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1 INTRODUCTION

1 Introduction

In the last century there were formed two new fundamental concepts: theory of relativity
and quantum mechanics.
Predictions of these two models seem to be accurate each within its boundaries. One
of the most important predictions which could be proved was the discovery of the Higgs
boson in 2012 [Greene].
However these two theories can't be uni�ed. The most promising attempt is the string
theory. Our three dimensional space is embedded in a higher dimensional space. It was
amazing that the force which in�uences until in�nity range is so small compared to the
electromagnetic force for example. Maybe we experience only a small part of it in our
three dimensions and the major part is distributed to other dimensions we can't perceive
[Randall].
So it is useful to deal with quantum mechanics in higher dimensions [Dong].
Two-atomic molecules have more degrees of freedom than one-atomic ones. The Morse
potential describes the vibrations [Flügge182] and the Kratzer potential speci�es "the
rotation-vibration spectrum" [Flügge178].
So this bachelor's thesis applies the higher dimensional formalism to these two potentials.
To investigate wave equations in higher dimensions there has to be introduced a formalism
to handle with. It has to be de�ned hyperspherical coordinates r and θb, such as the
Laplacian, the volume element and the angular momentum operator in polar coordinates.
For the investigation of the Kratzer potential the wave equation has to be developed in
D-dimensions. The radial wave function is determined by analysing the behaviour at
in�nity and at zero. This result is applied to three dimensions. After normalisation there
is derived an expression for the energy levels. The levels are investigated according to the
dimension and the quantum numbers referred to the shell and the angular momentum.
For the investigation of the Morse potential the same formalism is applied to the Morse
potential to get the wave function.
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2 BASICS

2 Basics

The consideration of potentials in higher dimensions requires a suitable formalism. Here
it is followed the nomenclature and the explanation by [Dong]. The two potentials are
rotation-symmetric, so a description of hyperspherical coordinates is needed. To check
that the formalism works it will be applied to two and three dimensions.

2.1 Hyperspherical Coordinates

First of all the transformation between the Cartesian coordinates xi and the hyperspherical
coordinates r and θb in a D-dimensional space is de�ned by

x1 = r · cos θ1 ·
D−1∏
b=2

sin θb, (1)

x2 = r ·
D−1∏
b=1

sin θb,

xn = r cos θn−1 ·
D−1∏
b=n

sin θb,

xD = r cos θD−1,

where r ∈ [0,∞), θ1 ∈ [−π, π], θ2, θn ∈ [0, π] and n ∈ [3, D − 1].
In two dimensions there will be yielded

x1 = r · cos θ1, (2)

x2 = r · sin θ1,

and in three

x1 = r · cos θ1 · sin θ2, (3)

x2 = r · sin θ1 · sin θ2,
x3 = r · cos θ2.

This two sets of hyperspherical coordinates corresponds to the well known sets as used in
e. g. [Demtröder], identifying θ1 with ϕ and θ2 with ϑ.

r =
√∑D

b=1 x
2
b is the radius of a D-dimensional sphere.

2.2 The Laplacian in Higher Dimensions

In order to de�ne the Laplacian in polar coordinates a scaling factor h is needed.

h =
D−1∏
n=1

hn (4)
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2.2 The Laplacian in Higher Dimensions 2 BASICS

where hn =

√∑D
b=1

(
∂xb
∂θb

)2
and θ0 = r.

hn can directly be calculated

h0 = 1, (5)

h1 = r ·
D−1∏
b=2

sin θb,

h2 = r ·
D−1∏
b=3

sin θb,

hn = r ·
D−1∏
b=n+1

sin θb,

hD−1 = r.

The Laplacian is de�ned by:

∇2
D =

1

h

D−1∑
b=1

∂

∂θb

(
h

h2b

∂

∂θb

)
(6)

Now the Laplacian in polar coordinates can be written as

∇2
D =

1

rD−1
∂

∂r

(
rD−1

∂

∂r

)
(7)

+
1

r2

D−2∑
b=1

[
D−1∏
a=b+1

1

sin2 θa
·
(

1

sinb−1 θb

(
∂

∂θb
sinb−1 θb

∂

∂θb

))]

+
1

r2

(
1

sinD−2 θD−1

(
∂

∂θD−1
sinD−2 θD−1

∂

∂θD−1

))
.

In two dimensions this leads to

∇2
2 =

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
· ∂2

∂θ2D−1
(8)

and in three dimensions to

∇2
3 =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
1

sin2 θ2

∂2

∂θ21
+

1

r2
∂2

∂θ22
. (9)

In the con�guration space the di�erential of the solid angle is given by

dΩ =
D−1∏
n=1

(sin θn)n−1 dθn. (10)
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2.3 The Angular Momentum Operator in Arbitrary Dimensions 2 BASICS

In two dimensions it can be identi�ed by

dΩ = dθ1 = dϕ (11)

and in three dimensions by

dΩ = sin θ2 dθ2 dθ1 = (12)

= sinϑ dϑ dϕ.

Therefore the volume element is given by

D∏
b=1

dxb = rD−1drdΩ, (13)

where r ∈ [0,∞), θ1 ∈ [−π, π], θ2, θn ∈ [0, π] and n ∈ [2, D − 1]. This corresponds to the
results in two dimensions

dA = r dr dϕ (14)

as well as to the results in three dimensions

dV = r dr sinϑ dϑ dϕ. (15)

2.3 The Angular Momentum Operator in Arbitrary Dimensions

In Cartesian coordinates the angular momentum operator Lkl is de�ned as

Lkl = xkpl − xlpk (16)

where k, l = 1, 2, . . . D and ~ = 1 1.
The Casimir operator L2, which commutes with all Lkl, is de�ned as follows

L2 =
1

2

D∑
k,l

(Lkl)
2. (17)

In spheric coordinates is yielded

L2 = L2
D−1 = −

(
1

sinD−2 θD−1

∂

∂θD−1

(
sinD−2 θD−1

∂

∂θD−1

)
−

L2
D−2

sin2 θD−1

)
. (18)

L2
D−2 can be calculated by the recursive formula

L2
j = −

(
1

sinj−1 θj

∂

∂θj

(
sinj−1 θj

∂

∂θj

)
−

L2
j−1

sin2 θj

)
, (19)

L2
2 = −

(
1

sin θ2

∂

∂θ2

(
sin θ2

∂

∂θ2

)
− L2

1

sin2 θ2

)
=

= −
(

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2

)
, (20)

L2
1 = − ∂2

∂θ21
. (21)

1In this thesis is followed the convention ~ = 1.

4



2.4 The Radial Momentum Operator 2 BASICS

It can be seen that equ. (20) corresponds to the Casimir operator in three dimensions and
equ. (21) to the Casimir operator in two dimensions Inserted in the Laplacian yields

∇2
D =

1

rD−1
∂

∂r

(
rD−1

∂

∂r

)
−
L2
D−1

r2
. (22)

The eigenfunctions of these operators are the spherical harmonics Y l
lD−2...l1

. They achieve
the eigenvalue equation

L2Y l
lD−2...l1

= l(l +D − 2)Y l
lD−2...l1

. (23)

2.4 The Radial Momentum Operator

The radial momentum operator pr is de�ned as

pr = − i
2

(∇ · (r̂ · · · ) + r̂ · ∇) , (24)

where
r̂ =

r

r
. (25)

Writing ∇ · (r̂ · · · ) it has to be kept in mind that the operator pr is applied to a wave
function. So it has to be calculated

∇(r̂Ψ) = r̂ · ∇Ψ + Ψ∇ · r̂. (26)

That yields for pr

pr = − i
2

(∇ · r̂ + 2r̂ · ∇) . (27)

It can be shown that

∇ · r̂ =
D − 1

r
(28)

and

r̂ · ∇ =
∂

∂r
. (29)

The result is

pr = −i
(
∂

∂r
+
D − 1

2r

)
. (30)

In two dimensions

pr = −i
(
∂

∂r
+

1

2r

)
. (31)

and in three dimensions2

pr = −i
(
∂

∂r
+

1

r

)
. (32)

2It can be compared to [Gorgas]
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3 KRATZER POTENTIAL

is yielded.
In the Schrödinger equation the radial momentum operator appears squared. So

p2r = −
(
∂

∂r
+
D − 1

2r

)(
∂

∂r
+
D − 1

2r

)
=

= −
(
∂2

∂r2
+
D − 1

r

∂

∂r
+

(D − 1)(D − 3)

4r2

)
. (33)

3 Kratzer potential

3.1 Expansion of the Wave Function

Now there are all tools to expand an expression for wave function in the D-dimensional
Schrödinger equation

− 1

2
∇2Ψ(x) = (E − V (r)) Ψ(x). (34)

The wave function can be separated in a radial part Rl(r) and an angular part Y l
lD−2...l1

.
Furthermore expression (22) for Nabla is used. That yields

1

rD−1
d

dr

(
rD−1

d

dr

)
Rl(r) +

(
2E − 2V (r)− l(l +D − 2)

r2

)
Rl(r) = 0. (35)

Derivation results in a di�erential equation

d2

dr2
Rl(r) +

D − 1

r

d

dr
Rl(r) +

(
2E − 2V (r)− l(l +D − 2)

r2

)
Rl(r) = 0. (36)

To prove if this equation �ts to known results in lower dimensions the three dimensional
case is looked at. In three dimensions it is 3

d2

dr2
Rl(r) +

2

r

d

dr
Rl(r) +

(
2E − 2V (r)− l(l + 1)

r2

)
Rl(r) = 0 (37)

As potential there is taken the Kratzer type potential in arbitrary dimensions

V (r) =
A

r2
− B

r
. (38)

With
% = r

√
−8E (39)

and

τ ≡ B

√
1

−2E
(40)

there is yielded

d2Rl(%)

d%2
+
D − 1

%

dRl(%)

d%
+

(
−1

4
+
τ

%
− 2A+ l(l +D − 2)

%2

)
Rl(%) = 0. (41)

3This formula for the radial wave function in three dimensions can be found in [Haken168].
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3.1 Expansion of the Wave Function 3 KRATZER POTENTIAL

To determine Rl(%) �rst the behaviour of the function at in�nity is analysed. The terms
with 1

%
or 1

%2
are negligible. So the result is

d2Rl(%)

d%2
− 1

4
Rl(%) = 0. (42)

A solution for a di�erential equation of this type is solved by an ansatz of the form

Rl(%) = K · e−%/2 (43)

where K is an arbitrary magnitude. If K is chosen as %λ · F (%)

Rl(%) = %λ · e−%/2 · F (%) (44)

can be inserted in equ. (41) results in

%λ
(
d2F (%)

d%2
− dF (%)

d%

)
+ %λ−1

(
(2λ+D − 1)

dF (%)

d%
+ (τ − 1

2
(D − 1)− λ)F (%)

)
(45)

+ %λ−2 (λ(λ− 1) + (D − 1)λ− (2A+ l(l +D − 2)))F (%) = 0.

To determine λ it has to be considered the behaviour of the function near 0. The terms
with %λ or %λ−1 are negligible. So the result is

%λ−2 (λ(λ− 1) + (D − 1)λ− (2A+ l(l +D − 2)))F (%) = 0. (46)

This leads to

λ =
2−D +

√
8A+ κ2

2
, κ ≡ 2l +D − 2. (47)

Rearranging equ. (45) leads to a form which can be solved by Laguerre polynomials

%
d2F (%)

d%2
+ (2λ+D − 1− %)

dF (%)

d%
+

(
τ − D − 1

2
− λ
)
F (%) = 0. (48)

The solution of equ. (48) is F (%) = L2λ+D−2
τ−D−1

2
−λ(%) [Motschmann]. Lab (t) is given by

Lan(t) =
n∑
j=1

(
n+ a
n− j

)
(−t)j

j!
. (49)

This leads to the solution of equ. (44)

R(%) = N%λe−%/2L2λ+D−2
τ−D−1

2
−λ(%). (50)
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3.1 Expansion of the Wave Function 3 KRATZER POTENTIAL

N is a factor to normalize R(%).
Developing F (%) =

∑∞
ν=0 cν%

ν in equ. (48) leads to

∞∑
ν=0

ν(ν − 1)cν%
ν−1 + (2λ+D − 1)

∞∑
ν=0

νcν%
ν−1

−
∞∑
ν=0

νcν%
ν −

(
λ− τ +

D − 1

2

) ∞∑
ν=0

cν%
ν = 0.

∞∑
ν=0

νcν%
ν−1 ((ν − 1) + 2λ+D − 1)−

∞∑
ν=0

cν%
ν

(
ν + λ− τ +

D − 1

2

)
= 0

∞∑
ν=0

cν+1%
ν(ν + 1) (ν + 2λ+D − 1)−

∞∑
ν=0

cν%
ν

(
ν + λ− τ +

D − 1

2

)
= 0

∞∑
ν=0

%ν
(
cν+1(ν + 1) (ν + 2λ+D − 1)− cν

(
ν + λ− τ +

D − 1

2

))
= 0.

That this equation can only be ful�lled when the factors are zero leads to a recursion
relation

cν+1 = cν
ν + λ− τ + D−1

2

(ν + 1) (ν + 2λ+D − 1)
(51)

For ν∗ =
(
λ− τ + D−1

2

)
the coe�cient cν∗+1 is 0, as well as the coe�cients cν∗+c (c < 1).

So

λ− τ +
D − 1

2
= N = 0, 1, 2, . . . (52)

where N is the radial quantum number. The associated principal quantum number is

n = N + l + 1 = N + κ/2−D/2. (53)

This leads to the condition, that
l < n (54)

and equ. (50) can be written as

R(%) = N%λe−%/2L2λ+D−2
n−l−1 (%). (55)

The corresponding energy levels can be obtained by equ. (40).

B

√
1

−2E
= τ = n− l − 1 + λ+

D − 1

2
. (56)

Relocated to E yields

E = − B2

2
(
n− l − 1 + λ+ D−1

2

)2 . (57)

With equ. (47) it is obtained

E = − 2B2(
2n− 2l − 1 +

√
8A+ κ2

)2 . (58)
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3.1 Expansion of the Wave Function 3 KRATZER POTENTIAL

There can be considered an approximation for large D

E ' −2B2
(
D−2 − 2(2n− 3)D−3 +

(
3(2n− 3)2 − 8A− (2l − 2)2

)
D−4 − . . .

)
. (59)

In this case κ is approximately equal to D. So l in equ. (53) can be determined as 1, if
the power of D is small. So the dependence of l is negligible.
To determine N in equ. (50) the normalisation condition∫ ∞

0

R(%)2rD−1dr = 1 (60)

has to be used. With equ. (56) it leads to∫ ∞
0

(
N%λe−%/2L2λ+D−2

n−l−1 (%)
)2
rD−1dr = 1. (61)

This can be solved by the formula [Nieto]

J (β)
m,α =

∫ ∞
0

e−ttα+β[Lαm(t)]2dt (62)

=
Γ(α +m+ 1)

Γ(m+ 1)

m∑
k=0

(−1)k
Γ(m− k − β)

Γ(−k − β)

Γ(α + k + 1 + β)

Γ(α + k + 1)

1

Γ(k + 1)Γ(m− k + 1)
,

with Re(α + β + 1) > 0.

From equ. (60) follows β = 1. Using Γ(m+ 1) = m! equ. (62) becomes [Dong83]

J (1)
m,α =

(2m+ α + 1)Γ(α +m+ 1)

m!
. (63)

Comparing equ. (50) with equ. (62) yields

m = n− l − 1,

α = 2λ+D − 2.

So

J
(1)
n−l−1,2λ+D−2 =

(2n− 2l + 2λ+D − 3)Γ(2λ+D − 2 + n− l)
(n− l − 1)!

. (64)

So equ. (61) becomes with equ. (64)

N 2

2D
√
−2E

D
· (2n− 2l + 2λ+D − 3)Γ(2λ+D − 2 + n− l)

(n− l − 1)!
= 1. (65)

Al least N becomes

N =

(
4B

2n− 2l + 2λ+D − 3

)D
2

(66)

·

√
(n− l − 1)!

(2n− 2l + 2λ+D − 3)Γ(2λ+D − 2 + n− l)
. (67)

The entire wave function is made out to

Ψ(x) = N%λe−%/2L2λ+D−2
n−l−1 (%)Y l

lD−2...l1
(θ1 . . . θD−1). (68)
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3.2 Dependence of the Energy by D, l and n 3 KRATZER POTENTIAL

3.2 Dependence of the Energy by D, l and n

Equ. (58) showed the dependence of the energy of the dimension and the quantum numbers
n and l. First it will be investigated, if there is a special dimension, that the energy is
extremal. So the roots of

∂E(n, l,D)

∂D
=

∂E(n, l,D)

∂κ
· ∂κ
∂D︸︷︷︸
=1

=

=
4B2κ

(2n− 2l − 1 +
√

8A+ κ2)3
√

8A+ κ2
(69)

has to be found, e. g.
D = 2(1− l). (70)

Thus l has to be an integer and less than D, there is only one solution for this equation

l = 0, D = 2.

To see, if there is a maximum or a minimum, equ. (69) has to be derived to D.

∂2E(n, l,D)

∂D2
=

=
4B2((2n− 2l − 1 +

√
8A+ κ2)(

√
8A+ κ2 + 2κ) + 3κ2

√
8A+ κ2)

(2n− 2l − 1 +
√

8A+ κ2)4(8A+ κ2)
(71)

The denominator is greater than 0. The numerator is positive too, since 4B2 is greater
than 0, n is greater than l, so 2n− 2l − 1 is at least 0.

√
8A+ κ2 > 0, so the rest of the

numerator is positive. Finally the second derivation of the energy to D is positive, so it
has to be a minimum at l = 0, D = 2. This circumstance is shown in �gure 1 and �gure 2.
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3.2 Dependence of the Energy by D, l and n 3 KRATZER POTENTIAL

Figure 1: Variation of the energy when the quantum number l is �xed. (A = 1 and
B = 8.) In this case a minimum can be found at D = 2 for the energy in every state. It
can be seen that the curves become smoother when n is growing up.

Figure 2: Variation of the energy when the quantum number n = 4 is taken. (A = 1 and
B = 8.) The only case with a local minimum is when l = 0 The minimum is at D = 2 as
expected.
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3.2 Dependence of the Energy by D, l and n 3 KRATZER POTENTIAL

Second it will be considered the dependence of the energy of the quantum number l.

∂E(n, l,D)

∂l
=

8B2(κ−
√

8A+ κ2)√
8A+ κ2((2n− 2l − 1 +

√
8A+ κ2)3

. (72)

As in equ. (71) the denominator is positive. κ is less than
√

8A+ κ2, so the numerator is
negative for all D or l. If A equals 0, the Kratzer potential becomes a Coulomb potential
and ∂E(n,l,D)

∂l
equals 0, so the energy is independent of l at all. In the one-dimensional

case D = 1 the eigenvalues reduce to

En = − B
2

2n2
. (73)

Figure 3 shows the Coulomb potentials for the two-, three-, four- and �ve-dimensional
case. The one-dimensional case follows equ. (73) and has therefore the same shape as
E(n, 3).

Figure 3: Variation of the energy when A = 0 and B = 8. This shows the Coulomb
potential. Energy is increasing with the dimension in each state.

Third it will be considered the dependence of the energy of the quantum number n.

∂E(n, l,D)

∂n
=

8B2

((2n− 2l − 1 +
√

8A+ κ2)3
. (74)

Since 2n−2l is greater than or equal 2 the denominator is positive. So the whole expression
is positive. This means that there will be no local extremum. The energy increases with
increasing quantum number n. For great D this expression tends to zero.
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3.2 Dependence of the Energy by D, l and n 3 KRATZER POTENTIAL

Figure 4: Variation of the energy when A = 1, B = 8 and D = 2. When n increases the
energy increases as well. When l is increasing the energy decreases in each state.

Figure 5: Variation of the energy when A = 1, B = 8 and D = 3. When n increases the
energy increases as well. When l is increasing the energy decreases in each state.

For three dimensions the energy levels are shown in table 1 for some two atomic
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3.2 Dependence of the Energy by D, l and n 3 KRATZER POTENTIAL

molecules as nitrogen, carbon monoxide, nitrogen monoxide and CH [Berkdemir].

n l N2 CO NO CH
0 0 0.054430 0.050823 0.041118 0.083214
1 0 0.162057 0.151287 0.122311 0.241123

1 0.162546 0.151755 0.122724 0.244381
2 0 0.268229 0.250354 0.202274 0.389547

1 0.268711 0.250816 0.202681 0.392611
2 0.269675 0.251744 0.203494 0,398722

3 0 0.372972 0.348051 0.281033 0.529229
1 0.373447 0.348507 0.281434 0.532115
2 0.374398 0.349418 0.282235 0.53787
3 0.375823 0.350785 0.283436 0.546467

4 0 0.476313 0.444403 0.358611 0.660844
1 0.476779 0.444852 0.359006 0.663565
2 0.477717 0.445751 0.359795 0.668992
3 0.479124 0.447099 0.360978 0.677098
4 0.480999 0.448895 0.362555 0.687842

5 0 0.578269 0.539434 0.435032 0.785001
1 0.578732 0.539877 0.435421 0,787569
2 0.579658 0.540764 0.436198 0.792692
3 0.581046 0.542093 0.437364 0.800343
4 0.582896 0.543865 0.438917 0.810487
5 0.585208 0.546082 0.440858 0.823071

Table 1: Energy levels for two atomic molecules in eV for di�erent values of n and l
[Berkdemir]
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4 MORSE POTENTIAL

4 Morse Potential

4.1 Expansion of the Wave Function

In this section the radial wave function with an anharmonic potential will be analysed.
Since knowing from (44) R(r) consists in terms of rλ. For getting more handsome ex-
pressions −D−1

2
is taken away from the exponent. In equ. (78) this will be repaired by

introducing rτ .
The wave equation

Ψ(r) = r−
D−1
2 R(r)Y l

lD−2...l1
(75)

will be inserted in equ. (36). This yields(
d2

dr2
− l(l +D − 2) + (D − 1)(D − 3)/4

r2

)
R(r) = −2 (E − V (r))R(r), (76)

with κ as given in equ. (47) it becomes shorter(
d2

dr2
− κ2 − 1/4

r2

)
R(r) = −2 (E − V (r))R(r). (77)

With the ansatz

R(r) = rτe−brG(r), b =
√
−2E, E < 0, (78)

inserted the radial Schrödinger equation becomes after arranging in orders of r(
τ(τ − 1)− (κ2 − 1/4)

)
G(r) +

(
2τ
dG(r)

dr
− 2bτG(r)

)
r

+

(
d2G(r)

dr2
− 2b

dG(r)

dr
− 2V (r)G(r)

)
r2 = 0. (79)

To determine τ this equation is considered at the origin. The terms with r and r2 can be
neglected. So it is obtained

τ1,2 =
1

2
± κ. (80)

Only τ > 0 is used. So the behaviour in equ. (78) at the in�nity depends only on the
exponential function. Otherwise there would be no term to describe the behaviour at the
origin.
Expanding G(r) as standard series

G(r) =
∞∑
k=0

γkr
k, γ0 6= 0 (81)

provides the radial wave function

R(r) = r1/2+κe−br
∞∑
k=0

γkr
k, γ0 6= 0 (82)

15



4.1 Expansion of the Wave Function 4 MORSE POTENTIAL

and the wave function is

Ψ(r) = r1+κ−D/2e−brY l
lD−2...l1

∞∑
k=0

γkr
k, γ0 6= 0. (83)

In equ. (79) has to be inserted a potential to obtain the coe�cients γk. Here the chosen
potential is the Morse potential

V (r) = V0
(
e−2βr − 2e−βr

)
, (84)

where V0 > 0. To make this expression more handsome there is used a transformation

e−2βr =
∞∑
n=0

(−2βr)n

n!
=
∞∑
n=0

(−1)n2n
(βr)n

n!

e−βr =
∞∑
n=0

(−βr)n

n!
=
∞∑
n=0

(−1)n
(βr)n

n!

⇒ e−2βr − 2e−βr =
∞∑
n=0

(−1)n(2n − 2)
βn

n!
rn =

= 2
∞∑
n=0

(−1)n
(2n−1 − 1)βn

n!
rn = 2

∞∑
n=0

cnr
n. (85)

So the Morse potential can be written as

V (r) = 2V0

∞∑
n=0

cnr
n. (86)

The expressions for G(r), V (r) and τ = κ+ 1
2
are inserted in equ. (79). That yields

∞∑
k=0

(k(2κ+ k)) γkr
k −

∞∑
k=0

2b (k + κ+ 1/2)) γkr
k+1 − 4V0

∞∑
k=0

∞∑
l=0

clγkr
l+k+2 (87)

from which can be obtained

γ1 = bγ0,

γ2 =
b(2κ+ 3)γ1 + 4V0γ0c0

4 + 4κ
. (88)

Finally can be obtained from equ. (87)

γn =
b(2κ+ 2n− 1)γn−1 + 4V0Sn,k

n(2κ+ n)
(89)

with

Sn,k =
N∑
l=0

clγN−l, where N = n− 2 > 0. (90)
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4.1 Expansion of the Wave Function 4 MORSE POTENTIAL

In the case of the Kratzer potential there is a handsome formula to get the energy levels.
But in the case of the Morse potential it would take a hard work to get them. The Morse
potential can be mapped to the potential of the harmonic oscillator. It can be seen in
�gure 6 that the two potentials are similar only in the range very close to the minimum.

Figure 6: The Morse potential (red dashed line) can be approached by the harmonic
potential (black line) in range very close to the minimum.
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5 SUMMARY

5 Summary

The introduced formalism which is necessary to handle wave equations in higher dimen-
sions applied to two and three dimensions delivers the well known expressions for the
hyperspherical coordinates, the Laplacian, the volume element and the angular momen-
tum operator in polar coordinates.
The investigation of the Kratzer potential yields to expressions for the energy levels in
dependence of the dimension and the quantum numbers n and l. If l equals to zero the
energy levels have a minimum in two dimensions. For dimensions higher than 25 the en-
ergy levels are approximatively independent of the dimension. If l is greater than zero the
energy level rises with the dimension for �xed n. Even in higher dimensions the energy
levels are increasing if the dimension is �xed and the quantum number n is increasing.
For �xed dimension and �xed quantum number n the energy is increasing with increasing
quantum number l.
The Morse potential is very di�cult to handle. In the range close to the minimum it can
be mapped to the potential of the harmonic oscillator.
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