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Abstract.

Stationary distributions of processes are derived that involve a time delay and are
defined by a linear stochastic neutral delay differential equation. The distributions
are Gaussian distributions. The variances of the Gaussian distributions are either
monotonically increasing or decreasing functions of the time delays. The variances
become infinite when fixed points of corresponding deterministic processes become

unstable.
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Neutral delay differential equations have been used to describe various processes
in physics and engineering sciences [1, 2]. For example, transmission lines involving
nonlinear boundary conditions [1], cell growth dynamics [3], propagating pulses in
cardiac tissue [4], and drill-string vibrations [5] have been described by means of
neutral delay differential equations. From a mathematical point of view, neutral
delay differential equations are regarded as a particular class of functional differential
equations [1, 6]. While for deterministic processes described by neutral (and functional)
delay differential equations several helpful results have been derived [1, 2, 6, 7, 8, 9,
10, 11] and for stochastic processes by retarded (but not neutral) delay differential
equations stationary distributions have been obtained [12, 13, 14, 15, 16, 17, 18, 19], for
stochastic processes described by neutral delay differential equations comparatively little
is known. However, stochastic processes play important roles in physics and various
other disciplines. Therefore, there is a need to examine not only deterministic but
stochastic processes in the framework of neutral delay differential equations. Since at
present such a stochastic approach is in its infancy, in what follows, we will examine one
of the most simple but non-trivial neutral delay differential equations at hand: a linear
one which is of first order and involves a point delay.

Let X (t) denote a random variable defined on the real line. Let X (¢) describe a

stochastic processes given by

d

d
X (1) = —aX(t) = b X(t—7) +/QL (1) (1)

for t > 0. Here, I'(t) is a Langevin force with Gaussian characteristic functional [20, 21]
and (') = 0, (I'(¢)T'(¢')) = d(t—1t'), where 6(-) denotes the delta function and (-) denotes
an ensemble averaging. The expression /QT'(¢) describes a fluctuating force or a noise
source. Accordingly, Q > 0 will be referred to as the noise amplitude. In addition, we
assume that for z € [—7,0] we have dX(z)/dz = ¢(z) and X (0) = zy, which fixes the
initial conditions. For b = 0 Eq. (1) describes an Ornstein-Uhlenbeck process [20]. For
b# 0 Eq. (1) describes a non-Markovian stochastic process with memory.

Let us briefly recall what is known for the deterministic dynamics related to Eq.



Letter to the Editor 3
(1). For @ = 0 Eq. (1) has the fixed point X5 = 0. For |b] < 1 the fixed point is
asymptotically stable [1, 2], whereas for |b| > 1 it is unstable [1]. In the context of linear
functional differential equations, one can conclude from the stability of deterministic
processes to the existence of the stationary distributions of the corresponding stochastic
process [12, 16]. If fixed points are asymptotically stable (unstable), then stationary
distributions exist (do not exist). Consequently, for () > 0 the stochastic process given
by Eq. (1) has a stationary distribution for |b| < 1 and does not exhibit a stationary
distribution for |b| > 1.

In what follows, let us consider the case [b| < 1. From Eq. (1) it is clear that
in the stationary case the mean value vanishes. Moreover, since we are dealing with a
linear evolution equation and a fluctuating force I'(¢) that has a Gaussian characteristic
is a

functional, we conclude that the stationary distribution Py(z) = (6(z — X(2))),,

Gaussian distribution. That is, we have

Palo) = e~} ®)

where % denotes the variance of X (t).

In order to compute the variance, we use the autocorrelation method developed
for stochastic delay differential equations of the retarded type [12, 13, 22, 23, 24]. Let
C(z) = (X ()X (t + 2)),, denote the autocorrelation function of X (¢) in the stationary
case. Then the variance is given by 0? = C(0). Using Eq. (1), the symmetry
C(z) = C(—=%), and the fact that (x(¢)['(¢t + 2)) = 0 for z € (0,7) (hint: use method of

steps as in [23]), we obtain

dC(z) _adC(z) B

dC(T — 2)
dz dz b dz (3)

for z > 0. Substituting

C(z) = Asinh (w(z — g)) + B cosh (w(z — %)) (4)

for z > 0 into Eq. (3), we obtain w = a/y/1 —? and A = —\/(1 +b)/(1 —b)B. Next,

we need to determine the parameter B. Multiplying Eq. (1) with X (¢) and averaging
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and multiplying Eq. (1) with bX (f — 7) and averaging and adding both results, we find

alC(0) + bO(7)] = QX (1) + bX(t — 7))L (1)), - (5)
Exploiting Novikov’s theorem, which states that (R(I')T') = (0R/dT") [21, 25], we find

VO (X (t) +bX (t — 7))T'(t)) = Q/2. Consequently, we have the constraint

a[C(0) +bC(7)] = % . (6)

Substituting Eq. (4) into Eq. (6) together with A = —\/(1 +b)/(1 —b)B, we can

determine B. Taking the symmetry C(z) = C(—z) into account, we finally get

0 cosh (w(|z| - %)) — i—tzsinh (w(|z| - %))

s 2a(l +) cosh (£> +14/ 1—_b sinh (£> -
2 1+b 2
In particular, the variance 02 = C(0) reads
wT 1+0b . wT
o 0 cosh (7) + =% sinh (7> 5
2a(1 + b) cosh (g) b (g) '
2 1+5b 2

Let us consider two special cases. For 7 = 0 we have 0 = Q/[2a(1 + b)], which
is the variance of the corresponding Ornstein-Uhlenbeck process. For 7 — oo we
obtain 02 = Q/[2a+/1 — b2|. How does 02 depend on 7 in between these two extremes?

Differentiating Eq. (8) with respect to 7, we obtain

—2
d 5 bQ wT 1—-b . wT
P W [h (55) g (7)] -0

Consequently, we have do?/d7 > 0 for b > 0 and do?/d7 < 0 for b < 0. In other words,

for b > 0 the variance increases monotonically from o? = @Q/[2a(1 + b)] at 7 = 0 to
0? = Q/[2av/1 — b?] for 7 — co. For b < 0 the variance decreases monotonically from
0?2 = Q/[2a(1 — |b))] at T = 0 to 0? = Q/[2a\/1 — b?] for T — oco. Figures 1 and 2
illustrate the behavior of o2 as a function of 7 for b > 0 and b < 0. Both the analytical
solution (8) and results obtained from computer simulations are shown.

In closing our considerations on the stochastic neutral delay differential equation

(1), let us have a look at the situation for b = 1. In the deterministic case (i.e. for
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Insert Figures 1 and 2 about here
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Figure 1. Variance o2 of the stochastic process defined by Eq. (1) as a function of the
time delay 7. Solid line: analytical result (8). Diamonds: numerical results obtained
by solving Eq. (1) numerically using a modification of the Euler forward discretization
scheme for ordinary Langevin equations (single time step At = 0.01; number of
realizations N = 107; Gaussian random numbers via Box-Muller algorithm) [20].
Solid horizontal line: asymptotic value of o2 computed from o2(cc) = Q/[2av/1 — b2].

Parameters: a = 0.5, b= 0.5, @ = 1 (= 0?(00) ~ 1.15).

variance

Figure 2. As in Fig. 1 but for b = —0.5.

@@ = 0) the real parts of the eigenvalues A of the characteristic equation related to
Eq. (1) become arbitrarily close to zero [1]. That is, there does not exist an € > 0
such that Re{\} < —e holds for all eigenvalues. Therefore, the dynamics effectively
behaves like a neutrally stable dynamics characterized by eigenvalues (or Lyapunov

exponents) with vanishing real parts. In the stochastic case (i.e. for @ > 0) we can
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compute from Eq. (8) the variance o in the limits b — +1. To this end, we first note
that for b — £1 we have w — oco. Next, we note that cosh(w7/2) — exp(w7/2)/2
and sinh(w7/2) — exp(w7/2)/2 in the limit w — oo. Substituting these expressions
into Eq. (8), we have b — +1 = 02 — Q/[2a+/1 — b?] which implies that 0 — oo.
That is, the variance tends to infinity at the boundaries of the domain of asymptotic
stability. The reason for this divergence is that stochastic processes related to linear
deterministic systems with neutrally (but not asymptotically) stable fixed points do not
exhibit stationary distributions [12, 16]. In other words, in the limit & — +1 we have
Re{A} — 0 and the fluctuations caused by the driving force I'(¢) occurring in Eq. (1)
cannot be sufficiently suppressed by the restoring force f(X) = —aX (t)—bdX (t—7)/dt.

There are at least two fundamental applications of the linear stochastic model (1).
First, it can be used in the context of linearized stochastic time-delayed differential
equations of the neutral type. Second, it may be used to study nonlinear neutral
stochastic delay differential equations that can be transformed into linear ones.
Both applications have been previously discussed for retarded stochastic time-delayed
differential equations [16, 17]. Let us illustrate these points by some examples taken from
the theory of population dynamics. The evolution of a population is often described
by means of a first order differential equation dN/dt = rN(t)®, where N € [0, 00)
is the size of the population, » > 0 is a parameter, and ® is the so-called regulation
function [26]. For ® = 1 we have exponential growth. For ® = ®(NN) we can model
saturation effects. As pointed out in [27] the regulation function ® can also depend
on the change of the population given by d/N/d¢. Taking a scaling function s(V) into
account (i.e. replacing dN/dt by the more general expression ds(N)/dt), we then obtain
® = ®(N,ds(N)/dt). In addition, we may account for time lags, which finally leads to
® = O[N(t —1),ds(N(t — 72))/dt]. In what follows, we will consider the case 71 = 0
and 75 = 7. Supplementing the deterministic evolution equation dN/dt = rN(t)® with

a fluctuating force [26], we end up with stochastic neutral delay differential equations
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of the form

d d

SN() = IN@OIN(), (N (= 1)+ g(NT() | (10)

where ¢ is a noise amplitude that may depend on the population size. The linearization
of Eq. (10) in the case of a weak additive noise source (e.g. g(N) = /Q with @ small),
yields a linear equation of the form (1). For example, as suggested in [27], let us consider
a generalized logistic model with ® =1 — K '[N + pdN(t —7)/dt], K > 0, and p € R.

That is, we are dealing with

(iN()er(t) [1—%<N(t)+p§tzvt—7>] +/Qr) (1)

Linearization at the stationary value Ny = K that we would obtain for ) = 0, gives us
Eq. (1) with X(¢) = N(t) — K, a = r, and b = pr. Requiring |pr| < 0, the stationary
distribution of X is given by Eq. (2). Consequently, the stationary distribution in terms

of N is given by

Py(N) ~ \/2;7 exp {-%} (12)

with 0? = o%(a = r,b = pr). Note that in driving Eq. (12) we assume that the
noise amplitude @) is small enough such that the probability to find negative N-values
becomes negligible. In line with earlier suggestions on a generalized Gompertz model
[16, 17], we consider in our second example the regulator function & = —[In(N/c) +
pdIn(N(t — 7)/¢)/dt] with ¢ > 0 and g(N) = \/QN. Accordingly, we are concerned

with the stochastic model

0=~ [ron(5E) om0 Gn( M) e yarmo
(13

where the noise term is defined by the Stratonovich calculus [28]. By means of the
variable transformation X (¢) = In(N(t)/c), the generalized Gompertz model (13) can
be transformed into Eq. (1) with a = 7, and b = pr. Using Py (N) = Py(x)|dx/dN]|,

for |pr| < 1 the stationary distribution of Eq. (13) is given by

Py (N) = W%GXP{_W} (14)
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with 02 = o2(a =r,b=pr).

We have derived the stationary distribution of a linear stochastic delay differential
equation of neutral type in terms of a Gaussian distribution. In particular, the variance
of the Gaussian distribution as a function of the time delay has been determined. The
stationary Gaussian distribution exists in the parameter domain for which the fixed point
of the associated deterministic system is asymptotically stable. When the fixed point
becomes unstable, then the variance tends to infinity and the stationary distribution
does no longer exist. Applications in the realm of population dynamics show that to
a certain extent the results obtained for the linear model can also be used to address

nonlinear stochastic models of the neutral type.
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