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Abstract

A data driven characterization of time-delayed stochastic systems is proposed in
terms of linear delay differential equations and two drift parameters. It is shown how
these parameters determine the states of such systems with respect to generalized
phase diagrams. This approach allows for a comparison of systems with different
system parameters as exemplified for two motor control tasks: tracking and force

production.

PACS: 87.19.St, 02.30.Ks, 05.45.Tp

1 Introduction

The growing interdisciplinary interest in dynamical systems that involve time-

delayed feedback loops [1-18] has inspired various attempts to derive evolution
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equations with delays from experimental data [19-23]. While the focus of most
of these studies has been on time-delayed deterministic systems, a data anal-
ysis method designed for Markov diffusion processes [24,25] has recently been
adopted in order to cope with time-delayed non-Markovian systems [26,27]. So
far, emphasize has been placed on the derivation of the complete nonlinear dy-
namics of time-delayed systems. However, in many cases systems exhibit only
small fluctuations around stationary fixed points and, consequently, can be
regarded as linear systems driven by weak fluctuating forces. This important

since ubiquitous special case has not yet been discussed in detail.

In the present study, we apply the data analysis method for time-delayed
systems developed in [26,27] to linear systems and, in doing so, propose a
description of the states of these systems in terms of two dynamical coefficients
(a and b, see Sec. 2). By means of this approach, states can be related to phase
transition lines and states of systems with different system parameters can be
compared. Our general considerations will be illustrated for two motor control

problems, namely, tracking and isometric force production (see Sec. 3).

2 Phase diagrams and states of stochastic time-delayed systems

2.1 Phase diagrams

We consider univariate stochastic systems involving a time delay 7 and ad-
ditive fluctuating forces £. We assume that the state variable X (¢), where ¢
denotes time, is defined on a finite interval Q = [Zuyin, Tmax|- We restrict our
attention to stationary systems exhibiting stationary distribution Py(x) =
(0(x — X (t)),- In line with our introductory remarks, there is a large class
of systems exhibiting small fluctuations around a mean value. In these cases,

we are dealing with unimodal distributions with standard deviations o <



Tmax — Tmin. Let M; denote the mean of Py(z). Then, for the sake of con-
veniency, we shift the state variable X (¢) by M; like X (¢) — z(t) — M; and
thus obtain a random variable centered around zero. Accordingly, the linear
stochastic delay-differential equation of the systems under consideration are

given by

d

X (0) = aX () +bX(t—7) +£(1) - (1)
The deterministic part involves two drift parameters a¢ and b. As shown in the
left panel of Fig. 1, these parameters determine for every 7 the phase diagram

of the time-delayed system.
Insert Fig. 1 about here

Figure 1 (left panel) depicts (in schematic fashion) the phase transition lines
for two delays 7 and 75 with 7, > 77. There are two kinds of phase transition

lines. The straight upper line is independent of 7 and given by

b=—a, (2)

whereas the curved lower line is defined by the parametric equation

a(t) = teot(rt) , b(t) = —t/sin(rt) (3)

with ¢t € (0,7/7) and limy_o(a,b) = (1/7,—1/7); for details see [28-30] and
references therein. Obviously, there is an intersection point of both lines at
(a,b) = (1/7,—1/7). Let us dwell on the meaning of these phase transition

lines for a moment.

For vanishing fluctuations, the phase transition lines correspond to bifurca-
tion lines separating a stable and an unstable parameter regime. Here, stable
(unstable) means that the fixed point z = 0 is a stable (unstable) solution

of the evolution equation & = azx + bx(t — 7) as predicted by linear stabil-



ity analysis. It can be shown that the bifurcation line b = —a describes a
non-oscillatory bifurcation (except for a = £nn/(27) and n = 1,2,3,...),
whereas the parametric bifurcation line describes a Hopf bifurcation with os-
cillation frequency w, = vb? — a® [28-30]. Therefore, (a,b) = (1/7,—1/7)
is a co-dimension two-bifurcation point. In the presence of fluctuations, the
phase transition lines demarcate the boundaries between two phases. In the
stable regime stationary distributions exist, whereas in the unstable parame-
ter regime such distributions do not exist. This results holds for a variety of
fluctuating forces £(t) ranging from Langevin forces to shot noise and Lévy
noise fluctuating forces [31-36]. In sum, the phase transition lines separate
stationary and non-stationary phases. The phase diagram of the time-delayed
stochastic equation (1) may be regarded in the context of conventional phase
diagrams of matter. For example, the right panel of Fig. 1 depicts schemat-
ically the phase diagram of a van der Waals gas. The phase transition lines
(isotherms), which are drawn for two different temperatures 77 and 7, with

T, > T; separate fluid and gas phases.

2.2 Identifying and comparing states

At this stage, we may pose two questions. First, how can the dynamical pa-
rameters a and b be determined from experimental data? Second, how can
systems with different time delays be compared with each other in terms of a

and b?

Identifying states

In general, the drift function A(z,z,) of time-delayed stochastic systems sat-
isfying

d
X () = h(X, X7) + £(2) (4)



with X, = X (¢t — 7) can be estimated by means of

1
h(.T, xT) ~ A_t (X(t + At) - X(t)) ‘X(t):x,X(t—T):w-,— ) (5)

where At should be small (see [26,27] for £(¢) corresponding to a Langevin
force and [37] for the general case). Note that the estimate (5) becomes exact
in the limiting case At — 0. Using Eq. (4), we obtain

dh(0,0)
ox,

, b= (6)

Comparing states

It is well-known that Eq. (1) allows for a scaling procedure to eliminate the
delay 7 to a certain extent. Accordingly, we put ¢ = 7¢* and introduce the new
variables X*(t*) = X (t) and £*(¢t*) = £(t). Then, Eq. (1) can be transformed
into

%X* = @ X))+ X — 1) + €5 (t) (7)

with

a=T1a, b*=1b. (8)

As a result, systems with arbitrary time delays 7 can be mapped to systems
with time delays 7 = 1. They can then be compared in terms of the re-scaled
variables a¢* and b*. In other words, we propose a two-step procedure. First,
the states of time-delayed stochastic system are determined from experimental
data in terms of the parameters a and b using Eqgs. (5) and (6). Second, the
dynamical state variables ¢ and b are re-scaled which gives us the new state
variables a* and b*. Systems can then be compared in terms of their re-scaled

state variables.



3 Applications

3.1 Tracking

3.1.1 Basics

Tracking is a fundamental example of coordinated human movement as well
as of a man-machine system. Both coordinated movements [38-40] and man-
machine systems [41] have attracted the interest of many scientists for various
reasons. Tracking naturally involves time delays in terms of reaction time
delays. In the following, however, we will consider a experimental setup intro-
duced by Tass and colleagues [13,42] in which the time delay can be fixed by
the experimenter and thus be manipulated.

Insert Fig. 2 about here

As shown in Fig. 2, a subject sits in front of a screen on which a moving target
is displayed that oscillates with a frequency €2. The subject is asked to track the
target signal with the hand by performing oscillatory arm movements around
the elbow. Vision of hand and arm is excluded. The hand position is displayed
on the screen. Consequently, the subject needs to match the displayed hand
position with the target signal. In order to manipulate the time delay involved
in this man-machine interaction, the display of the hand position is retarded.
That is, the signal displayed at time ¢ corresponds to the hand position at

time t — 7; for further details see also [13].

Hand position and target signal can be described in terms of the time-dependent
angular variables ¢,(t) and ¢;(t). The state variable of interest is the time-
dependent relative phase defined by A¢(t) = ¢p(t) — ¢4(t). In order to suc-
cessfully perform the tracking task under time-delayed feedback the relative
phase should satisfy A¢ ~ 782. Therefore, in what follows, we study the dy-
namics of the centered state variable X (t) = A¢p — (A¢) ~ A¢(t) — 782. For



tracking movements exhibiting small fluctuations we assume that X (¢) satis-
fies the linear evolution equation (1) (see also [35]). The time delay 7 in Eq.
(1) roughly corresponds to the time delay of the feedback-display mechanism.
Consequently, the parameter b measures the strength (|b|) and impact (sign
of b) of the visual motor control mechanism. In contrast, a is assumed to re-
flect the strength and impact of a non-delayed motor control mechanism, the

so-called proprioceptive control [13,35].

3.1.2 Results

We report here data from three subjects that performed the tracking task
with max{| (A¢) — 7Q|} < 0.1. That is, they successfully participated in the
experiments. The standard deviation was of the order of magnitude of 1071
Recall that we have A¢ € [0, 27]. Consequently, we have 0 < 27. That is, the
performed tracking movements exhibited only relatively small fluctuations.
All subjects performed tracking movements at three different frequencies (2
and under two time delays denoted here 7, (high) and 7, (low) with 7, > 7
(the exact 7-values were subject-dependent in order to account for preferred
tracking frequencies [13]). Data were recorded at 1000 Hz and down sampled
to 100 Hz in order to eliminate digitalization noise. For every condition the
parameters a and b were determined from the experimental data using time-
averaging and Egs. (5) and (6). The re-scaled parameters a* and b* were
computed from Eq. (8). The thus obtained variables a* and b* are shown in
the phase diagram depicted in Fig. 3.
Insert Fig. 3 about here

We appreciate from this figure that the states are closer to the phase transition
line b = —a than to the parametric phase transition line. We conclude that
the motor control systems operate closer to the non-oscillatory bifurcation line
than to the oscillatory bifurcation line. Note that in the context of tracking

movements the two phase transition lines can be interpreted in a specific sense.



The line b = —a means that at the instability point the relative phase grows
exponentially. This exponential increase will stop at large amplitudes when
nonlinearities of the system dynamics become relevant. As a result, we expect
that the relative phase at the non-oscillilatory instability will perform a phase
slipping movement. In contrast, at the Hopf instability line the relative phase
will start to oscillate with the Hopf frequency w,. That is, our analysis reveals
that depending on where the parameters a* and b* cross the phase transition
lines we will observe either phase slipping or phase oscillations, see Fig. 4. In
fact, in previous experiments both kinds of instabilities have been observed
[13].
Insert Fig. 4 about here

Let us now discuss the impact (sign of a*, b*) and strength (|a*|, |b*|) of the
control mechanisms involved in the tracking tasks. From Fig. 3 we see that in
all cases b* < 0 and in all but one case a* > 0. In line with our interpreta-
tion of the parameters a* and b*, we conclude that the visual motor control
system corresponds to a negative feedback loop that yields a stabilization of
the required fixed point, whereas the proprioceptive control de-stabilizes the
system. In order to evaluate the magnitude of the parameters a* and b* we
compare states variables ¢* and b* corresponding to different time delays, see
Fig. 5.
Insert Fig. 5 about here

We see that in all cases |b*| increases with increasing time delay. This means
that the role of the visual motor control system becomes more important for
larger time delays. In contrast, we found no clear tendency for the parameter

a*



3.2 Isometric force production

3.2.1 Basics

When muscles produce forces without changing length the produced force is
called isometric. The study of isometric force production has led to many
insights into force production in general [43,44]. In what follows, we will use
the data analysis method outlined in Sec. 2 in order to identify passive and
active parts of motor control systems involved in isometric force production.

Insert Fig. 6 about here

Isometric forces produced by index fingers can be measures by means of an
experimental setup shown in Fig. 6. Here, a subject is seated in front of a
screen with the right forearm on a pad. The fingertip of the index finger of
the right hand is placed on the surface of a force transducer. A horizontal bar
(dashed line in Fig. 6) indicates the required force. A second horizontal bar
(solid line in Fig. 6) indicates the amount of force that is actually produced
when the participant presses on the sensor. That is, while the first bar is
immobile, the second bar can move in the vertical direction depending on the

force applied to the force transductor.

Let f(t) denote the force produced by a subject. It is useful to relate this force
to the maximum voluntary force (MVF) of the subject such that the relative
force is defined by fr(t) = f(t)/MVEF. That is, fie(t) is the force f(t) ex-
pressed as percentage of the maximal voluntary force. Similarly, the required
force level freq is defined in terms of the MVF (e.g. freq = 0.2 means 20% of the
MVF). The force production task can then be described in terms of the state
variable X (t) = fre1 — freq Which indexes the deviation from the required force.
For force production tasks exhibiting only small deviations, we assume that
X (t) satisfies Eq. (1). This means that we need to interpret the parameters

a,b, 7 of Eq. (1) in the context of isometric force production. Motor control sys-



tems in general typically involve neurophysiological (electromechanical) time
delays 7 in the range of 10...100 ms [15]. The relevant time delay is often de-
termined by means of correlation and cross-correlation functions [15]. In order
to stress our description of the motor control system as a dynamical system,
where changes of state variables are related to the state variables themselves,
we use the cross-correlation function C(7) = <X (t)X(t— 7')> and estimate 7
from the first minimum of C(7). From Eq. (1) we read off that the parameter
b reflects the strength and impact of the active motor control loop involving
the neurophysiological time delay 7. In contrast, the parameter a is related
to an instantaneous response mechanism that acts on time scales at which
active control is impossible. For example, a may reflect passive biomechanical
properties. In short, we assume that a describes passive response properties

involved in isometric force production.

3.2.2 Results

We report here data from seven subjects that participated successfully in the
force production experiment with (frei(t)) & freq- The standard deviations of
X (t) were in the range between 0.01 (low force) and 0.05 (large force). Note
that we have X (¢) € [0,1]. Consequently, there were only small fluctuations
around the required force level and the relation o < 1 holds. In what follows
we focus on three force levels (0.2, 0.4, and 0.6). The delay estimates gave us
7-values in the range of [20,30] ms for five subjects. For the remaining two
subjects we found 7 = 40 ms and 7 = 80 ms. For all subjects and force levels
the parameters a and b were determined and re-scaled. The state variables a*
and b* are depicted in Fig. 7.
Insert Fig. 7 about here

On the average, the states are distributed closer to the phase transition line
b = —a than to the parametric phase transition line. Evaluating the signs
of a* and b*, we found in all cases that b* is negative. In most cases a* was

positive. This result illustrates that stable performance is primarily due to

10



the active motor control loop — which is of course what one would expect.
The passive motor control loop tends to de-stabilize the system. Regarding
the magnitudes of the parameters a* and b*, we focused on the increments
between different force levels. The increment vectors (Aaj, Ab}) for the low
force conditions and (Aaj, Ab}) for the high force conditions were computed
from Aa; = a*(0.4) —a*(0.2), Ab; = b*(0.4) —b*(0.2), Aa}, = a*(0.6) —a*(0.4),
and Ab;, = a*(0.6) —a*(0.4). The results are shown in Fig. 8. We see that in all
cases |b*| increases when the force level increases. This means that the active
control loop becomes more important (or more stiff) when larger forces are
produced. In contrast, there is no clear tendency of the parameter a*.

Insert Fig. 8 about here

4 Conclusions

We studied time-delayed stochastic systems in terms of linearized evolution
equations involving two drift parameters. We showed that these parameter
can be determined from experimental data using a new, two-step data analy-
sis method. We proposed to interpret the two drift parameters as state vari-
ables that characterize time-delayed stochastic systems with respect to phase
diagrams of a particular kind. These phase diagrams, in turn, exhibit non-
oscillatory and oscillatory instability lines that connect non-stationary and
stationary phases. We exploited this phase diagram approach in order to study

human motor control systems.

We reported data from two experiments on tracking and isometric force pro-
duction. In both experiments motor control systems were found to operate
closer to non-oscillatory phase transition lines than to oscillatory ones. There-
fore, we may speculate that the first instabilities that will be observed in these
systems will be non-oscillatory instabilities such as phase slipping in the case

of tracking or a force breakdown in the case of the isometric force production.

11



Furthermore, we found that the active time-delayed motor control mechanisms
gain importance (or become more stiff) when time delays increase (tracking)
and when higher forces have to be produced (force production). In other words,
our analysis illustrates qualitatively that the active time-delayed motor con-
trol feedback loops become more important when motor control tasks become

more complicated — which is a statement that appeals to our intuition.
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Figure captions

Fig. 1: Phase diagrams of a time-delayed stochastic system (left panel) and a
van der Waals gas (right panel).

Fig. 2: Experimental setup of the tracking task experiment with time-delayed

visual feedback.

Fig. 3: Scatterplot of the re-scaled states given in terms of the parameters
a* and b* found in different trials of the tracking experiment. Phase transition

lines are computed from Egs. (2) and (3) for 7 = 1.

Fig. 4: Tllustration of two kinds of instabilities that might occur in tracking
tasks: phase slipping instability (upper bifurcation line) and phase oscillation

instability (lower bifurcation line).

Fig. 5: Comparison of state variables b* for small and large time-delays (lines
connect state variables belong to the same trial). |b*| increases when the time-

delay is increased.

Fig. 6: Experimental setup of the isometric force production experiment.

Fig. 7: Scatterplot of the re-scaled states described by the dynamical param-

eters a* and b* found in different trials of isometric force production.

Fig. 8: Comparison of state variables b* for different force levels of isomet-
ric force production (lines connect state variables belong to the same trial).

|b*| increases when the force level is increased.
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