl3(C)) module A, to be the direct limit of the modules
Apn with the shifted degree. A basis of A, is given by the classes of

F,ENe== L€ Ay, 5l EN, ne{0,1,....p—1} w==+l.
(332)

In this expression N is any number such that Np — [ — 1 > 0. The degree of (332) is
7 +1—1. Denote by A% the subspace of homogeneous elements of degree d.

An alternative description of the U, (sl3(C)) module A., was essentially suggested
to us by D. Kazhdan: Let Z be the subalgebra of the center of U, (sl5(C)) generated
by E?. Then A, = A @z C[t], with adjoint action of U, (sl2(C)), where E? acts on A
by multiplication and on C[t] as d/d¢. The isomorphism relating the two definitions is
cl(z € Ay) — ®tN_1/(N — L

For simplicity, we state our conjecture in the case of p’ odd.
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Conjecture 5.9 Suppose that p’ is odd. (I) The action of U, (slz(C)) on families of
loops extends to an action on HY(X,, X7 L,), and there is a degree zero isomorphism
of graded U, (sly(C)) modules HY(X,, X ;L,) ~ @ZI,;BAZ;I. (II) There is a degree
zero isomorphism of graded vector spaces HY(X,) ~ @?f,)/:_olKer(E AT AT,

This conjecture is parallel to the one formulated in [FW91] for the case of the sphere.
To prove it one should understand better locally finite homology. In the remaining of
this section we describe these isomorphisms. Let, as in (268), y4, v8 : [0,1] — X be
A and B loops on the one-holed torus X based at a point y_ on the boundary of the
hole. Consider the locally compact cells in X,

Cir ={(vB(t1), - s vB(t), valtivn), - valty) € Xo
O<ti < - <t <0<ty <---<t, <1}7, (333)

where ~ denotes closure in X,. We orient (, using the standard orientation of the
parameter space R” 3 ¢, and choose as section over it the section taking the value ¢,
over a point in one of the cells defined in (249), where a trivialization is fixed. The
class in Hif(XT, X ; L) represented by C), with this section will be denoted by C,, ;.
The U, (515(C)) module 422, HY (X,, X; L,) is a direct sum of submodules labeled by
n' =0,...,p—1,spanned by C,;, with g = —n'p+np/,n=0,...,2p—1,1=0,1,....
Each of these submodules is isomorphic to A.,. The isomorphism is

Cu,l,r = nFT—lEpN_l_lTl—u/p’,lv (334)

for some root of unity n depending on the choice of trivialization. The second isomor-
phism is obtained through the identification of Ker(F) with Ker(d.).

The space of cycles obtained here is bigger than the space of cycles relevant for
conformal field theory. The cycles for conformal field theory should be computed using
the cohomological methods of [FS89a, F'S92] but the details remain to be understood.
By construction, there is a projective action of the mapping class group PSL(2,Z) on
relative homology, which commutes with the action of the quantum group. It will be

described below.

5.10 Properties of A,(W]|7)
Define

eT(2W+Tu)/(2p'p)

A (W r) = O (W 29
M( |T) 77(7_) 3( —I_T:u| ppT)
1 i e 2miW (ntu/(2p'p))+mi2p'pr(ntp/ (29’ p)) (335)
“ () =
s s+r
W .= p’Z (1 —n)z + 2p' Z Z;. (336)
=1 1=s+1
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A straightforward computation yields

A (W 4 Ip'|7) = ™ IPA L (W7), (337)
AW 4 Ip'r|r) = e TWWVHEST N (W 7). (338)
and
AL (Wr 1) = em /=1 (W|7), (339)
—1 1 > -
Ay(Wl—) = erTIVI ) Z D) Ngyryp (W), (340)

T «/2’ =

To verify the last identity, note that

2p’'p—1
' ) 1 W —
Z e—rzul//(pp)AM(Wh—) — 03( / l/| T/ ), (341)
u=0 77(7—) w2
1 'p-1 , 1 —
(W| ) em;w/(p ») 0 (W ; l/| T/ ) 5 (342)
2}?}7 = 77(7') 2}?}7 2}?}7

and

W) = V() (313)

—1

32| —) = V=ire 0527 7). (344)

5.11 Properties of §;(z|7)

Following Jacobi one defines

0 — Z 2mi(z+1/2) n+1/2)‘|‘7”7(n+1/2) (345)

n=—0oo

In terms of an infinite product

01(z|7) = 277/ (1) sin(n2) [I(1 =27 cos(2mz) + ™). (346)

n=1
It satisfies the following identities

Or(z +1|7) = =01(2|7),  Oi(z +7]7) = =0 (2]7), Oi(—z|7) = —Ou(2]7),

—1 2
bi(z|7+ 1) = \/@_'(91(Z|7'), (91(Z|T) = Vaire™ 70 (z7|T). (347)

It has simple zeroes on the lattice Z & Z7 and no others. Consider the fractional power
01(z|7)*, a € Q\Z , a multi valued function on C\ Z &Zr. Upon analytic continuation
along straight paths from z to z + 1 and z + 7 respectively, it has the property that

0=+ 1]r) = 2w, (2], (315)
01(2 + 7_|7_) e?ﬂ’zaapB( z)— 27Tiozz—7rioz701(z|7_)oz7 (349)
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with

1 1
pa(z) =—n— 2 pp(z) =m+ > (350)
ze{etyreClm <z <m+1l,n<y<n+l1}, (351)

as follows from an explicit calculation. Note that ¢4 (z) is constant on every translated
fundamental domain.

6 Topological Representations of U, (sl2(C)) on the
Torus and the Mapping Class Group

We compute the mapping class group action on cycles on the configuration space of
the torus with one puncture, with coefficients in a local system arising in conformal
field theory. This action commutes with the topological action of the quantum group
U, (s13(C)), and is given in vertex form.

6.1 Introduction

We consider topological representations of U, (sl2(C)) appearing in free field represen-
tations of conformal field theories on the torus based on SU(2). Topological representa-
tions of quantum groups on the complex plane were introduced in [FW91, SV91, La90].
The torus has been investigated in [CFW93].

Fock space traces of products of vertex operators yield multi-valued holomorphic
differential forms on configuration spaces over the torus. Quantum groups [D86, Lu90,
FK93, RT91] enter through their action on a certain space A of linear forms on the
space of holomorphic multivalued differential forms with given monodromy. These
forms are given by integration on products of loops. Singular vectors with respect with
this action give cycles, and define thus linear forms on cohomology. We consider the
torus with one puncture together with the local system given in [CFW93], associated
to the monodromy of the differential forms. We restrict our attention to the quantum
group U, (sl3(C)) at ¢ a 2pth root of unity. The topological action of U, (slz(C)) has
been identified in [CFW93] with the adjoint representation in the sense that the space
A is isomorphic to U, (sl3(C)) as U, (s/2(C))-module with the adjoint action. The main
input from conformal field theory [BPZ84, DF84, ZF86, 89, BF90, SV89, G89, GK90,
FS89a, FS89b] is the form of the local system.

An important feature of conformal field theories on the torus is modular invariance
[FS89b]. A natural question to pose is the meaning of modular transformations on
the side of topological representations. The first observation is that the local system
coming from conformal field theory is compatible with modular transformations in a
sense to be defined below. As a consequence the modular group acts on the space A.
The second observation is that we can explicitly compute the action of the modular
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Figure 7: The loops «a, o, 3, and ~.

group on A by contour deformation methods. Using the identification of A with the
quantum group algebra, we obtain the action of the modular group on the latter.

Since the action of the modular group commutes with the topological action of
U, (s13(C)), it commutes on the algebraic side with the adjoint action. The result is a
"vertex” form of the generators T' and S of the modular group. These generators are
expressed in terms of the universal R-matrix of an enlarged version of U, (sl5(C)) (the
” K -generated algebra”) and the Haar measure on U, (s/3(C)). A representation of the
mapping class group in ”SOS” form arises in the study of three-manifold invariants of
Reshetikhin and Turaev [RT91].

We obtain as a byproduct the quantum group interpretation of modular invariance.
Namely, the action of the modular group leaves invariant the subspace of singular
vectors in the adjoint representation.

Similar formulas have been discovered independently, in the context of braided
groups of monoidal categories, by Lyubashenko and Majid [LM91].

6.2 Configuration spaces and local systems on the torus

Let X be a torus with one puncture.

6.2.1 Representation of X

Let Dp(w) = {z € C||z — w| < r}, the open disc. We represent X = (Dg(0) \
UL, Dri(w;))/ ~, the disc with two holes, the boundaries of which we identify. E.g.,
we take wy = —R/3 and wy; = R/3, define ¢(w; + R'e'¥~™) = wy+ R'e™ and identify
#(z) ~ z. Let po = —R serve as a base point. w1(X,po) is generated by elements «
and 3 as represented by the loops in X based at py shown in Fig. 7. For later purpose,
we introduce the abbreviations o’ = 371 oa o and y =aoftoatof.
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6.2.2 Configuration spaces and braid groups on X

For r > 1, we define configuration spaces
Xy = (X" \ Uicicier{(215- -, 20) € XT]zi = 2}) /5, (352)

S, is the symmetric group, acting from the right. Let %, = [aq,...,2,] be a base
point in X,. 71(X,,*,) is the braid group with r strings on X. We call a base point
admissible if —R < 2y < --- <z, < —R/3 — R'. Braid groups defined with respect to
different admissible base points are canonically isomorphic. We will always assume x,
to be an admissible base point such that {z1,...,2,} C 0X. m1(X,,*,) is generated
by elements o;, 1 < ¢ < r — 1, «, and . Intuitively, o; interchanges x; with ;44
counterclockwise, while @ and  move z, along the respective loops, other components
of *, being kept fixed. An abundance of relations hold among these generators. We
will not present them here.

6.2.3 Local systems over X,

Let p be an odd positive integer. Put ¢ = ¢™/? and define 2p by 2p matrices A and B
with entries

Am,n = ql_m5m,n7 Bm,n — Z5m,n+2pl—|—1- (353)

lEZ

They satisfy AB = ¢"'BA. Let V = C*. The assignments
prloi) =—¢", 1<i<r—1 pla)=A" p(8)=B" (354)

define a 2p-dimensional representation p, : 71(X,,*,) — GL(V). It is the monodromy
representation associated with multivalued differential forms on X, mentioned above.
pr 1s the direct sum of two equivalent p-dimensional irreducible representations.

Let X? be the subspace of X, consisting of configurations which contain py among
their components. We then define ¢, : X,_; \ X? | — X to be the bijection which
inserts po. The family of representations p,, r > 1, is compatible in the following sense.
Let mi(&,) : m1(Xoo1 \ X2y, k1) — 71 (X2, &,.(%,-1)) be the isomorphism induced by
&, then p, o m(d,) = proy. )

With p, we associate the local system L,(X) = X, (*,) Oy (Xpxr) V5 @ flat vector
bundle over X, with distinguished trivialization over *,, the holonomy associated with
elements of 71(X,,*,) being p,. Due to the compatibility, ¢, can be lifted to L,(¢,) :

LT_l(X)‘X \x0 — LT(X)‘XO. We define L, (¢,)([x,v]) = [¢,(x), v], which is checked
to be well deﬁn:eal. '

6.3 Topological representations of U (sl5(C))

We summarize briefly the constructions leading to topological representations of the
quantum group U;ed (s/2(C)) adjusting the notations to the present setup.
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6.3.1 Families of nonintersecting loops with values in the local system

Let Q, =]0, 1["UU;_4]0, 1[x -+ - x {0,1} x --- x]0,1[ and 71, ...,7, be loops [0,1] — X
starting and ending at pg, nonintersecting except at po. Define [y1,...,7,] : @, — X,
be the corresponding embedding. Denote by [37,a*] : Q, — X,, j +k = r a family of
nonintersecting loops obtained by homotopic deformation of j F-loops and k a-loops
given by

[ﬂjv Oék](toa s 7t7°—1) = [6(0)(t0)7 A ﬂ(j_l)(tj—l)v Oé(j)(t]‘), et a(T_l)(tr—l)]-
(355)

It represents a locally finite r-chain in X, with boundary in X?.

We lift it to take values in XT(*T). We specity the lift by choosing an admissible
point on its image, connecting this point to the base point by an admissible path.
Then the equivalence class [[37, a*],v], v € V, defines a family of nonintersecting loops
in X with values in L,(X). The space of families of nonintersecting loops in X with
values in L,(X) is denoted by A,(X,, X% L,) or shorter by A,. Its precise defini-
tion contains equivalence relations reflecting the possibility of homotopic deformation,
reparametrization, and splitting of loops (see [FW91]). The elements [[3’, "], e,],
0 <j,k <min{r,p— 1} such that j + k =r, and 1 < n < 2p, constitute a basis. Here
(en)m = 6nm. A family which contains p homotopic loops is put equivalent to zero.
Therefore, we restrict ourselfs to r < 2p — 2.

6.3.2 Topological action of U]* (sl3(C))

The basic ingredience of topological representations are operators

E:A —A_, F:A — A, K:A — A, (356)
defined by
B3] ] = ~L,(6,) 015, 0", ], (357)
P, e) = 7272723, 0", 4], e, (358)
K2[[#, 0%, 6] = ¢ 228, 0", ). (359)

They are shown to satisfy the relations of U, (sl3(C)):
K*E =¢’FEK* K*F=q*FK* |[E,F]=K"—K? (360)
and also the additional relations
EP =0, F’P=0, (K>)*-—-1=0, (361)

defining U;ed (s/2(C)). Thus P57 A, comes equipped with the structure of a module
over U;ed (s/2(C)). We identify this representation as the adjoint representation. Let
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P A — U;ed (s/2(C)) be the map

S, 0", en) = N(j, kyn) FE T,y P71, (362)
NG ko) = (—1yigrngit-0zbled GenGemnsoena-nricem (363
o [1]2

An explicit computation proves that ¢ is a homomorphism of U;ed (s/2(C)) modules.
Moreover, it is one-to-one and onto. Here

2p—1
127

Tn - —nmIIQm‘ 364
3y 2 0K (364)

m=0

The actions of U;ed (s/2(C)) on itself by left multiplication and by right multiplication,
twisted with the antipode, also have topological counterparts. The operator which
implements left multiplication by £ is called F},. The operator which corresponds to

right multiplication by n(F') is denoted by Fr. On the topological side they are given
by

Fr[[B7, 0", eq] = "7 72787, M ey, (365)
FR[B, 0], en] = ¢ %72 72([o, 57, 0], €] (366)

Intuitively, F' adds a ~-loop, while F, and Fr add a- and o'-loops respectively. The
interpretation of @*5% A, as a bimodule will not be worked out here.
The important formula of this section to keep in mind is (363).

6.4 Action of the Mapping Class Group

Let Diff(X) be the group of diffeomorphisms which leave 0X = {z € C||z| = R}
invariant. Let Diffo(X) be the subgroup of Diff(X') consisting of diffeomorphisms ho-
motopic to the identity. The mapping class group of X is defined as

M1 (X) := Diff(X)/Diffo(X). (367)

A reference on mapping class groups is [Bi74].

6.4.1 Generators of M;;(X)

My 1(X) is generated by Dehn twists. On the torus, we have two kinds of Dehn
twists, T, and Ts. T, is defined as follows. Consider the annulus {z € X |r + ¢ <
|z — wy| < r+ 2¢} with € > 0 small. We define a map of this annulus to itself by
To(wi+2) := w1+ et 2 with ¢ a smooth function interpolating between ¢(r+¢) =0
and o(r + 2¢) = 2r. We say that T, is the Dehn twist associated with the loop
t = wy — (r +2)e?™, ¢ € [0,1]. The Dehn twist T is associated with the loop
t— (wy+7)(1 —1) + (wy — r)t. See figure (7). The orientations we use are shown by
arrows. Ty, and T} leave the base point #, invariant. (Recall that *, is a configuration
on 0X.) Thus we have a map from My 1(X) to Aut(m1(X,,*,)), the automorphisms
of mi(X,,*,), r > 1.
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6.4.2 Compatibility of local systems

We define a representation p, : 71(X,,*,) — GL(V) to be compatible with My 1(X)
if poT ~ pforall T € My(X). This means that for every T there exists a matrix
D(T) € GL(V) such that

po T(e) = D(T)p(e) D(T)". (368)

If a representation p, is compatible with M ;(X), then we have an action of M (X)
on L, given by

L(T): L, — L, [x,v]— [T(x),D(T)v], (369)

which is well defined due to equation (368).
The family of local systems p, : 71(X,,*,) — GL(V), r > 1, is indeed compatible
with My 1(X). For the generators T, and T the compatibility is proved by defining

2p—1 2p—1
D(T.) = Y A, (1) = 3 g 0! (370)
(=0 (=0

and by noting that the action of T, has the form T,(a) = a and T,(3) = a o 3, while
that of T has the form Tz(a) = aof and Ts(8) = 3. Note also that D(T,) and D(Tj)

have matrix elements

2p—1

D(Ta)mm = { Z ql2/2} q_m2/25m,n7 (371)
(=0
2p—1

D(Tﬁ)mm = Z Z q_l(l+2)/25m,n+2pk—|—l- (372)

k€Z =0

6.4.3 Action of M, on A, (X,, X% L,)

The mapping class group M ; acts on A, as follows: T" € M, ; acts by

Lo (D)l welol = [T o [y, 9], D(T)v]. (373)

We compute the action of T, and T} on the basis elements [[3’,a*], ¢,] of the linear

space A, (X,, X% L,).

Action of T,. Let us define § := aof3. Let r = j+ k. The action of T, on [[3?, a*], e,]

is seen to have the form

L(T) ([, 0!, ea]) = [[67, 0], D(Tn)e.). (374)
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The first problem is to decompose (374) again in terms of the basis of A,(X,, X?; L,).
The decomposition is performed with the help of

[[6j7 5l+17 ak]v en] =

(B, ..., BU=0, 600, 5+ QUi | G ]
[[5(0)7 U 200 A I (A IS A S I 7Oé(J-I-l-I—k)]? en] +
[, ..., g0 gt s QU+ G GHER) (D]g 6] =

[[6j+17 517 ak]v en] + (_1)l+k[[6j7 517 ak+1]7 pj+l+k+1(0)en] =
(344,80, ] + 28,81, 0] ], 375)

We use pjipsig1(0) = (—q)*FDB% and absorb the factor (—1)"** by an isometry of
Qit+i+k+1- The ordering of loops according to deformation and the assignement of
the components of (fo,...,¢4641) € Qjtitk+1 to the individual loops indicated by
superscripts should be clear from the notation used in (375). Iterate (375) to obtain
4 min{j,p—k—1} 4
[67.a el = >0 (G RIF 7 a™ ] enpa] (376)

s=0

with coefficients

cs(), k) = > ﬁ gAEFi=i=) = s(i+2k+s-2) [j

0<iy < <is<jms I=1 5

] (377)
q
using Gauf’s formula

I ik G379
q

0<iy <ie<jms o

The g-binomial coefficient is defined as

Hq = ﬁ (379)

Putting (372), (374), and (376) together, it follows that

LT, ([[#. o', en]) =

, min{j,p—k—1} 4 . ]
dq_n /2 Z qS(]+2k+5_2) []] [[6]_57 ak-l—sL en+25] (380)
s=0 s q
with
2p—1 )
S S @50
(=0



Thus (380) gives the matrix elements of L,(T,) in terms of the basis with elements

187, "], en).
Action of 7. Let r = j + k. The action of T3 has the form

L(Tp) ([[#, 0", ea]) = [[87,6"], D(Tp)ey ). (382)

which we again will express in terms of the basis of A,(X,,X?;L,). Using (375) it
follows that

k

(67, 8", ea] = > b (7, R)[B77"72, a"), engas] (383)

s=max{0,j+k—p+1}
with coefficients
bs(j7 k) _ Z H q2(k—il—1) _ qs(k-l—s—2) [k] ‘ (384)
0<iy <orria hms 121 1y

Note that bs(j, k) = ¢5(k,0). (382), (383), and (384) yield
Lo(T) ([8, 0", ea]) =
2p—1 k

_ s s— k th—s s
Z Z q 1(142)/24s(k+5-2) l ] [[6]+k L ]7en+l+25]7 (385)

S
[=0 s=max{0,j+k—p+1} q

completing the calculation of the action of T on A,.(X,, X?; L,).

6.4.4 Action of M, (X) on U;* (sl5(C))

We have identified A,(X,, X% L,) as a U;ed (s/2(C)) module as U;ed (sl2(C)) with the
adjoint action. The action of My (X) on A,(X,, X?; L,) commutes with the topo-
logical action of U;ed (s/2(C)). In this section, we identify the action of My 1(X) on
U;ed (515(C)) defined by its action on A,(X,, X?; L,). By construction it commutes
with the adjoint action.

Action of T,. Let ¢, : A.(X,, X!; L,) — U;ed (s/2(C)) be the restriction of the map
defined above. Then

LT, j7ak  en — da—"" 12 s(j+2k+s—2) []]
6 { Lo (T) (147, 0", en)) } = dg > ).

XN(j — s, k—+s,n+28) F¥ T,y Eprits™t (386)
using (380). We define U(T,) : U (sl5(C)) — U (sl3(C)) by

U(T,) o ¢, = ¢, 0 L.(T,). (387)

83



Thus, what is left to compute U(T,), is the ratio of normalization constants

N(j—s,k+s,n+2s)
N(j, k,n)

_ (_1)sq—s(j—|—2k—|—35/2-|—n—3/2)[1]; [] [—] 5’]q!‘ (388)
Jlg:

We conclude that
min{j,p—1-k}

U(Ta)(Fk Tn—l Ep_j_l) — dq—n2/2 Z (_1)5q—5(5+1)/2_5n

s=0
1]° ,
% FREs T oy FPmitsTL (389)
.

giving the action of U(T,) on U™ (sl3(C)).

Action of Tjs. Let r = j + k. Using (385), we obtain

2p—1

o { Lo(T5) (180" ea)) } = 32 I R e lk]

S
[=0 s=max{0,j+k—p+1}

XN(j 4k —s,8,m 4 1+25) I'° Typryoe—y EP7I7F70 (390)
Insert

NG+ k—s,s,n+1+2s)
N(j, k,n)

(=) (bms) (bmsb1) /24 (km8) bt 2)+ (254 (2—s) I T K — 8]g! 3291
—q — (391)
[1]5 [7]q!

to conclude that

U(Tg)(F*T,_ EP~71) =

2p-1 k (_1)k—s ]
Z Z ) q(k—s)(k—s—l—l)/2—|—(k—s)(]—I—n—|—5+2)—|—(l—|—25)(1—l)/2
[=0 s=max{0,j+k—p+1} [1]‘1_5
[k — s],! [] + f - 5] m F* Topryney EP7I75E51 (392)
q q

completing the calculation of U(Tj).

6.4.5 Action of 5.3

We define S,5 := Ts(T,) ' Ts. The action of S,5 on 71 (X, po) is given by S,s(a) = 3
and S,5(3) = . Recall that o/ = 7' oa™! o 3. That is, S,3 maps « to 3 and f3 to
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a~! conjugated by B!, This transformation is known as the S-transformation. We

put
D(Sag) = D(T5)D(Ta)~" D(Tj), (393)
2
D(Sap)mm = %q(m“)(”‘”. (394)

D(S,5) performs a discrete Fourier transformation on V. p, : m(X,,*,) — GL(V) is
compatible with 5,3, the equivalence being given by D(S,5). We thus have an action
L,(S.p) on A (X,, XY L,). It has the form

Le(Sag) ([[87, 0", €a]) = [[0”, B*], D(Sap)enl, (395)

r = j+k. As before, we deduce from (395) an action U(S,5) on U;ed (s/2(C)). However,
we do not expand (395) in terms of the basis of A,(X,, X?; L,) as we did in the case
of L.(T,) and L,(Tp), although this could be done. Instead we compute directly the
image of (395) under ¢,. Using

0¥, ", ea) = ?VHHHD () [[8Y], €] (396)
it follows that
: [k
or ([[O/], 6k]7 en]) = (_l)k[l]é_k [[j]]q[
J!
TN 2RO 202K+ N (5 | ) T,y EP~51 Y, (397)

By re-expressing (397) in terms of the basis FVT)_y EP~'=! and applying (¢,)~!, the
expansion of (395) in terms of the basis of A,(X,, X2 L,) could be obtained. We

conclude that

, 2pq i [K]!
6r {Le(Sap) (118, '], ) } = S5 (=D (17
g
qj(j+3)/2+k(k+3)/2+k(”+1+2j)N(j,k,n) K2(J'-|—n+1) Jop—k—1 FJ’7 (398)
using
2p—1 ) .
) JrHED G (e (399)
=0

The final result is
U(Sag)(F* T,y P71 =

2pq (_1)k[1]j—k [£],! qj(j+3)/2+k(k+3)/2+k(n+1+2j)Kz(j+n+1) Jop—k=1 i
2 q 1 :
d [J]q- (400)

U(S,p) is the algebraic version of the S-transformation. It is a mapping of U;ed (sl2(C))
to itself, one-to-one and onto, which commutes with the adjoint action.
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6.5 Identification of the S- and the T-transformation

We identify the operations U(T,) and U(S,z) in terms of the quasitriangular structure
of U;ed (s/2(C)). Let us first adjust the normalization of D(T,) and D(S,3) as follows:

N, d* N,
D(To) = —D(Ta). D(Sas) = =5 2 D(Sas). (401)
Pq

With this change of normalization, U(T,) and U(S,z) act on U;ed (sl2(C)) by

U(To)(FM o EPi7T) =
, min{j,p—1-k} [1]5 4
Naq_n /2 Z (_1)sq—s(s—|—1)/2—sn_q’ Fk—l—s Tn—|—25—1 Ep—]-|—5—17
5=0 [s],! (402)

and
U(Sog)(F*T,_y P77 =

Naﬁ(_l)k[l]é—k[]?]q'!qj(j—|—3)/2—|—k(k—|—3)/2—|—k(n—|—1—|—2j) [{2(j+n+1) Ep—k—l F]

[J]q- (403)

6.5.1 Universal elements of U5 (s/5(C))

Let us consider the K generated version of U;ed (sl2(C)). It is known to be a ribbon
Hopf algebra. The universal R-matrix is

1 p—1 [1]n 4p—1
n=0 n

4p

q° m,n=0 (404)
The associated central element V is
—14p—-1 1 n
V= Z Z n(n—l—l)/2+n(m+1)+m(m—|—2)/2 2 Hm—|—2n Em7 (405)
n=0 m=0 q
H,=— —nm/2 grm 406
™ ﬂ; q (406)

6.5.2 Identification of U(T,)
Let N, = ¢'/2. Then

Uy (s12(C)) vy Ui U, (s12(C))

l l (407)

/\V_l
Uyt (s2(C)) —— Uy (s12(C))

q, q,
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commutes. That is, U(T,) is identified with the multiplication by the inverse of the
central element V' of (404). This is shown by

VL ERT, o BT =

ol e |
Z Z (_1)5[ ] q’ q—5(5+1)/2—5 — /2-|—1/2 F +s H[_|_25_1 Tn+25_1 Ep_l_]+5
5=0 (=0 Slg- (408)

with

Hizos-1 Togos—1 = Hiyos—1 (Hpyos—1 + Hogopr2s-1) =
5l,an—|—25—1 + 5l,n—|—2pHn—|—2p—|—25—17 (409)

comparing the result with (402).

6.5.3 Trace on U’ (51,(C))

g,K

Let 7 : U7% (sl3(C)) — C be the linear map such that

q
T(EP VFPTUH, ) =1 1 <n <d4p,
T(EijHn_l) =0, else. (410)

T is a trace on UJ% (sl3(C)): For X = E,F,K* and Y € U;% (sl3(C)) we have

q q
7(XY)=71(YX).

6.5.4 S-transformation

Let R = ¥, a;@0; the universal R-matrix (404). Define a linear map S : U;eﬁl (s5(C)) —
Ur (sl5(C)) by

q,K

S(X) 1= 3 Biulon)r (n(3)K 0, X) (411)

with 7 the trace of (410). A short computation reveals that
S(Tn_lEp—l—er—l—s) —
2(—1)"ts
et 2
[ra!sl!

We thus obtain a map S : U;ed (s2(C)) — U;ed (sl2(C)) by restriction.

—r(r+1)/2=5(s+1)/24(s=1)2r4n=1) pr pr2(l-n-r) ps (412)

6.5.5 Identification of S,z

Put the normalization constant in (401) to be

—1],!
Noj = [p ]q1 q—(p—l)(p-l—?)/?‘ (413)




The transformation (403) is identified as
U(S.5)7' X = 5(X) (414)

with S the transformation (412). To verify (414), we compute the inverse transforma-
tion of (403). It is seen to be

S0 (s P71 F) = o

IR 2=k 2=k (n+h=1)(42) pk =2(bk=1) po=i=1 (415)
Setting £ = r and j = p — 1 — s and comparing (412) with (415), the result (414)
follows.

7 The Knizhnik-Zamolodchikov-Bernard Equation
on the Torus

In this chapter we give a description of conformal blocks of the Wess-Zumino-Witten
model based on s/3(C) (in the sense of [TUY89]) in terms of solutions of the Knizhnik-
Zamolodchikov-Bernard equation. We discuss the role of a doubly affine version of the
the Weyl group.

7.1 Introduction

Two dimensional conformal field theory associates to a punctured Riemann surface
a complex vector space of conformal blocks. It also tells how the vector spaces are
identified when the punctures and the complex structure are varied. For the case of
Wess-Zumino-Witten (WZW) models this construction can be done in mathematically
well defined terms [TUY89]. In the case of the sphere the description can be made
very explicit, in terms of the Knizhnik-Zamolodchikov differential equation. The aim
of this chapter is to show that such a description in terms of differential equations is
also possible in the genus one case. The Knizhnik-Zamolodchikov equation is replaced
by a genus one generalization due to Bernard [Be88a, Be88b].

The construction is similar to the case of the sphere (see, e.g., [F93]) but requires a
twist. The reason for this is the following: conformal blocks are defined as linear forms
on a certain infinite dimensional space, obeying some invariance condition. Thanks to
this invariance, in the case of the sphere, a conformal block is uniquely determined by its
restriction on a finite dimensional subspace (of ”"primary states”) isomorphic to a tensor
product of finite dimensional representations of a finite dimensional Lie algebra. On
higher genus surfaces this is not the case. The solution to this problem is to introduce
additional parameters, and consider parametric families of conformal blocks, that are
invariant under a Lie algebra depending on the parameters. Spaces of conformal blocks
corresponding to different values of the parameters are then identified thanks to a flat
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connection. The point is that horizontal conformal blocks are determined, as functions
of these parameters, by their values on primary states.

In this chapter we consider the WZW model based on the Lie algebra s/3(C) on
the torus. We construct conformal blocks for the torus with given family of punctures
and modular parameter as certain multilinear forms invariant under a Lie algebra of
twisted Lie algebra valued meromorphic functions. Under variations of the punctures
they satisfy the Knizhnik-Zamolodchikov-Bernard (KZB) equation. We derive the KZB
equation from the condition that conformal blocks be flat with respect to the Friedan-
Shenker (FS) connection. We then introduce a doubly affine version of the Weyl group
and formulate an invariance condition on conformal blocks as solutions to the KZB
equation.

Some open ends of this construction will be left untouched, including the construc-
tion of integral representations [SV89, Ch91], the connection with quantum groups
[FW91, SVI91, CFW93], monodromy properties [TK88], and the role of integrability
[TUY89].

Two dimensional conformal field theory has its origin in the work of [BPZ84]. Its
formulation in terms of complex geometry can be found in [FS87]. The basic references
to the WZW model are [W84, KZ84]. The notion of conformal blocks on a Riemann
surfaces was formulated in mathematical terms in [TUY89], and by Beilinson and
Feigin. The KZB equation on the torus was first derived in [Be88a]. It has also
appeared recently in [FG92].

7.2 Lie algebra valued meromorphic functions

The infinite symmetry of the WZW model on the torus can be formulated in terms of
a Lie algebra of twisted meromorphic Lie algebra valued functions.

Let ¢ = sl5(C) with Cartan generators £, F, and H, and invariant bilinear form
(X,Y) = tr(XY), normalized such that (H, H) = 2.

In our construction we will use the following kinds of configuration spaces. Fix

r€Hy ={r€C|Im(r) >0}, and let L(7) =Z & Z7 C C. We then define
AFA(T) ={(21,...,2,) € C"| 2, = z;jmod L(7)} (416)
and
C(r) = €\ (Uiqj & (7)) (417)

The space CIl(7) is a covering of the nth configuration space over the torus %(7) =
C/L(7). Let us also introduce

D7)y = {(z1,...,2,,A) € CU(7) x C| X € L(7)} (418)
and
sU(r) = (¢ () x ©) \ DI(r). (419)
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The Lie algebra is now defined as follows. For (zy,..., 2., A) € SU(7), let g(21,. .., 20, A)
be the Lie algebra of meromorphic functions X : C — ¢, holomorphic on C\L(z1, ..., z,),
such that

X(z+1)=X(2), X(z+47)=expmiArady)X(z). (420)

Here L(z1,...,2,) = U;(z; + L(7)) denotes the union of the punctures and their trans-
lates by the lattice L(7). The Lie algebra consists of meromorphic functions on the
plane, periodic along the A-period and twisted along the B-period, with possible poles
on L(z1,...,%,) and no others.

Let Lg = ¢ @ C((t)) and Lg; = Lg & C, the central extension of Lg associated to
the two-cocycle

WX @ f,Y@¢)=k(X,Y)resi—o(f'(¢)g(1)) (421)

with k a positive integer. With a highest weight g-module V' one can associate a highest
weight Lg.-module V”. The g-action is first extended to by = g @ C[[t]] & C by letting
g @ 1C[[t]] act by zero and C by multiplication. Then V" is given by U(Lgy) @up,y V-
We will always view ¢ as the Lie subalgebra ¢ @ t° of Lg;, and V as the g-submodule
1 ® V of V. This construction as well as properties of V” can be found in [K90].

As an input we require a family of finite-dimensional irreducible highest weight
g-modules V;,...,V,. We can think of the module V; as being attached to the point
zj. The next step in our construction is an action of the Lie algebra ¢(z1,...,2,,A) on
the tensor product V{* @ --- @ V2. Let 7;(X) = X(z; + 1) be the Laurent expansion
of X at z; viewed as a formal power series in t. As an element of Lg it is included in
Lg. But Lg} acts on V;. Therefore, we can define

T(X)=m(X) D D m(X). (422)
A computation reveals that, in Endc(V* @ --- @ V), we have the equation
R(X YD) = R(X (V)] + b S resame (X(2), V() (123)
j

But (X',Y) is doubly periodic so that the sum of residues vanishes. We therefore
obtain an action 7 of g(z1,...,2,,A) on V@ --- @ V.

7.3 Meromorphic vector fields

Analogous to the action of Lie algebra valued meromorphic functions, there is an action
of doubly periodic meromorphic vector fields on V@ --- @ V.

Let us first consider any highest weight g-module V. Sugawara’s construction yields
a projective representation of Vect(S*) = C((¢))9, on V. Let T*, T? and T® form an
orthogonal basis of g, normalized such that (7%, T°%) = %5(17;,. For example, we may put
T'=3(E+F),1T?=£(E—F),and T° = £H. Then one defines, for n € Z,

L= DX T (121)
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with 7% =T* @ t". As elements of Endc(V") the L,, obey the Virasoro relations

[Lyy L] = (1 — 1) Ly + %n(nz —1) (125)
with central charge ¢ = % The projective representation is now given by

S 60— =S¢, L. (426)

Vect(S') also acts by derivations on Lg. The explicit formula is

(1), X(1)) = &) X (). (427)

It extends to an action on Lg; by letting vector fields act by zero on the center.

For zy,...,2, € CI(7), let Vect(z,...,z,) be the Lie algebra of meromorphic
vector fields on C, holomorphic on C\ L(z,...,z2,), such that £(z + 1) = £(z) and
(= +7) = £().

For &€ € Vect(z1,...,2,), let 7;(&) = &(z; + 1)0; denote the Laurent expansion of ¢
at z; viewed as an element of Vect(.S'). Through Sugawara’s construction it is mapped
to an element of End(V?"). We then define as above

T(§) = m(§) @ - B 7a(f). (428)

It turns out that, in Endc(V* @ -+ @ V'), we have the equation
w16, C1) = [R(), 7O+ 15 S reses, (€7()6(2)). (429)

But the sum of residues is again zero so that we obtain an action of the Lie algebra
Vect(z1,...,2,) on V@ --- @ V. Moreover, it can be shown that

m(§(X)) = [x(§), 7(X], (430)

for £ € Vect(zy,...,2,) and X € g(z1,...,2n,A). That is, this action intertwines the
natural action of vector fields on functions.

7.4 Conformal blocks

For (z1,...,2,,A) € (1), we define the space E(zy,...,2,,A) of conformal blocks as
the vector space of linear forms G : V*@---@V.» — Csuch that, for X € ¢g(z1,...,2,,A)
and v € V/*®@---@ V", G satisfies (G, #(X)v) = 0. That is, ¢ is required to be invariant
under the action of g(z1,..., 2., A).

We will also want to vary the parameters (z1,...,2,, A). The behavior under vari-
ations of these parameters is determined by a further condition. This condition tells
that conformal blocks are flat with respect to the F'S connection.
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In the following, we let (1, ..., 2,, \) take values in an open subset UM C $l(7).
We denote by P(7) the set

Py = {(21,... 20,0, 2) € UM 5 C 2 € L(zy,..., 2,)}). (431)

Then we define g(U") to be the Lie algebra of meromorphic functions X : Ul x
C — g, holomorphic on (UI x C) \ PU(7), such that, for (z,...,2,,A) € UM,
X(z1y.e oy 20 Ays) € g(21, ..oy 20y A). Tt generalizes our previous definition.

To introduce the FS connection, we require the following auxiliary function. Let
p: UM C — C be a meromorphic function, holomorphic on (U x )\ Pl (7), such
that, for (z1,...,2,,A) € UM, p(2) = p(z1,..., 2., A, 2) satisfies p(z + 1) = p(2) and
p(z + 7) = p(2) — 27mi. The example which we will have in mind is

o 6/1(2 - ZjvT)

p(z) Ou(z — 2. 7) (432)

where ©1(z,7) = ¥1(nz,7) is a Jacobi theta function, see [GR80]. But the following
considerations will be independent of the particular choice of p.
We define first order differential operators on g(U!") by the formulas

D, X =0.X, D\X=0X+[Hop X] (433)

We leave it as an exercise to show that they map g(U") to itself.

Let us now introduce first order differential operators on the space of holomorphic
functions G : Ul — (VP ®@---@ V), the space of multilinear formas on V*@---@ V.,
as follows

V.G =0.G-GLY], VG =G —Gr(Ho)p). (434)

Here 7(H @ p) is given by (422) and = (pd.) by (428).

The FS connection is the connection
V=Y dz;Vz; +d\V, (435)
J
on the infinite rank trivial vector bundle UM x V0@ @ VM. For G : Ul
(V)0 @---@ VA and X € g(UI), it obeys
V(Gr(X))=(VGE)r(X)+ Gr(DX), (436)
where D denotes the expression

J

This property ensures that the connection restricts properly to the subbundle of con-
formal blocks. The restriction of V to conformal blocks is flat.
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Let E(U[”]) be the space of holomorphic functions G : Ul — (V0@ @ V1Y such
that, for (z1,...,2,,A) € UM, G(2y,...,2,,)) is an element of F(zy,...,2,,A). Due
to (436), the FS connection leaves E(U") invariant. Elements of E(UM) are called
holomorphic conformal blocks.

The horizontality condition is that G € E(UM) is required to satisfy the equations

V.G =0, V,G=0, (438)

for fixed modular parameter 7. Eq. (438) completes the construction of holomorphic
conformal blocks for the purpose of these notes. It is also possible to vary consistently
the parameter 7, but we will not need this here.

7.5 Knizhnik-Zamolodchikov-Bernard equation

In this section we will consider holomorphic conformal blocks G restricted to the sub-
space Vi @--- @V, of V*@--- @V . The value of a conformal block on general vectors

in VA @ --- @ V" can be computed as the image of certain differential operators in A
with coefficients depending on (z1,. .., z,, A) acting on (7, evaluated on certain vectors
inVi@-- V.

The condition (438) can be written in a more explicit form, when the conformal
blocks are restricted to the subspace Vi@--- @V, of V/*@--- @V . Forv € Vi®@---@V,,
the horizontality condition V. G = 0 reads

1 ,
(k + 2)@] <G, U> == <G, (§H_1H0 + E_1F0 + F_lEo)(])U>. (439)

Recall that V; is annihilated by E,, F,,, and H, with n > 0.
To proceed we require another auxiliary function h : Ul x C — C. It is the
meromorphic function h(A, z) = h(z1,..., z,, A, 2) given by the ratio

O1(z —2X\,7)07(0,7)

W) = 0,(2,7) O1(—2),7)

(440)

of Jacobi theta functions.
The functions £ @ h()\,z — z;) and F @ h(—=A, z — z;) are elements of ¢(UI). As

functions of z they have simple poles at z = z;. Forw € V1 ®@---®@V,,, we then compute
<G7 T‘—(E ® h()‘v <= Zj))w> =

O1(—2A,7) Fo)D 4+ S h(=A, 2 — 2;) B8 o) (441)

B =

and
(G,m(F@h(=Xz—z))w) =

O1(2\,7) Fo)D 4+ ST h(=A, 2 — 2) P b). (442)

(G A+ 7(91(2)\, 7 2
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But due to ¢(U")-invariance both right hand sides are zero. As a result we can express
(G, E(_]1)w> and (G, F(]l)w> in terms of G evaluated on certain vectorsin V; ® --- @ V..

For w e Vi ® --- ® V,,, the second horizontality condition VG = 0 takes the form

®/l(Zk EZE T)

(%)
O1(zr — 2, 7_)HO bw). (443)

(G, w) = (G {HY) +3°
k#g

From it we obtain an expression for (G, H(_jl) ).
Both horizontality conditions together in this explicit form yield the differential
equation

012X, 1)

Tl T) (@) _ (k.5)
@1(2)\7T))GH0 > Ga, (444)

1
(k+2)0.,G = (50 +
k#j

with

O = B\, 2, — 2)) ESD B 4 h(=\, 2 — ) FY B +

1O (2k = 25, T) L (k) 110

— Y Hy. 445

204 (z —zj,7) 0 (445)

This equation is called the KZB equation. The tensor Q%) is a unitary solution of

a genus one generalization of the classical Yang-Baxter equation. The Yang-Baxter

equation is a consistency condition reflecting the fact that the KZB equation comes
from an integrable connection.

The calculation of this section shows one part of the following theorem.

Theorem 7.1 Let UM be any sufficiently small neighborhood of a point in S (). Let
Eo(UM) be the space of holomorphic functions on UM with values in the linear forms
on Vi @ -+ ® V, invariant under the action of the Cartan subalgebra CH. Then the
natural map

EUMY = Ey(Ut (446)

restricts to an isomorphism between the space of conformal blocks obeying the horizon-
tality condition (438) and the space of local solutions in Eo(UU) of the KZB equation.

7.6 Weyl invariance

In this section we introduce the notion of solutions invariant under a doubly affine
version of the Weyl group of sl5(C).

For 7 € Hy, let W(r) be the group of transformations of C given by (o,w)(X) =
oA+ w, where 0 € {+1} and w € L(7). That is, W(7) is a semidirect product of Z
with Z x Z.
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Let us fix (z1,...,2,) € CM(r). For v € W(7), the meromorphic Lie algebras
g(z1,. . zn, A) and g(z1,..., 25, 7(A)) are isomorphic. We have explicit formulas for
isomorphisms

A(Y) tg(z1y ey 2ny A) = 921, oy 20, 7(N) (447)
for the generators (—1,0), (1,1), and (1,7) of W (7). They are given by

)

H(—1,0)X(2) = exp(?adg)exp(%iadE+F) X(2) (448)
A1, 1)X(2) = X(2) o(1,7)X(2) = exp(2miady) X (z). (449)

We have seen that ¢g(z1,...,2,,A) acts on V" ®@---@ V. This action has been denoted
by w. There exists an action ® of W(7r) on V" @ --- @ V. such that, for v € W(r),

m(¢(7)X)®(7) = @(7)7(X). (450)

For the generators of W (), this action can be written explicitly in the form

B(—1,0) = @ (exp( T Holexp( T By + 7)) (151)
O(1,1) =id, ®(1,7) = (exp(2mi(z; Ho + Hy)))Y. (452)

That is, the action os W(7) is intertwined by isomorphisms of V* @ --- @ V.
For G € E(z1,...,2,,7()N)), it follows that G ®(v) € E(z1,...,z,, A). At this point

we want to vary the parameters again. For the generators of W (7), we define functions

g(—l,O)(Zlv <oy By )‘) = 6Xp(27T k )\)7 (453)
gay(z1, s 2, A) = gan (21505 20, A) = L (454)

Let 4 be a generator of W (7). We then define transformed conformal blocks by
Gzt oy 2 A) = go(21, oo 20, MG (21, oy 20, Y (X)) D). (455)

It can be shown that G, is a holomorphic conformal block provided that G is holo-
morphic conformal block. G, satisfies the KZB equation if G does. A solution is then
called invariant under W(r) if it obeys

Go(z1y ooy 20y A) = G(21, 000y 20y A). (456)

The condition of invariance under the doubly affine Weyl group, and regularity of G as
a function of A € C selects a finite dimensional space of solutions to the KZB equation.

If the level is a positive integer, and the highest weights are integrable (see [K84])
the space of conformal blocks contains, according to [TUY89] (for A = 0, but the proof
in [TUY89] extends to the case of general \) a finite dimensional subspace of conformal
blocks that are defined on the tensor product of irreducible quotients of Verma modules.
The horizontal sections in this subspace are conjecturally contained in the above space
of solutions, (see [FG92], where this is proven in a slightly different setting). Moreover
in this case one can write down integral representations of solutions.
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8 Conformal blocks on elliptic curves and the Knizhnik—
Zamolodchikov—Bernard equations

We give an explicit description of the vector bundle of WZW conformal blocks on ellip-
tic curves with marked points as subbundle of a vector bundle of Weyl group invariant
vector valued theta functions on a Cartan subalgebra. We give a partly conjectural
characterization of this subbundle in terms of certain vanishing conditions on affine
hyperplanes. In some cases, explicit calculation are possible and confirm the conjec-
ture. The Friedan—Shenker flat connection is calculated, and it is shown that horizontal
sections are solutions of Bernard’s generalization of the Knizhnik—Zamolodchikov equa-
tion.

8.1 Introduction

The aim of this chapter is to give a description of conformal blocks of the Wess—
Zumino—Witten model on genus one curves as explicit as on the Riemann sphere.

Let us recall the well-known situation on the sphere. One fixes a simple finite
dimensional complex Lie algebra g, with invariant bilinear form ( , ), normalized so that
the longest roots have length squared 2, and a positive integer k called level. One then
considers the corresponding affine Kac—-Moody Lie algebra, the one dimensional central
extension of the loop algebra g @ C((¢)) associated to the 2-cocycle ¢(X @ f,Y @ ¢g) =
(X,Y)resdfg. Itsirreducible highest weight integrable representations of level (= value
of central generator) k are in one to one correspondence with a certain finite set [} of
finite dimensional irreducible representations of g. These representations extend, by
the Sugawara construction, to representations of the affine algebra to which an element
L_4 is adjoined, such that [L_1, X ® f]=—-X® %f. Then to each n-tuple of distinct
points zy, ..., z, on the complex plane, and of representations V;, ..., V,, in [} one
associates the space of conformal blocks F(zq,...,2,). It is the space of linear forms
on the tensor product @7V" of the corresponding level k representations of the affine
algebra, which are annihilated by the Lie algebra £(z1, ..., z,) of g-valued meromorphic
functions with poles in {z,...,2,} and regular at infinity. The latter algebra acts on
@V by viewing L(z1,...,2,) as a Lie subalgebra of the direct sum of n copies of the
loop algebra via Laurent expansion at the poles. The central extension does not cause

problems as the corresponding cocycle vanishes on L(z1, ..., z,) in virtue of the residue
theorem.
It turns out that the spaces E(z1,..., z,) are finite dimensional and are the fibers of

a holomorphic vector bundle over the configuration space C" — diagonals, carrying the
flat connection d —3~; dziL(_Z)l (L(_Z)l acts on the right of a linear form) given in terms of
the Sugawara construction. We use the notation XD =...9ldoX @Id--- to denote
the action of on the i¢th factor of a tensor product.

This part of the construction generalizes to surfaces of arbitrary genus (see [TUY89]).
What is new is that one has to also specify local coordinates around the points z; to
give a meaning to the Laurent expansion, and that the connection is in general only
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projectively flat (i.e., the curvature is a multiple of the identity).

To give a more explicit description of the vector bundle of conformal blocks on the
sphere, and in particular to compute the holonomy of the connection, one observes that
the map F(z1,...,2,) — (@;V;)* given by restriction to V; C V" is injective. Thus we
can view F as a subbundle of a trivial vector bundle of finite rank. This subbundle
can be described by an explicit algebraic condition [FSV]. After this identification
the connection can be given in explicit terms and the equation for horizontal sections
reduces to the famous Knizhnik-Zamolodchikov equations

Ta(i)Ta(J‘)

ZZ'—Z]‘

(k+ h)0w(z1, . z) = D3

i a

W(Z1y vy Zn)- (457)

In this equation, hY is the dual Coxeter number of g and T,, « = 1,...,dim(g)
is any orthonormal basis of g. We view here the dual spaces V;* as contragradient
representations. Let us now consider the situation on genus one curves, which we
view as C/Z + 7Z for 7 in the upper half plane. Let us denote by F(z1,...,2,,7) the
space of conformal blocks. Again, by [TUY89], this is the finite dimensional fiber of a
holomorphic vector bundle with flat connection on the elliptic configuration space C'"
of n + 1-tuples (z1,...,2,,7) with Im(7) > 0 and z; # z; mod Z + 7Z if i # j.

The trouble is that the restriction to @;V; is no longer injective, the reason being
that there are no meromorphic functions on elliptic curves with one simple pole only.
The way out is the following construction which brings the moduli space of flat G-
bundles into the game. Consider the Lie algebras £(z1, ..., z,, 7, A), parametrized by A
in a Cartan subalgebra b, of Z-periodic meromorphic functions X : C — g with poles
at z1, ..., z, modulo Z + 7Z, such that X(t 4+ 7) = exp(27i ad A) X ().

These algebras act on @; V. and we can define a space of (twisted) conformal blocks
Ey (2,7, ) as space of invariant linear forms (see 8.2.3). The original space of conformal
blocks is recovered by setting A = 0.

It turns out that Fy (2,7, ) is again the fiber over (z, 7, A) of a holomorphic vector
bundle Ey over CI"l x b with flat connection, whose restriction to C'" x {0} is £. Thus
we can by parallel transport in the direction of § identify the space of sections E(U)
of F over an open set U C C" with the space of sections of Ey which are horizontal
in the direction of h:

E(U) ~ Eq (U x )t (458)
The point is now that the restriction map
By (U x h)"" — (@) @ OU x ), (459)

to VIl is injective (Proposition 8.9). Composing these two maps we may view the vector
bundle of conformal blocks as a subbundle of an explicitly given vector bundle on C'"
of finite rank. Indeed we show that the image is contained in the space of functions
on U x b which have definite transformation properties (of theta function type) under
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translations of A by QY+ 7@ where )V denotes the coroot lattice. Moreover the theta
functions in the image are invariant under a natural action of the Weyl group, and obey
a certain vanishing condition as the argument approaches affine root hyperplanes. We
conjecture that these conditions characterize completely the image. This conjecture is
confirmed in some cases, including a special case which arises [EK94] in the theory of
quantum integrable many body problems (see 8.4.1): we describe explicitly the space of
conformal blocks in the case of sly, n = 1, where the representation is any symmetric
power of the defining N-dimensional representation.

The characterization of conformal blocks in terms of invariant theta functions obey-
ing vanishing conditions was first given (in the sly case) by Falceto and Gawedzki
[FG92], who define conformal blocks as Chern—Simons states in geometric quantiza-
tion.

After the identification of conformal blocks as subbundle of the “invariant theta
function” bundle, we describe the connection in explicit terms (Theorem 8.24), and
get a generalization of the Knizhnik—Zamolodchikov equations. These equations were
essentially written by Bernard [Be88a, Be88b] in a in a slightly different context, and
were recently reconsidered from a more geometrical point of view in [FG92]. They have
the form (see Sect. 8.4)

k0,0 = — > b0+ 3 QU (2 — 21 N, (460)
v L:I#£]
Amikd,o = Y R o+ S HU(z; - 2,7 N, (461)
v 7.0

for some tensors 2, H € g @ g, given in terms of Jacobi theta functions. Here @ is
related to w by multiplication by the Weyl-Kac denominator. Thus, the right way to
look at these equations is to view u as a section of a subbundle of the vector bundle
over the elliptic configuration space of n+1 tuples (z1,..., z,,7), whose fiber is a finite
dimensional space of invariant theta functions.

In this chapter we do not discuss an alternative approach to conformal blocks on
elliptic curves, which is in terms of traces of products of vertex operators. Bernard
[Be88a] showed that such traces obey his differential equations. Using this formulation,
integral representation of solutions were given in the s/; case in [BF90]. To complete the
picture, one should show that those solutions are indeed theta functions with vanishing
condition.

Let us also point out the paper [EFK94] that shows that the same space of invariant
theta functions with vanishing condition can be identified with a space of equivariant
functions on the corresponding Kac—-Moody group.

8.2 Conformal blocks on elliptic curves
8.2.1 Elliptic configuration spaces

Let Hy = {7 € C|Im 7 > 0} be the upper half plane and for 7 € H; denote by L(7)
the lattice Z 477 C C. Let n be a positive integer. We define the elliptic configuration
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space to be the subset of C* x Hy consisting of points (z1,...,2,,7) so that z; # z;
mod L(7) if i # j.

The space of points (z,7) € CI" with fixed 7 is a covering of the configuration space
of n ordered points on the elliptic curve C/L(7).

8.2.2 Meromorphic Lie algebras

Let g be a complex simple Lie algebra with dual Coxeter number AY and k be a
positive integer. Fix a Cartan subalgebra ) of g and let g = b & (Poeag,) be the
corresponding root space decomposition. The invariant bilinear form is normalized in
such a way that (a¥,a") = 2 for long roots « (see [H80]). We choose an orthonormal
basis (h,) of h. The symmetric invariant tensor C' € g ® g dual to (, ) admits then
a decomposition C' = 3~ cauqoy Ca, With Co =X h, @ h, €h @h and O, €9, @9 _,,
if o € A.

We define a family of Lie algebras of meromorphic functions with values in g
parametrized by Cl" x §

Definition: For (2,7) = (z1,...,2,,7) € O and X\ € h, let L(z,7,)) be the Lie
algebra of meromorphic functions ¢ — X(¢) on the complex plane with values in g
such that

X(t+1)=X(1), X(t+7) = exp(2ri ad \) X (1), (462)

and whose poles belong to U, z;+ L(7). More generally, for any open set U C Cllxp
let £y (U) be the Lie algebra of meromorphic functions (¢, z,7,X) — X(¢,z,7,1) on
C x U with values in g, whose poles are on the hyperplanes t = z; + r + s7, 1 <1 < n,
r,s € Z, and such that for all (z,7,A) € U, the function t — X(¢,z,7,A) belongs to
L(z,7,)). Similarly, define £L(U) for an open subset U of C!" to be the Lie algebra of
meromorphic functions (¢, z,7) — X(¢,z,7) on Cx U with values in g, whose poles are
on the same hyperplanes, and such that for all (z,7) € U, the function ¢t — X(¢,z,7)
belongs to L(z,7,0).

An explicit description of these Lie algebras is given in Appendix 8.5.1. An important
property is that they have a filtration by locally free finitely generated sheaves: Let
O(U) be the algebra of holomorphic functions on an open set U C Cl"l % g, and for
any non-negative integer j let ,ChS](U) be the O(U)-submodule of Ly (U) consisting of
functions whose poles have order at most j. Similarly we define £L5/(U) for open sets

U € Cl. The assignments U — L£3(U), U — ,Chgj(U) are sheaves of O-modules.

Proposition 8.1 ,Chsj is a locally free, locally finitely generated sheaf of O-modules.
In other words, every point in C" x b has a neighborhood U such that ,ChS](U) o~

C @ OU) as an OU)-module, for some n;. Moreover for each x € Cll x hy, every
X € L(x) extends to a function in ,ChS](U) for some 3 and U 3 x. The same results
hold for L7,

The proof is contained in Appendix 8.5.1 (see Corollary 8.27).
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8.2.3 Tensor product of affine Kac—Moody algebra modules

Let Lg = g @ C((?)) be the loop algebra of g. Fix a positive integer k¥ € N. Let
Lg” = Lg & CK be the central extension of Lg associated with the 2-cocycle

(X @f,Y@g)=(X,Y)res(f'gdt), (463)

where the residue of a formal Laurent series is given by res(>_, a,t"dt) = a_y. Thus
the Lie bracket in Lg” has the form

(X@ B (K YR¢gaéK]=[X,Y]® fg& (X, VK. (464)

With every irreducible highest weight g-module V' is associated an irreducible highest
weight Lg”-module V" of level k. Its construction goes as follows. The action of
g is first extended to the Lie subalgebra by = g @ C[[t]] & CK of Lg”, by letting
g @ tC[[t]] act by zero and the central element K by k. Then a generalized Verma
module V = U(Lg") Quby) V is induced. It is freely generated by (any basis of) V' as
a g @t 'Clt~']-module. The polynomial subalgebra Lgp =g @ C[t,t7'] & C of Lg"
is Z-graded with deg(X @ /) = —j. Since V ~ U(Lg?%) Qu(bpnrgs) V', the generalized
Verma module is naturally graded. By definition the irreducible module V" is the
quotient of the generalized Verma module by its maximal proper graded submodule.

We will consider integrable modules, V* of fixed level £ = 0,1,2,.... If we fix a
set of simple roots ay,...,a; € A, and denote by 6 the corresponding highest root, V'
is integrable of level k if the irreducible g-module V has highest weight p in the the
subset

]k:{ﬂEPKﬂ,Oﬁ)ZO, izlv"'vlv (/L,@)Sk}, (465)

of the weight lattice P. Let v be the highest weight vector of V' and ey a generator of
g4. Then the maximal proper submodule is generated by (ey @ t=1)F=(10+1y,

The grading extends to VA" by setting deg(vy @ -+ @ v,,) = S deg(v;). With our
convention all homogeneous vectors have non-negative degree.

Fix n highest weight g-modules V;, 1 < j < n such that the corresponding Lg”-
modules V* are integrable of level k, and let 7 € Hy and 2i,..., 2, complex numbers
with z; # z; mod L(7) if ¢ # j. We think of V" as an Lg”-module which is attached
to the point z;.

In the following we will use the abbreviations Vil =V, @--- @V, and VAR =
Vl/\ Q- ® Vn/\‘

We now construct an action of £(z,7,A) on VAU For X € L(z,7,A) let §;(X) =
X(zj+1t) € g @C((1)) be the Laurent expansion of X at z; viewed as a formal Laurent
series in t. Then

§(X)=61(X) @ -8 8,(X), (466)

defines a Lie algebra embedding of L(z,7,A) into Lg & --- & Lg. As a vector space
Lg &-- & Lg is embedded in Lg" & --- & Lg”. The embedding is of course not a Lie
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algebra homomorphism. Since Lg™ @ --- @ Lg” acts on V" we obtain a map from
L(z,7,A) to Ende(VA). This map will also be denoted by 6. Thanks to the residue

theorem it turns out to be a Lie algebra homomorphism.
Proposition 8.2 for X, Y € L(z,7,)),
O([X, V) = [6(X), 6(Y)]. (467)

Proof: In Endc(V/M) we have the equation

81X, YT) = [6(X), 6(V)] 4+ b 3. resics, (X'(0), V(1)) ). (168)

i=1

But (X'(¢),Y(¢)) is doubly periodic (by ad-invariance of ( , )) so that the sum of
residues vanishes. [

8.2.4 Vector fields

The Lie algebra Vect(S') = C((t))< of formal vector fields on the circle acts by deriva-
tions on Lg. Let us denote this action simply by (f(t)%,X(t)) — f(t)%X(t). It
extends to an action on Lg” by letting vector fields act trivially on the center. The
Sugawara construction yields a projective representation of Vect(S') on V*, for any
finite dimensional g-module V. The Sugawara operators L, € End(V") are defined
by choosing any basis {Bi,..., By} of g, with dual basis {B!,..., B} of g so that
(B, By) = 04, and setting

1 d a n—m m
L”:WZZ(B DBy @), n A0 (469)

meZ a=1

1
LO — 5[[/1, L_l]. (470)

These operators are independent of the choice of basis and obey the commutations
relations of the Virasoro algebra [L,, L] = (n — m)Lyqm + %(n3 — n) with central
charge ¢ = kdim(g)/(k + hY). Then

d
antn“a = —> &.L, € End(V"), (471)

defines a projective representation of Vect(S') on V*, with the intertwining property
[f(t)%, X)) = f(t)%X(t), for any X (¢) € Lg”. Note that all infinite sums are actually
finite when acting on any vector in V.
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8.2.5 Conformal blocks

For a Lie algebra module V' we denote by V* the dual vector space with natural (right)
action of the Lie algebra. The notation (w,v) will be used to denote the evaluation of
a linear form w on a vector v.

Definition: The space of twisted conformal blocks associated to data g, k, V4,...,V, as
above, is the space By (2,7, A) of linear functionals on VA" annihilated by £(z1, ..., 2,, 7, A).
If A =0, then E(z,7) = Ey(z,7,0) is called the space of conformal blocks at (z,7).

Let us vary the parameters: let U be an open subset of Cl" x . Then the space of
holomorphic functions w : U — VA (i.e., of functions w whose evaluation (w,u) on
any fixed vector u € VA" is holomorphic on U), is a right £y (U)-module.

Definition: The space Ey (U) of holomorphic twisted conformal blocks on U C Cl % p
is the space of V "*_valued holomorphic functions w, so that for all open subsets U’ of
U, the restriction of w to U’ is annihilated by £y (U’). We also define the space E(U)
of holomorphic conformal blocks on U C C!"l by replacing Ly by L.

With this definition, the assignments U — Ey(U), U +— E(U) are sheaves of O-

modules.

Lemma 8.3 Let U be an open subset of Ol x by (resp. of C"). Then w € Ey(U)
(resp. E(U)) if and only if w is holomorphic on U and w(x) € Ey(x) (resp. E(x)) for
all v € U.

Proof: 1t is obvious that if w is holomorphic and if w(z) € Ey(x) for all « € U, then
w € Ey(U). Let w € Ey(U), and 2 € U. To show that w(z) € Ejy(x), we have
to show that every element X of L£(z) is the restriction of an element of Ly (U’) for
some neighborhood U’ of x. But this follows from Prop. 8.1. The same applies in the
untwisted case. O

8.3 Flat connections, theta functions
8.3.1 The flat connection

For each open subset U of Cll x h we have defined a Lie algebra Ly (U) acting on
VA1), the space of holomorphic functions on U with values in VAU, It is con-
venient to extend this definition. Let G be the simply connected complex Lie group
whose Lie algebra is g, and for (z,7,¢) € Cl'l x G, let L(2,7,g) be the Lie algebra of
meromorphic g-valued functions X (), on the complex plane whose poles modulo L.

belong to {z1,...,2,}, and with multipliers
X(t+1)=X({), X(t+7)=Adg)X(1). (472)

If U is an open subset of C" x &, define L5 (U) to be the Lie algebra of meromorphic
functions on U x C 3 (z,7,¢,t) whose poles are on the hyperplanes t = z; + n + mr,
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n,m € Z, and restricting to functions in L(z,7,g) for fixed (z,7,9) € U. As above,
we introduce the space Eg(z,7,g) of L(z, 7, g)-invariant linear forms on V" and the
sheaf U — E¢(U) of Lo(U) invariant holomorphic VAR valued functions.

Let 5(z,7,1) be a meromorphic function on C"l x C whose poles belong to the
hyperplanes ¢t = z; + n + m7 and such that, as function of ¢ € C,

n(zrmt+1) =nzmt), oz nt+7)=n(z71) = 270 (473)

Although the construction does not depend on which n we chose, we will always set

U(ZvTvt) :p(t_ZhT)v (474)
0
p(t,7) = En log 61(t|7), (475)
bu(tlr) = — 3 enHDITRmU0), (476)
J=—00

for definiteness.
Let Ay(z,7,g,t) be a meromorphic function on CI"l x G x C, depending linearly
on Y € g, whose poles as a function of ¢ belong to {z1,...,2,}, and such that

Ay(z,7,9,t+ 1) = Ay(z,7,9,1), (477)
Ay(z,7,9,t +7) = Ad(g)(Ay(2,7,9,1) = Y). (478)

If p(A) =Y ez eiﬂ(1+%)27(—A)j, we may take Ay to be

B 1 (1 ¢(62m(t—z1)Ad(
= 11— Ad(g_l) 77Z}(627'r’i(15—21)

Ay(z,7,9,1) g)]_l)))Y (479)

Note that for fixed z, 7, and Y, Ay extends to a regular function of ¢ € G.

Denote by 0y the derivative in the direction of the left invariant vector field on G
associated to Y € g: 9y f(g) = lim._g %f(g expeY), and by 0., 9;, 0; the partial
derivatives with respect to the coordinates z;,7,t of Cl" x C.

The properties (473), (477) imply the

Proposition 8.4 Let U be an open subset of C1" x G. The differential operators
D, X(x,t) =0, X(x,1), (480)
1
D X(x,t) =0, X(x,t) — Tn(x,t)atX(x,t), (481)
i)

Dy X(x,t) = Oy X(a,t)+ [Ay(x, 1), X(2,1)], r=(z,7,9) €U xC,
(482)

map La(U) to itself.
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Therefore, we have a connection D : Lg(U) — QYU) @ Lg(U), defined by D =
>odz; @ DZJ +dr @ D, 4+ 3 0, ® Dga, for any basis of left invariant vector fields #* on
(G with dual basis 8,.

We proceed to define a connection on Fg. Consider first the following differential
operators on the space V() of VAM-valued holomorphic functions on the open set

Ucclhlx@.

V.v(x) = 0,v0(x) + L(_i)lv(:zj), (483)
V,o(x) = 0yv(x) — %5(77(:1;)&5)1)(:1;), (484)
Vyov(x) = dyv(x) + 6(Ay(x))v(x), xel. (485)

In this formula the definition of the operator 6 taking the Laurent expansion at the
points z; (see (466)) is extended to general meromorphic g-valued functions and vector
fields considered as a function of the variable ¢ € C. For a meromorphic vector field
£ = f(t)% on the complex plane we set 6(£) = £6,(&), with 6;(¢) = f(zi—l—t)% € C((t))d%.
Let V: V/\[”](U) — QY U) @ V/\[”](U) denote the connection 3°dz; @ V., +dr @V, +
Z (ga @ vé’av

Proposition 8.5 The connections D, ¥V obey the compatibility condition
V(Xv)=(DX)v+ XVv, X e€Lgl), ve Vi (486)

Proof: This is verified by explicit calculation. [

This has the following consequence. Define V on holomorphic functions w on U
with values in the dual V"™ (i.e., such that (w(z),v) is holomorphic on U for all
v € VA by the formula (Vw(x), v(z)) = d{w(z),v(x)) — (w(x), Vo(z)).

Corollary 8.6 The connection V preserves twisted holomorphic conformal blocks, i.e.,

it maps Eq(U) to QYU) @ Eg(U).
Proposition 8.7 The connection V on Eg(U) is flat.

Proof: Tor X,Y € g, the curvature FI(X,Y) = [Vx,Vy| — V[xy] is given by the

expression
F(X,Y)=0x6(Ay) — Ov6(Ax) + [6(Ax), 6(Ay)] — 0(Aix v)- (487)

Note that the cocycle

d
/W(EAXaAY)dta (488)

vanishes: indeed, the integrand [(t) is Z-periodic and obeys I(t + 7) = I(1) + %g(t)
for some Z-periodic function ¢(¢) and the integration cycle v can be decomposed into
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a sum of contours bounding some fundamental domains. The contributions of the four
edges cancel by periodicity, except for a term [“1" ¢'(#)dt = 0.
Thus we can write [ as

F(X,Y) = §(F(X,Y)), (489)
F(X,Y) = 0x Ay — Oy Ax + [Ax, Ay] — Ax.y. (490)

Now, as a simple calculation shows, FI(X,Y), viewed as a function of ¢ € C with values

is g, is Z-periodic, and obeys F(X,Y)(t 4+ 7) = Ad(¢)F(X,Y)(t), as a consequence of
(477). Thus F(X,Y) is in the image of L&(U), and vanishes on invariant linear forms.

A similar reasoning applies to the commutators [V,,, Vx], [V, Vx], X € g. These
commutators are also in the image of L4 (U) and thus vanish on invariant forms. We
are left with the commutator [V, V. ], which vanishes except possibly for ¢ = 1. The
proof that it vanishes also for ¢ = 1 will be given later on (see 8.4.1). O

The group G acts on VA, since the cocycle vanishes on g C Lg”. Denote this
action simply G x VA 5 (b, v) — ho.

Proposition 8.8 For all h € GG, X — Ad(h)X is a Lie algebra isomorphism from
L(z,7,9) to L(z,7,hgh™"). Thus the map X — &, X with ¢, X (z,7,9) = Ad(h)X (2,7, " gh)
is an isomorphism from La(U) to La(U') for any open U C CU x G, where U' =
{(z,7, hgh™Y)|(2,7,9) € U}. Moreover, for any X € La(U), §(Ad(h)X) = hé(X)h™,

and thus ppw(z,7,9) = w(z, 7, hgh™')h defines an isomorphism py, : Eq(U') — Eg(U).

This isomorphism maps horizontal sections to horizontal sections.

Proof: The first statement follows immediately from the definitions. The fact that
S(Ad(h)X) = h6(X)h™! is also clear, once one notices that the 2-cocycle defining the
central extension vanishes if one of the arguments is a constant Lie algebra element.
Finally A commutes with V., and V;, and we have Vxp, = ppVaap)x, X € g. The
latter identity follows from the equality (see (479))

Ad(R)Ax(,7,9.1) = Apagx(z.7. hgh™ 1), (191)

Thus py, preserves horizontality. [

The existence of a connection implies, as in [TUY89], that the sheaf U — Eq(U) is
(the sheaf of holomorphic sections of ) a holomorphic vector bundle whose fiber over
is Eg(x). This follows once one notices that Eg(U) is actually a subsheaf of a locally
free finitely generated sheaf carrying a connection whose restriction to Fg is V. Details
on this point are in Appendix 8.5.2.

To make connection with the previous sections, consider the pull back of Eg by
the map A — exp(2meA), from b to G. It is the vector bundle Ey on Cl x b, Let us
introduce coordinates A, on f with respect to some orthonormal basis (h,). Then the
pull-back connection on Ej is given by (483), (484), and, in the direction of A,

Vi, =0, — 6(hup(- — 21, 7)). (492)
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Moreover, we can use the connection to identify by parallel translation the space of
conformal blocks F(U) with the space of twisted conformal blocks w in Eq(U x ) (or
in By (U x B)) such that Vxw =0, X € g (or V), w = 0, respectively). Here we use
the fact that G and b are simply connected.

The point of this construction is given by the following result. Let VI"*(U) be the
space of holomorphic functions on an open set U with values in the finite dimensional
space VI"*. We also set, for any open subset U of Cl" x G, or C"l x b, respectively,

Eq(U)P ={w € Eq(U)|[Vxw=0, VX ¢cg}l, (493)
By (U)o = {w € By (U)|[Vxw=0, ¥YXchl (494)

Proposition 8.9 The compositions

o B(U) = Eg(U x G — v (U x @), (495)
t : B(U) — By (U x bt — V(U x ), (496)
where the first map sends a holomorphic conformal block w to the unique twisted holo-

morphic conformal block horizontal in the G (resp. by ) direction, which coincides with w
on U x {1} (resp. U x {0} ), and the second map is the restriction to VI, are injective.

Proof: The first map is an isomorphism to the space of twisted holomorphic conformal
blocks horizontal in the i (resp. h ) direction. The fact that the second map is injective
follows from the fact that using the invariance and the equation Vxw = 0 (resp.
Vi,w = 0), one can express (w,v) for any v € VA" linearly in terms of the restriction
of wto VM. O

We may (and will) thus view the sheaf £ of sections of the vector bundle on Cl"l of
conformal blocks as a subsheaf of VI"(I/' x h). The next steps are a characterization
of this subsheaf and a formula for the connection after this identification.

8.3.2 Theta functions

Let QY = {q € h|exp(27rig) = 1 € G} be the coroot lattice of g.

Definition: Let (z,7) € CI and Vi, ..., V, be finite dimensional g-modules, and &
a non-negative integer. The space O4(z, A) of theta functions of level k is the space of
holomorphic functions f : § — VI* such that

(i) Sy fVRD =0.
(ii) Ome has the following transformation properties unter the lattice Q¥ +7QY C b:
fA+9) = f(A) (497)

FO A+ qr) = f\) exp(=mik(q, q)7 — 2mik(g, \) — 27i > zq)
= (498)
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The space of such theta functions is finite dimensional, as can be easily seen by Fourier
series theory. Denote by W be the Weyl group of g, generated by reflection with
respect to root hyperplanes. It is known that this group is isomorphic to N(H)/H,
N(H) C G being the normalizer of H = exp(h). For w € W, let & € N(H) be any
representative of the class of w in N(H)/H. The Weyl group acts on the space of theta
functions. Indeed, if f € Ox(z,7), then (wf)(A) = f(w '\~ also in Ok(z,7), (the
coroot lattice and the invariant bilinear form are preserved by the Weyl group), and is
independent of the choice of representative @ by (i). Let O4(z,7)" denote the space
of W-invariant theta functions.

Theorem 8.10 Let g = A;, [ > 2, D;, 1 >4, Es, E7, Fs, Fy, or Gy. Then the image
of vy is contained in the space of holomorphic functions w € V(U x b)) such that for
all (z,7) € CM, w(z,7,-) belongs to O(z, 7))V, and such that for all roots o, X € g
and nonnegative integers p,

w57 X = O\, (199)
as a(A) — 0.
In the remaining cases, we have

Theorem 8.11 Let g = Ay, By or C), | > 2. Then the image of vy is contained in
the space of holomorphic functions w € V(U x ) such that for all (z,7) € O
w(z,7,+) belongs to Ok(z,7)", and such that for all « € A, r,s € {0,1}, X € g, and
nonnegative integers p,

w(z, 7, A)exp (27ri Cr.s sz)\(j)) X? =0((a(X) —r —s7)P), (500)

J

as a(X) = r+s7, with ¢,0 =0, ¢,1 = (r+7)7%

The proof of these theorems will be completed in 8.3.7. We conjecture that the space
of functions described in Theorems 8.10, 8.11 actually coincides with the image of ¢ .
This conjecture is verified in a simple class of examples in 8.3.8 below.

The fact that the formulation of the result is simpler for certain Lie algebras is due
to the following property shared by the Lie algebras of Theorem 8.10: for each root «
and integer m there exist an element ¢ in the coroot lattice with a(¢q) = m. For the
other simple Lie algebras this is true only if m is assumed to be even. More on this in

8.3.6.

8.3.3 Affine Weyl group

Since H acts trivially on Ej, the Weyl group acts (on the right) on the values of Fj:
w acts as w, and this is independent of the choice of representative.
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Proposition 8.12 Lel w € Ey (U x h)rr. Then, for all ¢ € Q"

w(z, T, A+ ¢q) =w(z,7,A). (501)
For all w e W,

w(z, 7, wA) = w(z, 7, \)w™h (502)

Proof: The value of w at (z,7,\ + ¢) is obtained from w(z, 7, A) by parallel transport
along some path from A to A 4+ ¢. Recall that w is the pull back of a section of
E(U x G)"" to U x B. The image of the path in G is closed, and contractible (G is
simply connected), which proves the first claim.

From Prop. 8.8 and the fact that w - A = Ad(w)A, we see that if w is horizontal
then also pyw is horizontal. But these horizontal sections coincide at A = 0, and thus
everywhere. O

8.3.4 Modular transformations

a b

The group SL(2,7Z) acts as follows on Cl'l x f: if A = (c d) € SL(2,Z),

b\
F et ) (503)

A- A =
(5,72) (c7’—|—d7c7'—|—d7c7'—|—d

Lemma 8.13 Introduce the linear functions (5(t) = 2miAt for X € h. For all x €
Ol xh, A€ SL(2,7Z), the map X — ¢4(x)X with

(pa(2)X)(t) = exp(—ad ¢l (1)) X ((er + d)1), A= (Z 2) , (504)

is a Lie algebra isomorphism from L(x) to L(Ax).
Proof: This follows directly from the definitions. O

We have defined an action £(z)®@ VA — VAM for all x € CI x . Let us denote
it as X @ v 6,(X)v (see (466)) to emphasize the z-dependence.

Lemma 8.14 Define a linear isomorphism v — pa(x)v from VN viewed as L(x)-
module to VN viewed as L(Ax)-module: if v = (2,7, 1)),

_ -y L) c6:(0) B m’ck()\,)\)E)Q
pale) = ma(e)(er +d) 200 W exp (SN () = exp (- T
( CT+d) ( T (55)

This map has the intertwining property

pa(2)05(X) = das(@a(x)X)pa(a), (506)
for all X € L(x).
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Note that the choice of coefficient 74 is irrelevant for the validity of the Lemma. How-
ever, it is important for compatibility with the connection, see below. '
We should also add a remark about the power of (¢7 + d). The exponent ZLE;)
is diagonalizable with finite dimensional eigenspaces. However the eigenvalues are
fractional in general, and the power is defined for a choice of branch of the logarithm
for each A € SL.(2,Z). This is made more systematic in the next subsection.
Proof: This is again straightforward. The only subtlety is that, a priori, there could
be a contribution from the central extension in the computation of the intertwining
property. However the central term appearing in this computation is proportional to
the sum of the residues of the component of 9; X along A, which is doubly periodic. By
the residue theorem, this sum vanishes. O

We can thus define linear maps w — piw by piw(z) = w(Ax)pa(z). Lemma 8.14
implies then that p% is an isomorphism from Ey (U) to Ey (A7 (U)).

Lemma 8.15 Let A* be the pull back on one-forms of the map x — Ax defined on
some open U C CM x by, and V : By (U) — QY(U) @ By (U) be the connection defined
in 8.3.1. We have

Vi = A" @ p4V. (507)

This fact can be derived from a straightforward but unfortunately lengthy calculation.
The main identity one uses is

t ar + b .
’ (m’ or + d) = (er + d)p(t,7) + 2mict. (508)

Lemma 8.15 ensures that p% maps horizontal sections to horizontal sections. Moreover,
since A.0,, = (er + d)7'0), does not have components in z or 7 direction, p% maps
sections which are horizontal in the h direction to sections with the same property:

P By (U % ) > By (A7 o (509)
. ) 0 1
Let us apply this in the special case A = (_1 0).

Proposition 8.16 Let w € VIU*(U) be in the image of vy. Then for all ¢ € QV,

w(z, 7, A+ 7¢) = w(z, 7, ) exp(—27i(q, \)k — wi(q, ¢ )k — 270 z;q9).

i=1 (510)
Proof: We have pyw € Ey (A7'U x b )Per. Thus,
N z 1 A N = 1 A\
pAw(;v_;v;—l_Q) _pAw(;v_;v;)v (511)
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for all coroots ¢, by Lemma 8.12, and (z,7) € U. Explicitly,

S ST P A (512)

Ty T T T T T
T T T T T T

w(z, 7, A+ q7)pal
Inserting the formula for p4 we obtain

w(z, T, A+ QT)TEJL((JJ) =w(z,T, )\)TEJL((JJ)e‘zm(q’A)k_”(q’q)kT exp(—716.((,)),
(513)

with z = (2/7, —1/7, A/7). Now we use the fact that, on VI 6,(¢,) acts as ¥,27i(z;/7)q"),
and that Lé]) acts as a multiple of the identity, to conclude the proof. O

8.3.5 Monodromy (projective) representations of SL(2,Z)

In this subsection, we assume that n = 1, set z;y = 0, and show that a central extension
of SL(2,Z) acts on the space of horizontal sections of the bundle of conformal blocks.

The fact that we have a central extension comes from the necessity to choose a
branch of the logarithm to define the expression (cr + d)f. In fact Lo is diagonaliz-
able with finite dimensional eigenspaces, and any two eigenvalues differ by an integer.
Moreover, Ly acts by a non-negative rational multiple (Cas(V)/(k+h")) of the identity
on V C V” for any integrable V" of level k. Let Lo|ly = Lidy, r,s € N. We introduce
a central extension

0—Z/sZ— T, — SL(2,Z)— 1, (514)

of SL(2,Z) by the cyclic group of order s. The group I's consists of pairs (A, ¢) where
A € SL(2,7Z)has matrix elements a, b, ¢, d and ¢ is a holomorphic function on the upper
half plane such that ¢(7)® = ¢r + d. The product is (A, ¢)(B,v¢) = (AB,¢ 0 A - ).
Then this group acts on V* valued functions on Hy x § as above, but keeping track of
the choice of branch:

(A, 0) 7 w(A 7)) = w(A- (A 7))na(X,7)e(r) ™" (515)

This action preserves the connection. (The inversion here is to correct for the “wrong”
order ppg = py4, Up to ambiguity in the choice of branch). Thus we conclude that
I'; acts on the space of global horizontal sections on Hy x h of Ey. This monodromy
representation restricts to the character [m] — exp(2rimr/s) of Z/sZ.

In the case of V' = trivial representation, this monodromy representation is just the
representation of S1(2,7Z) on characters of affine Lie algebras (see [K90]). It would be
interesting to calculate this monodromy representation explicitly for general V. Some
progress in the sly case was made in [CFW93], where a connection with the adjoint
representation of the corresponding quantum group was established.
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8.3.6 The vanishing condition

Let GG be a simple complex Lie group with Lie algebra g, f a Cartan subalgebra, g =
h & Baeag, a Cartan decomposition and H = expl. Suppose that p: G — End(V)
is a finite dimensional representation of (G. Thus V is also a g-module. For K = G
or H let I(K,V) be the space of holomorphic functions on K with values in V' such
that Vg,h € K, u(ghg™") = p(g)u(h). The Weyl group W acts on I(H,V): let 1 be a
representative of w € W in N(H). Then (wf)(h) = p(@d)f(w™" - k) is well defined for
f € 1(H,V), since H acts trivially on the image of functions in I(H, V). We denote
by I(H, V)" the space of Weyl-invariant functions in I(H, V).

Lemma 8.17 The restriction map [(G,V) — [(H,V) is injective. Its image is the
space Io(H, V)W of functions u in I(H, V)" such that for all positive roots a, X € g,
p €N, and m € Z

XPu(exp2miA) = O((a(X) — m)P), (516)
as a(A) — m.

Proof: The behavior of functions in I(G, V) under conjugation by N(H) implies Weyl
invariance.

Let X €g, and A € fh. Then
Ad(exp(2mi))) X = e2mieV X, (517)

If we I(G,V), u(exp(X)exp(27iA)) is a holomorphic @V-periodic function of A € b,

(thus a holomorphic function on H). On the other hand, by (517)
X 27iN)) 2miA X
u(exp(X)exp(2me (exp (1 iy ) exp(27iA) exp (—m))
- p(exp((l e#T M) LX) Ju(exp(2mi))
_ 1 2mia(A)y— .
= pZ:% p(l —e )P XPu(exp(2wi))), (518)

for some M. We see that the latter expression is holomorphic on the affine hyperplanes
a(X) = m, if and only if, for all p, X?Pu vanishes there to order at least p.

To conclude the proof, we use some facts about conjugacy classes in algebraic
groups (see, e.g., [S7T4], Chapter 3). Let, for each root « and integer m, H,,, C H
be the set of elements of the form exp(27iA) such that «(A) = m. The conjugacy
classes containing elements in H,;, = H — UH, ,, form the dense open subset G, of
regular semisimple elements in . Its complement contains the set H; consisting of
conjugacy classes of elements of the form exp(X)exp(27xi)), where A lies on precisely
one of the distinct H, ,,. This elements are regular, as they are regular in the identity
component of the stabilizer of exp(27i)), (see [ST4], 3.5), which is the direct product
of a torus of dimension rank-1 times the SL(2) subgroup associated with a. By the
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above reasoning, a Weyl invariant function on H extends uniquely to an equivariant
holomorphic function on G, and the vanishing conditions imply that it extends to a
holomorphic functions on Gy U Hy. The complement of G, U Hy consists of higher
codimension classes whose closure intersects Hy, and of classes whose closure do not
intersect H;sU Hy. Counting dimensions shows that this complement is of codimension
at least two, so by Hartogs” theorem, our vanishing conditions are sufficient to have an
extension to all of G. [

By Weyl invariance, we may replace the set of positive roots in the formulation
of the lemma to a subset of roots consisting of one root for each Weyl group orbit.
Also, we may restrict the values of m, by Q" periodicity of u(exp2mi)). Indeed, if the
vanishing condition holds at a(X) = m, it also holds at a(A) = m —a(q) for all ¢ € Q.

We thus have the following result. The action of the affine Weyl group W" =
WxQY on A x Z is defined by

(w, Q)(av m) = (wav m— Oz(q)). (519)

Lemma 8.18 The subspace Io(H, V)W C I(H, V)V is characterized by the vanishing
condition (516), for (o, m) in any fundamental domain for the action of W™ on A X Z.

From [Bou81], we see that in the cases A;, [ > 2, D;, | > 4, Fs, 7, Es, Fy, Gy a
fundamental domain is {(«,0),a € F'}, where a runs over a fundamental domain F
(consisting of one or two elements) of W. If g = Ay, By, C}, then we have to add (o, 1)
where « is a long root.

As a corollary we obtain a more precise characterization of the image of ;. Let us
identify functions on H with QV-periodic functions on b via the map A — exp(27i)),
and view VI"* as a representation of G' by (p(g)u,v) = (u, g~ v).

Corollary 8.19 The image of E(U) by vy is contained in the space of functions w €
V(U x b)) such that for all (z,7) € CU, w(z,7,-) belongs to Io(H, V)W,

Moreover, if w € Ey (Uxh )", then pyw € By (AU x b )PT implying further vanishing
“ b). On VI Léj) acts by a scalar A;. The

conditions: let # = (z,7,A) and A =

d
restriction of pw to Vil g
(phw)(z) = w(Az)(er 4 d) ™% nA(:z:)e_ﬁ PO

It follows that, for all p,

c

X SAXT = O((a(h) - m))

w(Az)exp(—

CT

if a(A) — m. Changing variables, this implies that

w(z, 7, A)exp (—27ri > Z]‘)\(j)) X? =O0((a(X) = m(a —cT))P).
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Since any pair a, ¢ of relatively prime integers appear in the first column of some
SL.(2,Z) matrix, we obtain the result

Corollary 8.20 The image of E(U) by vy is contained in the space of functions w €
V(U x b)) such that for all (z,7,A) € CM, r s, peZ,p>1, (r,s) # (0,0),

S

w(z, 7, A) exp(27i sz)\(j))Xp = O((a(N) —r — s7)P), (520)

r—+ sT

as a(A) — r+ s7.

8.3.7 Proof of Theorems 8.10, 8.11

Theorems 8.10, 8.11 follow from Propositions 8.12, 8.16, and Corollaries 8.19, 8.20
together with the fact that twisted conformal blocks are annihilated by h C Ly (U).

8.3.8 Examples

Here we give an explicit description of the space of conformal blocks in some special
cases. The discussion parallels the constructions in [FG92], where Chern—Simons states
in the case of sly are studied. First of all consider the case of one point z; with the
trivial representation. Then the vanishing condition is vacuous, and we are left to
classify scalar Weyl invariant theta functions of level k. This space coincides with the
space spanned by characters of irreducible highest weight Lg”-modules, in accordance
with the Verlinde formula.

Next, we consider the case of one point z;, with a symmetric tensor power of the
defining representation CV of siy.

It N > 3, the problem is reduced to describing the space of Weyl invariant theta
functions w of level k, with the property that

eu(a(N)) = O(a(A)?), a(X) —0, (521)

for all p =1,2,... and root vectors e, € g,. Actually it is sufficient to consider one
root «, since the Weyl group acts transitively on the set of roots of siy.

The symmetric power S/CY has a non-zero weight space if and only if j is a multiple
of N. Let us set j = [N, and denote by ¢; the elements of the standard basis of CV.
Then the weight zero subspace of SWCV = (CV)®'/Sy is one-dimensional and is
spanned by the class of v = ¢! @ -~ @ ¥, The following considerations apply also to
the case [ = 0, if we agree that S°CY is the trivial representation.

The Weyl group of sl is the symmetric group Sy and is generated by adjacent
transpositions s;, j = 1,..., N — 1. If we identify the Weyl group with N(H)/H,
then a representative in N(H) of s; is given by ¢, = €,, if r # 7,5 + 1, §;¢; = €41,
Sj€;41 = —¢;. It follows that Sy acts on the weight zero space by the [th power of the
alternating representation: 1wv = ¢(w)'.
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The next remark is that ef'v = 0 but e¢Lv # 0. We thus see that w(a())) =
O(a(N)') as A approaches the hyperplane a()\) = 0. If w is a Weyl-invariant theta
function, it then also vanishes to order [ on all hyperplanes a(X) = n +m7, n, m € Z.
Therefore the quotient of w by the /th power of the Weyl-Kac denominator II(\, 7)
is an entire function, as II has simple zeroes on those hyperplanes. Moreover, Il is a
(scalar) theta function of level N (the dual Coxeter number of sly), and H(wA, 1) =
e(w)II(A, 7).

We conclude that the space of conformal blocks at fixed 7 is contained in the space
of functions of the form

w(A) =IO\, ) u(N) v, (522)

where v is an entire Q)V-periodic scalar function on b, such that u(wA) = u(A), for all
w € Sy and

uA+q7) = alg, A\, )" Nu(A), (523)
alg, A\, 7) = exp(—2xmi(q,\) — 7i(q,q)T), g€ Q. (524)

We have assumed here that N > 3. In the 5 case, where the vanishing condition must
be satisfied also at 3 other points on b, one can proceed in the same way, noticing that
the Weyl denominator vanishes there too.

A basis of Q)V-periodic functions with multipliers (523) is easily given using Fourier
series. The basis elements 6, are labeled by u € P/(k — NI)QV, where the weight
lattice P is dual to Q" (if £ < N there are no non-zero conformal blocks). The Weyl
group acts as 8,(w™A) = 0,,()\).

Therefore the dimension of our space is the number of orbits of the Weyl group in
P/(k—NDQV. This number is well-known: a fundamental domain in P for the action
of the semidirect product of the Weyl group by the group of translations by (k— N1)Q"
is the set of weights in the (dilated) Weyl alcove [_ny, see (465).

More explicitly, if a; are simple roots, w; fundamental weights with (w;, ;) = 6,5,
and g = ¥;n;w;, then p € I;_n; if and only if the integers n; satisfy the inequalities

N-1

. Yo <k—NIL (525)

=1
The number of N — 1-tuples of integers with these properties is calculated to be

(k — N]\([l_—ll) — 1) ' (526)

This is the formula for the dimension of the space of Weyl-invariant theta functions
of level k extending to holomorphic functions on SLy, with values in the (/- N)th
symmetric power of the defining representation of s{n;. We now show that this coincides
with the Verlinde formula [V88], which according to [TUY89], [Fa93] give the dimension

of the space of conformal blocks.
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Let I be the set of integrable highest weights of level k. It consists of dominant
integral weights ¢ with (x,8) < k. The dimension of the space of conformal blocks with
one point, to which an irreducible representation of highest weight u € I} is attached,
is given by the formula

du=2_ N (527)

l/EIk

in terms of the structure constants Ny, of Verlinde’s fusion ring. A convenient formula
for these constants in terms of the classical fusion coefficients mg, (= the multiplicity
of a in the decomposition of the tensor product of b with ¢) was given in [GW90], and
[K90], Exercise 13.35.

Let W/ ~ W" be the group of affine transformations of h* generated by the Weyl
group W and the reflection so at the hyperplane {A € h*|(6,\) = k+ hY} (0 is the
highest root and h" the dual Coxeter number). Let p be half the sum of the positive
roots of g and define another action of W/* on h* by w* A = w(A + p) — p. Let
e: W) — {1,—1} be the homomorphism taking reflections to —1.

Then, for all a, b, c € I,

NE= % mpe, (528)

wEWk/\

Actually, in Verlinde’s formula the coefficients N, are given in terms of modular trans-
formation properties of characters. They are uniquely determined by the equation

Sdb Sdc o Sda

Db Sde g~ ya Sda 529
Sao Sdo Za: " Sao (529)
where, according to [K90], (13.8.9)
Sab .a+p
= (exp (—2mk - hv)) . (530)

Here, y, is the character of the representation of &G with highest weight a.

Let us check that the two formulas agree (this is essentially the solution to Exercise
13.35 of [K90]). Let w € W and ¢ € (k+h"Y)Q" and suppose that both a and w+*a + ¢
are dominant integral weights. Then it is easy to see from the Weyl character formula

(see [H80]) that if A € (k+ LY)™'P,

Nuwsatq(€XP(27iA)) = e(w) o (exp(27iN)).

There is a unique element in each affine Weyl group orbit in the shifted Weyl alcove
I + p. Using these facts and the formula for the multiplicities in the decomposition of
tensor products YpY. = Xnj.Xa, we deduce (528).

Let us apply this to our example. Identify h* with CV /C(1,1,...,1). Then integral
weights are classes a = [aq,...,a,] of n-tuples of integers defined modulo Z(1,...,1).

115



The Weyl group Sx acts in the obvious way, and a weight is dominant if a; > a;4;.
The affine reflection sq is

Solat,...,an] =lay+k+ N,aq,...,an_1,a1 — k — NJ, (531)

and p =[N —1,N—2,...,0]. Let ¢=[r,0,...,0] be the highest weight of S"C". Then
the decomposition rules of tensor products say that m¢, = 1ifa; =b;+; (1 <j < N)
for some integers [; such that 0 < [; <a;_4 —a;, 2 <3 <N and ¥;[; = r. Otherwise,
mi. = 0. As 0 = [1,0,0,...,0,—1], a dominant weight a belongs to [, if and only if
ap —any < k.

We need two properties (see [GW90]) of the coefficients N, valid for any a, b, ¢ € I:

(i) 0 < N2 < mi, for all a,b,¢ € I, and (ii) Ng((;){c = NZ where o([a1,...,an]) =

[k 4+ an,ai,...,an-1]. We will also use: (iii) Each orbit of W/, acting via * on §~,
contains at most one point in /.
Let us now fix ¢ = [NI,0,...,0], and do the classical calculation first.

Lemma 8.21 Let ¢ = [NI[,0,...,0]. Then ml. = 1 iff aj — a;41 > 1 for all j €
{1,...,N —1}.

Proof: The coeflicient m?_ is non-zero if and only if there exist non-negative integers
li,...,In, summingup to NI, such that [; < a;_y—a; if j > 2 and [a1+1]1, ..., an+In] =
a. It follows that [; = [ for all j, and this solution obeys the inequality iff ;1 —a; > {
forall y > 2. O

Lemma 8.22 Let ¢ = [NI,0,...,0], with Nl < k and suppose a € 1. Then N*. =0
ifay —any >k —1.

Proof: In this case o(a) = [k + an,ay,...], and since (k + an) —ay <, mZEZ

by Lemma 8.21. Therefore N, = 0, by properties (i), (ii). O

)
je = U,

,C

Lemma 8.23 Let ¢ = [NI,0,...,0], with NI < k. Then N® = 1 if and only if
aj—ajp1 >0 1<jJ<N—-1 anday —ay <k—1

Proof: We need to prove only the “it” part. We do this by showing that only the
first term in the sum (528) is non-zero. Let us suppose that a obeys the hypothesis of
the Lemma, and that m?, = m* = 1, with w # 1 and derive a contradiction. Since
b = w*a is dominant, and is not in Iy by (iii), we have b; — by > k + 1. Let us choose
the representative in @ with ay = 0, and identify aq,...,ay_1 with the row lengths of
a Young diagram. Then b is obtained by adding NI boxes to this Young diagram, in
such a way that a; < b; < a;_y. Then w™! with w"—1 % b = a is the unique element
mapping b to I. This element is constructed as follows: (i) Add, for all j, N —j boxes
to the jth row of b (this adds p). (ii) Draw a vertical line at distance k£ 4+ N from the
end of the Nth row to the right of it; the only boxes to the right of this line are in the
first row, and their number is at most NI < k. (iii) Take these boxes and add them to
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the Nth row (i.e., act by sg, see (531)); permute the rows to get a Young diagram (i.e.
act by an element of W). (iv) Subtract N — j boxes from the jth row, j = 1,...,n.
We obtain in this way a diagram which has N/ boxes more than the original diagram
with row lengths a; and whose first row has by + k41 > k41 boxes. The two diagrams
are equivalent, meaning that the latter is obtained from the former by adding the same
number of boxes to each row. This number is at least £ + 1 — a; which by hypothesis
is strictly larger than [. We need thus more than N/ boxes, and this is a contradiction.

4

The dimension of the space of conformal blocks can be now computed: note that
avra—Ip (i.e. aj — a;j —I(N — j)) maps bijectively the set of weights obeying the
conditions of Lemma 8.23 onto [,_;x whose cardinality coincides with the dimension
of the space of invariant theta functions with vanishing condition.

We conclude that the space of invariant theta functions satisfying our vanishing
condition coincides with the space of conformal blocks, in accordance with our conjec-
ture.

8.4 The Knizhnik—Zamolodchikov—Bernard equations, and gen-
eralized classical Yang—Baxter equation

8.4.1 The KZB equations
The Knizhnik—Zamolodchikov—Bernard (KZB) equations, first written in [Be88b], for a

holomorphic conformal block w € E(U) are the horizontality conditions Vw = 0, where
w is identified with its image by ¢y. To write these equations explicitly, let us compute
the expression of the connection V on E(U) viewed as a subsheaf of V(U x §) via
lp -

It is convenient to introduce functions p, o,, w € C expressed in terms of the
function 6;:

p(t,7) = 0O:logbi(t|7),
oullir) = 01(w — t|7)0:01(0]7)
WA N 1 (w|7)01(t]7)

See Appendix 8.5.1 for details on these functions. We use the notation
k=hk+h", (532)

and the abbreviation X, for X @ t™. We also identify g as a Lie subalgebra of Lg":
Xo=Xe€g. Let C, = e, @ e_, (see (8.2.2)). Then we can write L_; as

1 o0
L—l = — Z (Z €o,—n—1€—a,n + Zhy,—n—lhu,n) . (533)

K n=0 \a€EA 4
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Now let U C Cl", and w € E(U), which we identify via tp with a function on U with
values in VI, We then have, for fixed u € V1"

0

w(V.,w,u) = /ia— w,u) — Zhl' 1hy —I—Z:ecy _1€_q (534)
<j

Recall that vectors in V' are annihilated by X,,, with X € g, n > 0. We now use the

invariance of w under the action of £. The functions ¢ — e, UQ(A)(t — z;) are elements

of L(z,7,X). They have simple poles at t = z; with residue e,. As a consequence of

the invariance of w, we have

(w, el u) = pla(N)(w, eDu) = 37 oupy(z — 2){w, ePu), (535)
kik#j
for all v € ®; V;. We can use this identity to compute the value of w on vectors e(_j%u.
The flatness condition V, w = 0 translates to

4 0
<w7 hf/])—1u> = <w7 u> - Z p(Zk - Z])<w7 hf/k)u> (536)
’ o\, ot
k#j
To compute further we need the commutation relation [es,e_o] = >, a(h,)h,, that
follows from ([eq, €—a], hy) = (€a, [€—as hy]). We therefore obtain the formula
RV, w,u) = miﬂ_[w u) — Z 0 (Tlw h(j)u>
A 0z; o\, B
= (Iw, Q(k’j)(zk — zj, T, A)u) (537)

ki

where II = II(A,7) is (essentially) the “Weyl-Kac denominator” (for any choice of
positive roots A} )

dimg o — T - n ran n T
g T (e — eme ) T - ke TT (1 e2mio D)),
aEAY n=1 a€A (538)
(¢ = €?™7), and with the abbreviation
Qt, 7, \) HCo+ > o, (539)

aEA

We also use the standard notation Q) to denote 3>, XYW if O = ¥, X, @ Y,. This
notation will be used below also in the case 2 = j. The A independent factors in Il do
not play a role here, but will provide some simplifications later. In deriving (537), we
have used that, by the classical product formula for Jacobi theta functions, II is, up

to a A independent factor, the product Haea, 61(a(X)). Before continuing, we can use
the formula (537) to complete the proof of Prop. 8.7.
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End of the proof of Prop. 8.7. What is left to prove is that [V, V., ] on E(U). But from
the above formula for V_, it follows that X; V. vanishes. Indeed we have wzjhl(,j) =0by
b -invariance, and the other terms cancel by antisymmetry. As V, preserves conformal
blocks, we have [V, X,V ] = 0, and the claim follows from the fact that V. commutes
with V., with y #1. O

A more involved but similar calculation gives a formula for V., also essentially due to
Bernard, which will be given here without full derivation,
One of the ingredients is Macdonald’s (or denominator) identity (see [K90])

(A7) = S e mamvethlarthe) §™ () 2rileth? o), (540)
qeQY weWw

implying (one form of) Fegan’s heat kernel identity
Axih” LA, T) Z% (541)

Here, p is half the sum of all positive roots of g, W is the Weyl group, and e(w)
is the sign of w € W. The (complex) dimension of g enters the game through the
Freudenthal-de Vries strange formula (p, p)/2hY = dim g /24.

Let us summarize the results. We switch to the more familiar left action notation,
by setting (Xw,v) = —(w, Xv) if X is in a Lie algebra and w is in the dual space to
g-module. We also need the following special functions of ¢t € C, expressed in terms of
ou(t), p(t) and Weierstrass’ elliptic function p with periods 1, 7.

1) = Slt) —olh). (542)
Ju(t) = ou(l) + (p(t) + p(w))ow(t). (543)
These functions are regular at t = 0. Introduce the tensor
H(t,7,\) = I(t)Co + Z:AJQ(A)(t)Ca. (544)
a€

Theorem 8.24 The image w by vy of a horizontal section of E(U) obeys the KZB
equations

KO0 = — Z h N0y, o + ”%; 0 ]l — 2, T, A, (545)
j

Amikd,o = S R o+ Y HU(z; - 2,7, N, (546)
v 7.0

where o(z, 7, A\) = Il(1, Nw(z,7,X), and Q, H are the tensors (539), (544), respectively.

Remark. For n = 1, these equations reduce to d,,w = 1, thus @ is a V*-valued function
of 7 and A only, and

2
47?@/12(4) = Z %JJ —m(7)Cas(V)w — Z o(a(N))eqe_qw, (547)

o7 a€EA
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where p(z) = —mz+ 0(z?), and Cas(V) is the value of the quadratic Casimir ele-
ment 'Y in the representation V. This equation was considered recently by Etingof
and Kirillov [EK94], who noticed that if g = sly and V* is the symmetric tensor prod-
uct SVCV, eye_, = I(I 4+ 1)1d on the one dimensional weight zero space of V*, and
the equation reduces to the heat equation associated to the elliptic Calogero-Moser—
Sutherland—Olshanetsky—Perelomov integrable N-body system:

471'@/16&@ = Z aa—;@ —m(TII+ DNN = Do —=1(1+1) Z o(A
7 v i (548)

See also 8.3.8 for a description of the space of conformal blocks in this case.

8.4.2 The classical Yang—Baxter equation

The tensor Q12 = Q2 (2 — 2, 7,)) € g @ g obeys the “unitarity” condition

Q2 4 b =y, (549)

Let us remark that the fact that the connection is flat is then equivalent to the identity
370,00 1379, QEIRM 139, QEDLE) (550)

_[Q(L?)7 Q(LB)] _ [Q(L?)7 Q(273)] _ [Q(LS)7 Q(273)] - 0 (551)

ing @g ©@g. This identity may be thought of as the genus one generalization of the
classical Yang-Baxter equation. It admits an interesting ”quantization” [F94].

8.5 Appendix
8.5.1 Lie algebras of meromorphic functions

We have the following explicit description of L(z1,...,2,,7,A). Let p, oy, (w € C) be
meromorphic Z-periodic functions on the complex plane, whose poles are simple and
belong to L(7), and such that

ot = plt)— 2 (552)
ou(t+71) = ezmwaw(t) (553)
ou(t) ~ % \ t — 0. (554)

Such functions exist (for w € C—L(7)) and are unique, if we require that p(—t) = —p(?).
They can be expressed in terms of the Jacobi theta function 6;:

p(t) = %logel(th), (555)
61(t — w|7)07(0|7)

AT |>’ o

01(t|7') _ Z 2ri(t+1 )-I—m'ﬂ-(n-l-%)? (557)

n=—0oo

120



Here a prime denotes a derivative with respect to the first argument.

Proposition 8.25 For o € AU {0}, A € b, and (z,7) € CM, the meromorphic
functions of t (defined as limits at the removable singularities a(A) € Z)

X(ezm'a(A) _ l)aa(A)(t — ), (558)

X(oapy(t =21) —oaey(t —21)),  2=1<m, (559)
5

Xogoalt—=),  jz1  2<l<n, (560)

X €g, orlh if a =0, are well defined provided |Ima(X)| < Im7 and belong to
L(z1,. s 20, A T). If  Tuns over AU{0} and X runs over a basis of g, (h if a =0),
then these functions form a basis of L(z,T,A).

Proof: 1t is easy to check that these functions belong to £(z,7,A). Let £L3(z,7,\)
be given by the functions in L£(z,7,A) whose pole orders do not exceed j. By the
Riemann—Roch theorem,

d(5) := dim(L% (2,7, ))) = dim(g)jn, (561)

if 7 > 1. Indeed £=/(2,7, ) is the space of holomorphic sections of the tensor product
of a flat vector bundle on the elliptic curve by the line bundle associated to j), where
D is the positive divisor ¥z;.

The functions given here are linear independent, as can be easily checked by looking
at their poles, and have the property that for j > 1, the first d(j) functions belong to
LY(z,7,0). O

To obtain a basis outside the strip |Ima(A)] < Im7 we can transport our basis
using the following isomorphisms.

Proposition 8.26 Let (z,7) € CM, and q,¢' € PV. Then the map sending X €
L(z,7,\) to the function

t — exp(2mitad ¢ )X (1), (562)
is a Lie algebra isomorphism from L(z,7,\) to L(z, 7, A+ q+ ¢'T).

For any open subset U of Cll, € x § or O x G define £L37(U), ,Chsj(U), ,Céj(U) to
be the space of functions in L(U), Ly (U), La(U), respectively, whose pole orders do
not exceed j.

Corollary 8.27 The sheaves L7, ,Chsj are locally free, finitely generated for all 3 > 1.

Moreover for each x € C" x y, every X € Ly () extends to a function in ,Chgj(U) for
some j and U > x.
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The proof in the case of £/ is obtained by setting simply A = 0.

We wish to extend this result to L. Let us first notice that the function o,,(t) is
actually a meromorphic function of *™. Thus if g = exp(27i)), the functions in Prop.
8.25 can be written as f(Ad(g),t,z,7)X, where the meromorphic function f is regular
as a function of the first argument in the range corresponding to |Ima(A)| < Im(7).
Therefore we may extend the definition of the basis to give a basis of Lg(z, 7, g) for ¢ in
some neighborhood of ¢ = exp(27¢A)u, with Ad(u) unipotent commuting with Ad(g)
(It is clear that the multipliers are correct if ¢ is on some Cartan subalgebra, but such
g’s form a dense set in (). The pole structure does not change if the neighborhood
is sufficiently small. In this way by choosing properly the Cartan subalgebra, we find
local bases of L4 in the neighborhood of all points in ¢ whose semisimple parts are of
the form exp(2x:¢A) with A in some Cartan subalgebra and |Ima(A)| < Im(7), for all
a €A,

Proposition 8.28 Let (z,7) € CU, and q,¢' € PY. Then the map sending X €
Le(z,7,9) to the function

t — exp(2ritad ¢') X (1), (563)
is a Lie algebra isomorphism from La(z,7,9) to La(z,7,exp(27i(q+ 74"))g).

With the Jordan decomposition theorem, we get a local basis around all points of G,
and we obtain:

Proposition 8.29 The Sheafﬁéj,is locally free, finitely generated for all j > 1. More-
over for each x € C" x G, every X € L(x) extends to a function in ,Cé](U) for some
Jand U 3> x.

8.5.2 Connections on filtered sheaves

Let S be a complex manifold, and denote by O the sheaf of germs of holomorphic
sections on S. A sheaf of Lie algebras over S is a sheaf of O-modules £ with Lie
bracket L& L — L a homomorphism of sheaves of O-modules, obeying antisymmetry
and Jacobi axioms. A sheaf of Lie algebras £ over S is said to be locally free if it is
locally free as O-module, i.e., if every x € S has a neighborhood U such that, as
O(U)-module, L(U) ~ W @ O(U) for some complex vector space W In this case, L(U)
is freely generated over O(U) by a basis e1,eq,... with Lie brackets [e;,e;] = X Z»’;ek,
(with finitely many non-zero summands) for some holomorphic functions fj; on U.

We will consider the case in which the sheaf £ of Lie algebra is filtered by locally
free sheaves of O-modules of finite type. In other words, £ admits a filtration

L09C- - CLY CLYT Cov CL=U LY, (564)

with £ locally* isomorphic to some C% @ @, inclusions induced from inclusions
C™ C Cv+, and such that [£57, £ € £S9F!, In particular £ is locally free.

4

i.e., every point of S has a neighborhood such that the statement holds for the restriction of the
sheaf to this neighborhood
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A sheaf of £-modules is a sheaf V' of O-modules with an action L&opV — V which is
assumed to be a homomorphism of O-modules. The image sheaf of this homomorphism
is denoted by LV. In the filtered situation it is assumed further that V' is filtered by
locally free, finitely generated O-modules:

Vgoc___cvsicvgﬂC...Cv:U;gOVSJ', (565)

and that the action is compatible with the filtration, i.e., LIV ¢ VSI+ In par-
ticular V' is locally free, and we can define a dual sheaf V* locally as V*(U) =
Homoey (V(U),0U)). It V(U) is of the form V @ O(U) for some vector space V,
then V*(U) is the space of functions v on U with values in the dual V* such that (u,w)
is holomorphic for all w € V. The dual sheaf V* has a natural structure of a sheaf of
right £-modules and we have a natural pairing (, ) : V* xV — O.

We can define the associated graded objects

GrL = @2 L8/L57 (566)
GrV = @,V /vs-t (567)

with the understanding that V<=t =0 = £571,

Then GrL is a graded sheaf of Lie algebras acting on the graded sheaf GrV of
O-modules, and homogeneous components are locally free and finitely generated.

The sheaf of coinvariants is V/LV, and the sheaf of invariant forms £ is locally
given by

U E(U) = {w € V(U)|wX = 0YX € £(U)}. (568)

In the filtered situation, £V is filtered, with (LV)S = %,,,_,L,V, and we have

induced homomorphisms

(VILV)S — o = (VILV)S = (VILV)SH = 5 VLV = lm(V/ LV ).
(569)

Locally, (V/LV)S/(U) is the quotient V</(U) by the submodule of linear combinations
of elements of the form Xv, X € L5, v € V=* with r + s < .

A connection V on a sheaf of O-modules V' is a C linear map V — Q' @p V, where
Q! is the sheaf of holomorphic (1,0)-differential forms on S, such that for all open sets

Ucs,
V(fv)=fVo+df @v, (570)

forany f € O(U), v € V(U). The notation V¢ is used to denote the covariant derivative
in the direction of a local holomorphic vector field £: if Vo = Y0, @v;, Vev = Yy (€)v;.
A connection D on a sheaf of Lie algebras is furthermore assumed to have covariant
derivatives being derivations for all local vector fields ¢:

De[X,Y] = [D: X, Y]+ [X, DY),  X,Y € L(U), (571)
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and a connection V on a sheaf of £-modules with connection D is assumed to be
compatible with the action, i.e.,

Vg(Xv) = (DgX)U + XV&U, X € ,C(U), v E V(U) (572)

Such a connection induces a unique connection, also called V on V* such that for all

open U C S, ue V*(U),v e V(U),
) = (Vi) + (0, V), (573)

Let V be a connection on a sheaf V' of O-modules. If V is filtered by free, finitely
generated O-modules V<7, we say that V is of finite depth if there exists an integer d
such that VVS C Q! @ VSi*4, The smallest non-negative such integer will be called
depth of the connection.

Theorem 8.30 Let L be a sheaf of Lie algebras and V' a sheaf of L-modules over a
complex manifold S. Suppose that L and V' have a filtration by locally free finitely gener-
ated O-modules, and compatible connections D and ¥V of finite depth. If GrV/ Gr LGr V
has only finitely many non zero homogeneous summands, then the sheaf of invariant
forms E is locally free and finitely generated.

Proof: Let zo € S and U be a neighborhood of zg, such that the restriction of V' to U
is free. Thus there exist vector spaces V<7, V. such that

VS~ VS OU)  VU)~V o OU). (574)

The assumption that GrV/ Gr £ Gr V' has vanishing components of degree > N means
that if j > N and v € V</(U) we have a decomposition (not necessarily unique)

v=1v"+ X", (575)

for some v’ € V==L and X € L£(U). By iterating this we see that we can take v’ € V=V,

The first consequence of this is that the restriction map E(U) — V<*(U) is injective
for all sufficiently large I.

The second consequence is that we can replace the connection by a connection which
preserves V<™(U) for some large [, and coincides with the given one on the image of
invariant forms. The construction goes as follows.

Let us choose a basis ey, ey,... of V with the property that, for all j, a basis of
V'<J is obtained by taking the first dim(V</) elements of this sequence. View V as the
subspace of constant functions in V(U), and choose a decomposition (575) for all e;:

e; = e + Xjel. (576)
with e} € VEN(U). Define a new connection V by

Ve; = Vel (577)
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This formula uniquely determines a connection V on the restriction of E to U. The
dual connection on V*(U), also denoted V is defined as usual by <@0z, ;) = d{a,e;) —
(v, @e». By construction, this dual connection coincides with V on invariant forms,
and, if d denotes the depth of the connection V, it maps VSN+4*({) to itself.

If we introduce local coordinates ty,...,t, around zy, with zy at the origin, we see
that we have to solve the following problem: given a subsheat F of a finitely generated
free sheaf F' on an open neighborhood U of the origin in €, with connection V on
F preserving F, show that there exists an open set U’ C U containing zg, such that
EU’) is a free O(U')-module. Write F' as Fy @ O, for a vector space Fy. We may

assume that U is a ball centered at the origin.

Lemma 8.31 Let £ be the vector field ", t,0;, on C", and V be a connection on a free,
finitely generated sheaf of O-modules F' = Io @ O on a ball U centered at the origin of
C*. For each ¢ € Fy there is a unique ¢ € F(U) such that ¢(0) = ¢, and Vep = 0.

The proof is more or less standard: the Fj-valued holomorphic function qAﬁ on U is a
solution of the system of linear differential equations
n d n .
S h () = S A0, (57
2 =1

=1

for some holomorphic matrix-valued functions A;, with initial condition qAﬁ(O) =¢. It
is convenient to rewrite this equation in the form

A~

%qé(xt) = Bz, t)g(xt),  Blx,t) =3 t;Ai(at). (579)

In this form we can apply the standard existence and uniqueness theorem: the unique
solution with initial condition ¢ is given by the absolutely convergent Dyson series

=0+ X [ Bty Bl 0o der-da, (530)

The domain A,, of integration is the simplex 0 < 2y < --- < z,, < 1. It is clear from
this formula that qAﬁ is holomorphic on U. This concludes the proof of the lemma.

Let Ey be the subspace of Fy consisting of all values at 0 of sections of E(U’) where
U’ runs over all open balls contained in U and centered at the origin. Let eq,...,e¢,
be a basis of Fj such that the first s ¢; build a basis of Fy. The homomorphism of
O(U’)-modules

T B @O = F(UY,  ¢@h— dh, (581)

is injective since qAﬁ vanishes if and only if ¢ vanishes. We claim that the image of 7 is
precisely E(U"), if U’ is small enough. Let ¢» € F(U’). Then, we can write ¢ as

P(t) =2 a;(1)é (), (582)

J=1
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for some holomorphic functions a;(t). By assumption, a;(0) = 0 if j > s. Since
Vé; = 0, we have

Vi(t) =30 3 tidai(1)é(1). (583)

7=11=1

But V preserves F and, therefore, ¥;0,.a;(t) = 0 if j > s. It follows that a;(t) =
a;(0) = 0if 5 > s. We have shown that E(U’) is contained in the image of the
homomorphism 7. Now let, for j = 1,...,s, ¥;(t) be sections of E(U’) such that
;(0) = e;. Such sections exist, by definition of Fy, for some neighborhood U’. Then,
the construction above gives

bi(t) = l_iaﬂu)éz(t). (584)

The holomorphic matrix-valued function (a;;()) is the unit matrix at £ = 0 and is thus
invertible for ¢ € U’, if the ball U’ is small enough. We conclude that é; € E(U’),
which completes the proof. O

Let us see how this applies to our situation, following [TUY89]. For us S is either
of CM, Ol x p, C x @, and L is the corresponding sheaf of Lie algebras, which we
denoted L, Ly, L, respectively. The module V' is the free graded O-module VARl @ .
The key observation is that Gr(L£); consists of the degree j part of (g @ C[t™'])* @ O
for all sufficiently large j. Moreover Gr(V) = V canonically since V is graded, and
the action of elements of sufficiently high degrees in Gr(L£) on Gr(V) comes from the
action of g ® C[t™"] on the factors V.

The fact that GrV/Gr £ GrV has only finitely many non trivial homogeneous
components follows then from the fact that V" /=g @ C[t!] is finite dimensional
for all positive integers N, which is proved in [TUY89] using Gabber’s theorem.

9 Summary

In this thesis we considered two classic animals in the rational conformal zoo, the
minimal models [BPZ84] and the Wess—Zumino—Witten models [W84, K784, TKS8|.
We restricted our attention to correlation functions in the analytic chiral sector, the
conformal blocks. In both cases integral representations for the conformal blocks are
known from [DF84, ZF86, CF87, SV89, 89, BF90]. They are given by multiple con-
tour integrals, which generalize Gauss’ integral representation for the hypergeometric
function. The integrals are many valued functions on configuration spaces. Their
monodromy yield representations of braid groups. An amazing observation is that the
monodromy of these integrals, computed by contour deformation [GN84, DF84, TKSS,
FFK89, La90], is given by quantum group data [FW91, GS90, PS90, AGS89]. Thus
one has an explicit connection to another field of two dimensional symmetry, the the-
ory of quantum groups [D86, Ji85, Lu88, FK93, FRT87] and integrable lattice models
[PS90, Pag8, Ka89].
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Chapter two was devoted to this connection. We introduced a topological quantum
group action on an enlarged space of integration contours, which label conformal blocks.
The physical conformal blocks were identified with singular vectors in the quantum
group module. We identified the quantum group representation with a product of
Verma modules. This topological quantum group representation was our main subject.
The analysis was done in entirely in terms of integral representations for conformal
blocks. It did not make use of the properties of field operators. In chapter six and
chapter seven we furthermore used a scheme which defined conformal blocks without
direct reference to field operators. Recall also chapter three for the operator origin of
integral representations.

This point of view leaves aside some important issues like braid group statistics
[Fr88], super-selection sectors [DHRT71],and their quantum symmetry [MS90, FRS89,
FK93]. To make contact with these subjects one should reconstruct the conformal
field theory [FFK89]. Another important issue also left aside is BRST-invariance.
Topological representations should also have a meaning in terms of the BRST complex
[F'89, BMP90]. We hope to return to this question in future work.

Conformal models exhibit very interesting structures when they are formulated on
higher topologies [FS87]. In chapter four we investigated the topological representation
on a toroidal space-time. There it was more intricate than on the sphere. We were led to
integrate multi—-component many valued differential forms to obtain conformal blocks.
Again a fundamental question was the monodromy of the outcome. The quantum group
provided an efficient and beautiful answer. The monodromy was again given by an R-
matrix, but this time in the adjoint representation [CFW93] rather than in a Verma
module. We mention that F—matrix representations are a wide subject themselves,
with applications to link invariants [KR88], invariants of three manifolds [RT91], state
sum invariants [TV89], monodromy representations [Ko87] of braid groups, and braid
group statistics [Fr88].

Chapter five addressed the interplay between the topological representation and
modular transformations of space-time. It turned out that the differential forms from
conformal field theory gave rise to topological representations which worked nicely
together with the modular group. The outcome was a representation of the modular
group on the quantum group representation. It was given in terms of universal quantum
group elements.

Chapter six and chapter seven were devoted to a mathematical construction of
conformal blocks on the torus using methods of [TUY89]. This approach was purely
representation theoretic and did not require the construction of field operators. Dif-
fering from the sphere we were led to consider twisted conformal blocks on the torus
[Be88a]. We derived the Knizhnik—Zamolodchikov—Bernard equation in this twisted
framework and discussed the role of the modular group. As a byproduct we arrived at
a genus one generalization of the classical Yang—Baxter equation. We remark that the
analogous construction on higher genus surfaces [Be88b] in this framework is still an
open and important problem. Progress in this direction was recently made in [194].

All this is one glimpse of the outstanding coherency and unity of two dimen-
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sional conformal field theory and its branches in the physics and mathematics of
integrable systems and lattice models [Pa88, PS90, Ka89], quantum groups [D86,
Ji85, FRT87, Lu90], infinite dimensional Lie algebras [K90], low dimensional topol-
ogy [RT91, TV89], string theory [Po81, FMS86, DFMS87, GW86, GSW8T], Riemann
surfaces [F'S87, Be88b, FG92], braid groups and braid statistics [Fr88, MS90], Chern-
Simons theory [W89, GK90], and many more areas.
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