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Introduction

The action functional of the standard model unites several

interactions between matter fields and force fields

• bosonic sector

– U(1)hyper Maxwell action (part of the photon)

– SU(2) Yang-Mills action, eventually describes the other part of

the photon andW+, W−, Z

– SU(3) Yang-Mills action which describes gluons

– action for doublet of complex scalar fields covariantly coupled

SU(2)× U(1)hyper gauge fields

– quartic self-interaction andnegativemass square for the scalar

fields(Higgs potential)



• fermionic sector:Dirac-Weyl actionsfor three families of . . .

– left-handed leptons covariantly coupled toSU(2)× U(1)hyper

– right-handed leptons covariantly coupled toU(1)hyper

– left-handed quarks covariantly coupled to

SU(3)× SU(2)× U(1)hyper

– two different types of right-handed quarks covariantly coupled

to SU(3)× U(1)hyper

• fermionic sector:Yukawa couplingsbetween . . .

– left-handed lepton, right-handed lepton and scalar doublet

– left-handed quarks, one type of right-handed quarks and scalar

doublet

– left-handed quarks, the other type of right-handed quarks and

the conjugated scalar doublet



• action: full SU(3)× SU(2)× U(1)hyper symmetry

vacuum: symmetry is only the subgroupSU(3)× U(1)em

→ spontaneous symmetry breaking

• standard model consists ofmany independent pieces, has 18 free

parameters

... but it isextremely successful!

– several predictions confirmed later

– survived 35 years of experiments

– precision tests confirmed the standard model and excluded

more attractive models (GUTs)

• WHY IS THE STANDARD MODEL SO GOOD?



Geometric interpretation of the standard model

• Yang-Mills-Higgs models are natural geometric objects in

differential geometry

– Riemannian geometry for space and time

– gauge theory located infibre bundlesover space and time

– standard model is not distinguished

• standard model is essentiallyunique in noncommutative geometry

– standard model arises frompure gravity(Riemannian

geometry) for anoncommutative space, not from fibre bundles

• gauge groups restrictedby noncommutative spin structure:

– a single simple group cannot be realised

– two factors: onlyU(1)× {U(1), SO(2), U(2), SU(2)}
– three factors:U(1)× {U(1), SO(2), U(2), SU(2)} × U(n)
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Continuum and discreteness

• Is light a wave or a particle?

– quantum mechanics: it is both at the same time!

– resolution of thecontinuous↔ discretecontradiction requires

noncommuting operators

• Noncommutative geometry is the same spirit applied to differential

geometry itself

– geometry is encoded inoperators on Hilbert spaceusing

algebraic and functional-analytic methods

– has created new branches of mathematics

– physics: no distinction between continuous and discrete spaces

– promising framework forquantum theory of gravity



Basic idea behind noncommutative geometry

• Gelfand-Naimark theorem: Given a topological spaceX, take the

algebraC(X) of continuous functions onX, and forgetX.

Then the topological spaceX can be reconstructed fromC(X).

• C(X) is acommutativeC∗-algebra

– essentiallyB(H) – bounded operators on Hilbert space

• idea: take noncommutativeC∗-algebras

– interesting example:von Neumann algebras(operator algebras

in quantum mechanics, completely classified)

– they describe measure theory, not differential geometry

• for differential geometry we need one additional operator

which captures the metric information:the Dirac operator



What is algebraically a Dirac operator D? → spectral triple

Connes: need algebraA represented on Hilbert spaceH and 7 axioms

1. dimension: asymptotics of spectrum ofD (hear shape of the drum)

2. first order differential operator: [[D, f ], ḡ] = 0 for all f, g ∈ A
commutative case:D = iγµ∂µ ⇒ [D, f ] = iγµ

∂f
∂xµ

3. smoothness of the algebra: f and[D, f ] belong to the domain of

|D|n in H, for all f ∈ A
4. orientability: there is a selfadjoint chiralityχ (≡ γ5) onH, with

(χ)2 = 1 andDχ + χD = 0, which plays r̂ole of the volume form

5. finiteness: smooth part ofH has the formpAn for a projectorp

6. Poincaŕe duality: a topological condition

7. real structure: charge conjugationC sendingf 7→ f̄ = CfC−1 with

C2 = ±1, Cχ = ±χC, CD = ±DC and[f, ḡ] = 0
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The spectral triple of the standard model(Euclidean)

• start withHilbert space(for fermions)

to representγ5, C we need 4 parts:left/right, particles/antiparticles

• Dirac operator

– traditionally onlyiγµ∂µ in Dirac equation(iγµ∂µ + m)ψ = 0

– in NCG: massm is part of the Dirac operator!

D =




i 6∂ γ5M 0 0

γ5M∗ i 6∂ 0 0

0 0 i 6∂ γ5M
0 0 γ5MT i 6∂




on H =




HL

HR

Hc
L

Hc
R




– i 6∂ = iγaeµ
a(∂µ + 1

8ωbc
µ [γb, γc]) – Dirac op. for spin connection

– M – fermionic mass matrix



• chirality and charge conjugation

χ =




−γ5 0 0 0

0 γ5 0 0

0 0 −γ5 0

0 0 0 γ5




C =




0 0 γ0γ2 0

0 0 0 γ0γ2

γ0γ2 0 0 0

0 γ0γ2 0 0



◦ c.c.

• algebraC∞(M)⊗ (C⊕H⊕M3(C)) 3 (a, b, c)

action onH: ρ(a, b, c) =




ρL(b) 0 0 0

0 ρR(a) 0 0

0 0 ρc
L(a, c) 0

0 0 0 ρc
R(a, c)






Details

• left-handed and right-handed fermions


uL

dL

νL

eL



∈ HL




uR

dR

eR


 ∈ HR u, d of the formq =




qr

qb

qg




eachq{r,b,g}, ν, e is of the formDirac spinor⊗ C3 (3 families)

• mass matrixM : HR → HL

M =




I3 ⊗Mu 0 0

0 I3 ⊗ CKMMd 0

0 0 0

0 0 Me




Mu,Md,Me

real diagonal
3× 3 matrices



• a ∈ C∞(M), b =
(
α −β̄
β ᾱ

)
, α, β ∈ C∞(M), c ∈ C∞(M)⊗M3(C)

ρL(b) =




αI3 −β̄I3 0 0

βI3 ᾱI3 0 0

0 0 α −β̄

0 0 β ᾱ



⊗I3 ρR(a) =




aI3 0 0

0 āI3 0

0 0 ā


⊗I3

ρc
L(a, c) =




c 0 0 0

0 c 0 0

0 0 ā 0

0 0 0 ā



⊗ I3 ρc

R(a, c) =




c 0 0

0 c 0

0 0 ā


⊗ I3

• [ρL, ρc
L] = 0 and[ρR, ρc

R] = 0 required by axioms

particles see hyper-weak, antiparticles see hyper-strong
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The gauge group

• U(A) = {unitaries ∈ A} = C∞(M)⊗ (U(1)× SU(2)× U(3))
oneU(1) is too much → spin lift and central extension

• adjoint actionof U(A) onH: ψ 7→ ψu = uCuC−1ψ

with Dirac operator:(Dψ)u = uCuC−1D(uCuC−1)−1

︸ ︷︷ ︸
Du

uCuC−1ψ︸ ︷︷ ︸
ψu

⇒ Du = uCuC−1DCu∗C−1u∗

= uCuC−1[D, Cu∗C−1]u∗ + uCuC−1Cu∗C−1Du∗

= CuC−1[D, Cu∗C−1] + uDu∗

= D + u[D, u∗] + Cu[D, u∗]C−1 = D + Au + CAuC−1

Au = u[D,u∗] is pseudo-force due to gauge transformation

• equivalence principle: true forces and pseudo-forces are locally

indistinguishable

⇒ true forces are described byA =
∑

i fi[D, gi] for fi, gi ∈ A



Spin lift and central extension

• remember that we look for pure gravity on nc space!

– U(A) ∼ Lorentz group, but onH there acts thespin group

– spin groupS(G) is universal cover of rotation groupG, e.g.

G = SO(4), S(SO(4)) = Spin(4)

– spin lift L : SO(4) 3 exp(ω) 7→ exp(1
8ωab[γa, γb]) ∈ Spin(4)

– projectionπ : Spin(4) 3 u 7→ iu ∈ SO(4) π ◦ L = id
iu acts onx ∈ R4 by iu(x) = γ−1(uγ(x)u−1), γ(x) = γµxµ

• Spin(H) = {u ∈ B(H), uu∗=u∗u = id, uC=Cu, uχ=χu,

iu(f) = ρ−1(uρ(f)u−1) ∈ A for all f ∈ A}
U = π(Spin(H)) = C∞(M)⊗ (SU(2)× SU(3)) noU(1)!

• restoreU(1) by central extensionUZ(A) = U(A) ∩ Z(A)
ivu = iu for v ∈ L(UZ(A)), double-valuedness gives correctU(1)



• fluctuated Dirac operatorDA = D + A + CAC−1

A = A∗ =




AL H 0 0
H∗ AR 0 0
0 0 Ac

L 0
0 0 0 Ac

R




AL =
∑

i ρL(bi)[i 6∂, ρL(b′i)] = iγµρL(Wµ)

AR =
∑

i ρR(ai)[i 6∂, ρR(a′i)] = iγµρR(Aµ)

Ac
L =

∑
i ρ

c
L(ai, ci)[i 6∂, ρc

L(a′i, c
′
i)] = iγµρc

L(Aµ, Gµ)

Ac
R =

∑
i ρ

c
R(ai, ci)[i 6∂, ρc

R(a′i, c
′
i)] = iγµρc

R(Aµ, Gµ)

H =
∑

i ρL(bi)(ρL(b′i)M−MρR(a′i))

=




φ1I3 ⊗Mu −φ2I3 ⊗ CKMMd 0
φ2I3 ⊗Mu φ1I3 ⊗ CKMMd 0

0 0 −φ2 ⊗Me

0 0 φ1 ⊗Me






Fermionic action

SF = 〈ψ, DAψ〉 for ψ ∈ H

reproduces Euclidean fermionic action of the standard model



I. Traditional formulation of the standard model

II. Noncommutative geometry

III. Geometry of the standard model

IV. Fluctuations

V. Spectral action



Spectral action principle

• Philosophy [Connes]:

The bosonic action depends only on the spectrum ofDA.

• most general form:S[DA] = tr
(
f
(

D2
A

Λ2

))
(Λ – a scale)

f : R+ → R+, f(x) → 0 sufficiently fast forx →∞

• Laplace transformationtr
(
f
(

D2
A

Λ2

))
=

∫ ∞

0
dt tr

(
e−t

D2
A

Λ2

)
f̃(t)

alternatively:one-loop effective actionfor quantum fermions

coupled to classical gauge fields is proportional to Yang-Mills

action and computable by heat kernel

• heat kernel expansion:

e−tD2
=

∑

0≤k≤n
2

tk−
n
2

∫
dnx

√
det g a2k(D2)︸ ︷︷ ︸

Seeley coefficients

+O(t)



• in n = 4 dimensions:

tr
(
f
(D2

A

Λ2

))
=

1
16π2

∫
d4x

√
det g

×(
Λ4f0a0(D2) + Λ2f2a0(D2) + f4a4(D2) +O(Λ−2)

)

f0 =
∫∞
0 dt tf(t) , f2 =

∫∞
0 dt f(t) , f4 = f(0)

• Seeley coefficients

a0(D2) = tr(1)

a2(D2) = 1
6R tr(1)− tr(E)

a4(D2) = 1
360(5R2 − 2RµνR

µν + 2RµνρσRµνρσ)tr(1)

+ 1
12tr(ΩµνΩµν)− 1

6R tr(E) + 1
2tr(E2)

for D2
A = ∆ + E ,

∆ = −gµν(∇µ∇ν − Γρ
µν∇ρ) , Ωµν = [∇µ,∇ν ]



Result

of elementary but very long calculation and reparametrisation:

S[DA] =
∫

d4x
√

det g

×
(

2Λc
16πG − 1

16πGR + a(5R2 − 8RµνR
µν − 7RµνρσRµνρσ)

+ 1
4g1

2
FµνF

µν + 1
2g2

2
tr(W ∗

µνW
µν) + 1

2g2
3
tr(G∗

µνG
µν)

+1
2(Dµφ)∗(Dµφ) + λ|φ|4 − µ2

2 |φ|2 + 1
12R|φ|2

)

where

Λc = 6f0

f2
Λ2 G = π

2f2
Λ−2 a = f4

960π2

g2
2 = g2

3 = 5
3g2

1 = π2

f4
λ = π2

3f4
µ2 = 2f2

f4
Λ2

• suggestsΛ asgrand unification scale

• one-loop renormalisation group flow toΛSM = mZ leads to

188GeV ≤ mH ≤ 201 GeV



Summary of the achievements

• unification of standard model with gravity at the level of classical

field theories

• all 7 relative signs of the various terms come out correctly for

Euclidean space

• Higgs field is gauge field in discrete direction, Higgs potential is

Yang-Mills Lagrangian for discrete field strength

• understanding whysymmetry group of the standard model cannot

be simple

• strong interactions must couple vectorially, all colours must have

the same mass, whereas weak coupling must be chiral

• predicts vanishing neutrino masses (from Poincaré duality)


