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The action functional of the standard model unites several
Interactions between matter fields and force fields

e bosonic sector

— U(1)nyper Maxwell action (part of the photon)

— SU(2) Yang-Mills action, eventually describes the other part o
the photon and?V’+, W—, Z

— SU(3) Yang-Mills action which describes gluons

— action for doublet of complex scalar fields covariantly coupled
SU(2) x U(1)nyper gauge fields

— quatrtic self-interaction andegativemass square for the scalar
fields (Higgs potential)



e fermionic sectorDirac-Weyl actiondor three families of . . .
— left-handed leptons covariantly coupledS®’ (2) x U (1)nyper
— right-handed leptons covariantly coupledfol )y per
— left-handed quarks covariantly coupled to
SU(3) x SU(2) x U(1)nyper
— two different types of right-handed quarks covariantly coupled
to SU(3) x U(1)nyper
e fermionic sectorYukawa couplingdetween ...
— left-handed lepton, right-handed lepton and scalar doublet

— left-handed quarks, one type of right-handed quarks and scale
doublet

— left-handed quarks, the other type of right-handed quarks and
the conjugated scalar doublet




o action full SU(3) x SU(2) x U(1)nyper SYymmetry
vacuum symmetry is only the subgrouplU (3) x U(1)em

— spontaneous symmetry breaking

e standard model consists wfany independent piecdzas 18 free
parameters

... but it isextremely successful

— several predictions confirmed later
— survived 35 years of experiments

— precision tests confirmed the standard model and excluded
more attractive models (GUTS)

e WHY IS THE STANDARD MODEL SO GOOD?



e Yang-Mills-Higgs models are natural geometric objects in
differential geometry

— Riemannian geometry for space and time
— gauge theory located iiore bundlesver space and time
— standard model is not distinguished

e standard model is essentialiyjiqgue in noncommutative geometry
— standard model arises fropure gravity(Riemannian
geometry) for anoncommutative spacaot from fibre bundles
e gauge groups restrictdny noncommutative spin structure:

— a single simple group cannot be realised
— two factors: onlyU (1) x {U(1),S0O(2),U(2),SU(2)}
— three factorstU (1) x {U(1),50(2),U(2),SU(2)} x U(n)
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e s light a wave or a particle?
— quantum mechanics: it is both at the same time!
— resolution of thecontinuous— discretecontradiction requires
noncommuting operators
e Noncommutative geometry is the same spirit applied to differentiz

geometry itself

— geometry is encoded mperators on Hilbert spaassing
algebraic and functional-analytic methods

— has created new branches of mathematics

— physics: no distinction between continuous and discrete spac

— promising framework foguantum theory of gravity



Gelfand-Naimark theorentGiven a topological spac¥, take the
algebraC'( X') of continuous functions oX, and forgetX .

Then the topological spacE can be reconstructed froi(X).
C'(X) is acommutativeC*-algebra

— essentially3(’H) — bounded operators on Hilbert space

iIdea: take noncommutativé*-algebras

— Interesting examplezon Neumann algebrgeperator algebras
INn guantum mechanics, completely classified)

— they describe measure theory, not differential geometry

for differential geometry we need one additional operator
which captures the metric informatiotine Dirac operator




— spectral triple

Connes: need algebydrepresented on Hilbert spagéand 7 axioms

1. dimension asymptotics of spectrum db (hear shape of the drum)
2. first order differential operatoi|D, f|,g| = 0forall f,g € A
commutative cased = 749, = [D,f] = ivuok

3. smoothness of the algebraAand|D, f] belong to the domain of
ID|™inH, forall f € A

4. orientability. there is a selfadjoint chirality (= ~°) onH, with
(x)? = 1 andDy + xD = 0, which plays dle of the volume form

5. finiteness smooth part of{ has the fornp.A™ for a projectomn
6. Poincae duality. a topological condition

7. real structurecharge conjugatio@ sendingf — f = CfC~' with
C* — =+1, Cx =+xxC,CD=+DCand|f,g] =0
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(Euclidean)

e start withHilbert spacgfor fermions)
to representy”, C we need 4 partdeft/right, particles/antiparticles
e Dirac operator
— traditionally onlyiv*#d,, in Dirac equation(iy#9,, + m)y = 0

— In NCG: massn Is part of the Dirac operator!
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e chirality and charge conjugation
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¢ ac C®(M), b= (%2), a,f € C®(M), c € C(M)®Ms(C)
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particles see hyper-weak, antiparticles see hyper-strong
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o U(A) = {unitaries € A} =C®(M)® (U(1) x SU(2) x U(3))
onelU (1) is too much — spin lift and central extension

e adjoint actionof 1/(A) onH: 3 +— % = uCul 14

with Dirac operator(Dy)* = uCuC ' D(uCuC )™t uCuC 14
\ - JT/
Du w

= D%= uCuC ' DCu*C1u*

= wCuC~ 1D, Cu*C u* + uCuC Cu*CtDu*

= CuC[D,Cu*C™ Y + uDu*

= D +u[D,u*] + CulD,u*]C"t = D + A% + CA*C~1
A* = u|D, u*] is pseudo-force due to gauge transformation

e equivalence principtetrue forces and pseudo-forces are locally
Indistinguishable
= true forces are described by= > . f;| D, g;] for f;,g; € A



e remember that we look for pure gravity on nc space!
— U(A) ~ Lorentz groupbut on’H there acts thepin group
— spin groupS(G) is universal cover of rotation groug, e.g.
G =50(4),8(50(4)) = Spin(4)
— spin lift L : SO(4) 2 exp(w) — exp(zw™ Ve, 1]) € Spin(4)
— projectionrs : Spin(4) > u — i, € SO(4) mo L =id
iy acts onr € R* by i, (z) = v (uy(z)u™t), ~(z) = y,2"
o Spin(H) = {u € B(H), uwu*=u*u = id, uC=Cu, uxy=xu,

iu(f) = p~H(up(flu™") € Aforall f € A}
U=7(Spin(H)) =C>®(M)® (SU(2) x SU(3)) noU(1)!

e restorel/(1) by central extensiotd? (A) = U(A) N Z(A)
ivu = iy, for v € L(U?(A)), double-valuedness gives corrébfl)



e fluctuated Dirac operatdP4 = D + A + CAC~!
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Sr = (¥, Day) for yeX

reproduces Euclidean fermionic action of the standard model
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e Philosophy [Connes].
The bosonic action depends only on the spectrur pf

D2
e most general formS|D 4| = tr (f (A—§)> (A —a scale)
f: Rt - RT, f(z) — 0 sufficiently fast forx — oo

e Laplace transformation(f(?\—%)) = /OO dt tr(e_t?\%)f(t)
0

alternatively:one-loop effective actiofor guantum fermions
coupled to classical gauge fields is proportional to Yang-Mills
action and computable by heat kernel

e heat kernel expansion

o—tD? _ Z t"=2 | d"z\/det gas(D?) +O(t)
e’

n
0<k<5 Seeley coefficients



e INn = 4 dimensions:

w(1(30)) = o [ o= v

x (A* foao(D?) + A2 faag(D?) + fias(D?) + O(A™?))
= Jo dttf(t), fo= [ dtf(t), fi= f(0)
e Seeley coefficients

ag(D?) = tr(1)

as(D?) = lRtr( ) —tr(F)

a4(D?) = 5=(5R? — 2R, R" + 2R, RMP7 )tr(1)
+5tr(Qu Q) — 2 Rtr(E) + str(E?)

for D2 = A+ F,
A=—g"(V,V,—T0V,), Qu=I[Vu.V)



of elementary but very long calculation and reparametrisation:

S|D 4] :/d4aj v det g

8 (% — g R+ a(5R? — 8RR — TRy pp RIP7)
T agp P B+ g e (W, W) 4 5t (G, GHY)

495
F5(Dud) (D46) + Mol — 516 + RIoP)
where

__ 6f0 A2 _ —2 _ _f
e G;%A 2 @ = G0m2

2 2
G=g=30=F A=dx #=FN

e suggests\ asgrand unification scale

e one-loop renormalisation group flow 195, = m leads to
188 GeV < my < 201 GeV




unification of standard model with gravity at the level of classical
field theories

all 7 relative signs of the various terms come out correctly for
Euclidean space

Higgs field is gauge field in discrete directidtiggs potential is
Yang-Mills Lagrangian for discrete field strength

understanding whgymmetry group of the standard model cannot
be simple

strong interactions must couple vectorially, all colours must have
the same mass, whereas weak coupling must be chiral

predicts vanishing neutrino masses (from Poiaachrality)



