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Minority Game

... originally a simple model for inductive decision making of
agents (El-Farol bar problem)

Interest by

economists

simple model of a market, stylised facts ...

physicists

phase transitions, ergodicity breaking, spin glass problem,

off-equilibrium dynamics

mathematicians

exact solutions
– p. 4/58



Stock market

traders
particles, spins, microscopic degrees of freedom

they observe a price time-series (and other information)
externally and/or internally generated information

based on this they buy/sell
interaction

price is formed based on their actions
macroscopic observable, mean-field

they learn and adapt (some better than others maybe)
dynamics
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Stock market

traders
particles, spins, microscopic degrees of freedom

they observe a price time-series (and other information)
externally and/or internally generated information, history, can be non-Markovian

based on this they buy/sell
decision making (noise ...)

price is formed based on their actions
global interaction, macroscopic observable, mean-field

they learn and adapt (some better than others maybe)
dynamics, update rules, equations of motion
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The model: Minority Game

[Challet, Zhang 1997]

N traders i = 1, . . . , N

given signal µ(t) ∈ {1, . . . , P} at each time-step

here: random external information

then every player has to make a binary trading decision

bi(t) ∈ {−1, 1}

all players in minority are successful, players in majority

unsuccessful

if A(t) is the total bid A(t) =
∑

i bi(t), then payoff for i is

−bi(t)A(t)
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The model: Minority Game

How do players make trading decisions ?

everybody has S trading strategies ~ai,s, s = 1, . . . , S mapping µ

onto a
µ
i ∈ {−1, 1} (buy or sell)

Strategy is a table mapping µ onto binary decision

µ 1 2 3 4 ... P

a
µ
i -1 1 1 -1 ... -1

Given history µ a strategy table tells me to play a
µ
i .
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The model: Minority Game

Consider case S = 2 strategies per player in the following

strategy s = +1
µ 1 2 3 4 ... P

a
µ
i,s=+1 -1 1 1 -1 ... -1

strategy s = −1
µ 1 2 3 4 ... P

a
µ
i,s=−1 1 1 -1 -1 ... 1

Then what this player has to decide at time t is which of the two

tables to use.

Assign scores to each strategy to measure their success.
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The model: Minority Game

aim: to be in the minority

which strategy to use ? The one which has performed best so

far !

to assess performance keep a score for each strategy:

ui,s(t + 1) = ui,s(t) + (−a
µ(t)
i,s A(t))

︸ ︷︷ ︸

minority game payoff

strategies generated randomly before start of the game
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MG dynamics

[Marsili’s slide]
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MG for physicists
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The phenomenology of the basic MG

What are the interesting observables ?

And what are the model parameters ?
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The phenomenology of the basic MG

Model parameters ... just one.

α =
number of values information can take

number of agents
=

P

N

i.e. α high: large information space and/or small market

low α means the opposite: large market and/or small
information space
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Observables

Predictability

H = 1
P

∑P
µ=1 〈A|µ〉2

H > 0 ⇒ 〈A|µ〉 6= 0 statistically predictable

H = 0 ⇒ 〈A|µ〉 = 0 predictability zero

global performance/volatility

σ2 =
〈
A2

〉
= −total gain[Challet, Marsili, Zecchina]

– p. 15/58



Observables

Predictability

H = 1
P

∑P
µ=1 〈A|µ〉2

H > 0 ⇒ 〈A|µ〉 6= 0 statistically predictable

H = 0 ⇒ 〈A|µ〉 = 0 predictability zero

global performance/volatility

σ2 =
〈
A2

〉
= −total gain

Phase transition between a predictable and an unpredictable phase

6
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Ergodicity breaking

10
−1

10
0

10
1

α

0

1

2

σ

tabula rasa start
biased start

non-ergodic,

memory

ergodic

no memory
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Ergodicity breaking

10
−1

10
0
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α

0
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σ

tabula rasa start
biased start

non-ergodic,

memory

ergodic

no memory

Phase transition between a non-ergodic and an ergodic phase

6
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Ergodicity breaking

static susceptibilities of CuMn, field-cooling versus zero-field cooling
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MG as spin glass model

MG shares many features with spin-glass models

HSK =
∑

ij

Jijsisj , J2
ij =

1

N

[Sherrington-Kirkpatrick model, SK 1975]

frustration (not everybody can win)

quenched disorder (random strategy assignments)

mean-field interactions (interaction with ev’body else)
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Remember

S = 2 strategies per player:

si = +1, score ui+
µ 1 2 3 4 ... P

a
µ
i,s=+1 -1 1 1 -1 ... -1

si = −1, score ui−
µ 1 2 3 4 ... P

a
µ
i,s=−1 1 1 -1 -1 ... 1

Then what this player has to decide at time t is which of the two

tables to use.

si(t) = sgn[ui+(t) − ui−(t)]
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Learning dynamics

ui,+(t + 1) = ui,+(t) − a
µ(t)
i,+ A(t)

ui,−(t + 1) = ui,−(t) − a
µ(t)
i,− A(t)

����

total action
HHHj

proposed action

Evolution of score difference (qi = ui+ − ui−):

qi(t + 1) = qi(t) −
[

a
µ(t)
i,+ − a

µ(t)
i,−

]

A(t)
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Learning dynamics
On-line update for score difference (q = u+ − u−):

qi(t + 1) = qi(t) −
[

a
µ(t)
i,+ − a

µ(t)
i,−

]

A(t)

and

A(t) =
∑

j

f(sgn[qj(t)]|strategies of j)

Batch update for score difference (average over µ):

qi(t + 1) = qi(t) −
∑

j

Jijsgn[qj(t)] − hi

quenched disorder, spin glass problem

Jij =
1

P

PX

µ=1

(aµ
i+ − a

µ
i−)

2

(aµ
j+ − a

µ
j−)

2
| {z }

Hebbian

, hi =
1

P

NX

j=1

PX

µ=1

(aµ
i+ − a

µ
i−)

2

(aµ
j+ + a

µ
j−)

2
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Dynamics

qi(t + 1) − qi(t) = −
∑

i

Jijsgn[qj(t)] − hi

but not

qi(t + 1) − qi(t) = −
∑

i

Jijqj(t) − hi = −∂H[q]

∂qi

No gradient-descent. No detailed balance. Still
pseudo-Hamiltonian:

H(s) =
1

2

∑

ij

Jijsisj +
∑

i

hisi
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MG as an anti-Hopfield model

H(s) =
1

2

∑

ij

Jijsisj +
∑

i

hisi, Jij =
1

αN

∑

µ

ξ
µ
i ξ

µ
j

Hopfield model has

H(s) = −1

2

∑

ij

Jijsisj

MG is an ‘unlearning’ game.
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MG for mathematicians
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Generating functional analysis

[Heimel, Coolen PRE 2001]

qi(t + 1) − qi(t) = −
∑

j

Jijsgn[qj(t)] − hi + ϑ(t)
︸︷︷︸

perturbationfield

Dynamical partition function

Z[ψ] =

Z
Dq δ(eq of motion) exp

 
i
X

it

ψi(t)sgn[qi(t)]

!

=

Z
DqDbq exp

0
@
X

it

bqi(t)[qi(t+ 1) − qi(t) +
X

j

Jijsgn[qj(t)] + hi − ϑ(t)]

1
A

× exp

 
i
X

it

ψi(t)sgn[qi(t)]

!

Then path integrals, disorder-average, saddle-point equations ...
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Generating functional analysis

q(t + 1) = q(t) + ϑ(t)−α
∑

t′

[I + G]−1
tt′ sgn[q(t′)] +

√
αη(t)

with noise covariance

< η(t)η(t′) > = [(I + G)−1D(I + GT )−1]tt′

Dtt′ = 1 + Ctt′

Dynamical order parameters:

Ctt′ = < sgn[q(t)]sgn[q(t′)] >, Gtt′ =
∂

∂ϑ(t′)
< sgn[q(t)] >

[Heimel/Coolen PRE 2001]

[Coolen/Heimel J Phys A 2001]

[Coolen J Phys A 2005]
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Basic MG
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Spherical MG
Replace

qi(t + 1) − qi(t) = −
∑

i

Jij sgn[qj(t)]
︸ ︷︷ ︸

Ising

−hi

by
qi(t + 1) − qi(t) = −

∑

j

Jij φj(t)
︸ ︷︷ ︸

continuous

−hi,

with
φi =

qi

λ
,

∑

i

φ2
i = N

[Galla, Coolen, Sherrington J Phys A 2003]

[Galla, Sherrington JSTAT 2005]
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Spherical MG

Z =
∑

{si=±1} exp(−βH) Z =
∫

d~φ δ(~φ 2 − N) exp(−βH)

[Kac, Berlin ‘The Spherical Model of a Ferromagnet’, Phys. Rev. 86, 821-835 (1952)]
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Spherical MG

conventional MG: spherical MG:
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Back to physics
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Batch versus on-line learning

on-line learning: strategy switches allowed at every step

ui,s(` + 1) = ui,s(`) − a
µ(`)
i,s Aµ(`)(`)

︸ ︷︷ ︸

minority game payoff

batch learning: strategy switches allowed only after O(αN)
steps

ui,s(t + 1) = ui,s(t) −
1

αN

αN∑

µ=1

a
µ
i,sA

µ(t)

Does it make a difference ?
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Timing of adaptation

Not in the standard MG:
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Timing of adaptation

But in an MG with anti-correlated strategy assignments it
does:

10
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α
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−1
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on-line batch

[Sherrington, Galla Physica A 2003]

[Galla, Sherrington EPJB 2005]
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Timing of adaptation

Interpolation between on-line and batch:
updates every M time-steps
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The phase transition

χ =
∑

τ

G(τ) =

{

finite ? -> system ergodic
infinite ? -> system non-ergodic

0 10 20 30 40 50
τ
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1

 
0

0.5

1

 
 

α < αc, χ = ∞, H = 0

non-ergodic, perturbations persists, memory

α > αc, χ < ∞, H > 0

ergodic, perturbations decay, no memory
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Picture in phase space

No replica symmetry breaking in standard MG.

[Marsili]
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RSB in modified MGs
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[Galla JSTAT 2005] [Heimel, De Martino, J Phys A 2001]

[De Martino, Marsili J Phys A 2001]

also in El-Farol with heterogeneous resource level [De Sanctis, Galla, in preparation]
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The Physicists view

This is all very nice ...
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The Physicists view

This is all very nice

... but does one see anything like feature of real-market
data in this model ?
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The Physicists view

This is all very nice ...

... but does one see anything like feature of real-market
data in this model ?

Actually ... No
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MG for economists
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Basic stylised facts
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Basic MG

40000 45000 50000
time
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Way out

What are the minimal additions one has to make to make it
more realistic ?

give the agents the choice not to play ->
grand-canonical MGs

give them dynamically evolving capitals

Both things have similar effects: the trading volume is no
longer constant (= N up to now), but can evolve in time.
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General idea

ε

α

�
�

�
�

�
��	

critical region at finite N :
stylised facts+interesting dynamical features

@
@

@
@@I

anomalous phase in th.dyn. limit

first order transition line
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General idea

ε

α

@
@

@
@@I

efficient phase H = 0
��������������������������)
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Stylised facts
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[Challet, Marsili, Zhang 2001]
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MG with dynamical capitals

MG with 2 strategies per player and dynamical capitals:
[Challet, Chessa, Marsili, Zhang (2001)]
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stylised facts,

but only close to/below the phase transition
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MG with dynamical capitals

MG with 2 strategies per player and dynamical capitals:

But no analytical theory.

complicated/tedious:

one has fast-evolving variables (the decisions of the agents)
and slow ones (the capitals)
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Simple MG with dynamical wealth

Simple MG with dynamical capitals:

ci(t + 1) = ci(t) − εci(t)
︸ ︷︷ ︸

investment

a
µ(t)
i

A(t)

V (t)
︸ ︷︷ ︸

MG-type payoff

Similar to a replicator system with random couplings.

[T. Galla, ‘Random replicators with Hebbian interactions’, JSTAT 2005]
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Simple MG with dynamical wealth

One strategy only per player - exact analytical solution:

Transition persists, and wealth → ∞ at transition in the
infinite system
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Simple MG with dynamical wealth

Distribution of returns (re-scaled to unit variance):
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Gaussian far from transition, but fat-tailed near and below.
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Simple MG with dynamical wealth

Distribution of wealth (re-scaled to unit variance):
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below transition ?
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Tobin Tax in MGs

Tax revenue as function of trading fee
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[Bianconi, Galla, Marsili 2006]

[Galla, Zhang in progress]
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Conclusions

MG has attracted attention from physics, mathematics and

economics

physics: spin glass problem with off-equilibrium dynamics

open questions:

solution in non-ergodic region

critical exponents, RG ...

relation to spin-glass models and Hopfield model

also to do: find more realistic extensions which are still

analytically tractable
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