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Abstract

Using an exactly solvable model — a generalized Hongler model — we study
the impact of time delays on noise-induced transitions to bistability. In particular,
we show that systems described by the generalized Hongler model exhibit three
parameter regimes. They can be monostable, bistable, or nonstationary. Transitions

are induced both by the amplitude of the multiplicative noise and the delay time.

PACS: 05.70.Ln, 05.40.-a, 02.30.Ks

1 Introduction

Open systems that operate far from thermodynamic equilibrium are typically
subjected to noise [1]. In particular, when system parameters fluctuate, sys-

tems with multiplicative noise sources can be found that exhibit noise-induced
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transitions [2]. Such multiplicative noise systems may involve time-delayed
feedback structures. Prominent examples of systems with time-delayed feed-
back loops are biological systems, where time delays naturally arise in terms
of maturation times, on the one hand, and due to the propagation of energy,
matter, and information through the systems, on the other hand (see, e.g.,
[3-13]). Therefore, in general, when dealing with open systems, we need to
take both the impacts of time delays and multiplicative noise sources into ac-
count. In particular, for the human movement system this has been explicitly
illustrated for the pupil light reflex [14], pointing tasks [15], and balancing
movements [16]. In this context, however, exact analytical results can hardly
be found in the literature. Some recent studies have been focused on delay sys-
tems with linear drift terms and multiplicative noise sources [17] and on the
identification of multiplicative noise sources in time-delayed stochastic systems
on the basis of experimental data [18]. In contrast, in the present manuscript,
we study an exactly solvable model that involves a nonlinear drift force, mul-
tiplicative noise, and a time delay. To this end, we will discuss a generalized
Hongler model with time delay. Since the proposed generalized Hongler model
can be solved analytically (at least with respect to the stationary first or-
der statistics), it can be regarded as a benchmark model that might be used
to check numerical algorithms and approximative analytical approaches (e.g.

perturbation theoretical approaches to time-delayed stochastic systems [19]).



2 Hongler model with time delay
2.1 Analytical results

With start off with the Hongler model without delay given by the Langevin
equation [2,20,21]
d V@

3 X0) = 7 tanh(eX) + ST (1)

where X (t) denotes a state variable defined on the phase space 2 = R and
v, ¢, @ > 0 are parameters. Here, I'(¢) describes a Langevin force normalized
to (C()['(¢')) = 6(t — t'), where (---) denotes an ensemble average and §(-)
is the Dirac delta function [22]. The expression /QT'(¢)/ cosh(cX) describes
a multiplicative noise source. Accordingly, we interpret the scalar parameter
@ as a noise amplitude. Next, we derive from Eq. (1) a stochastic model in-
volving a time-delayed feedback. Let X, denote the time-delayed state variable
X, (t) = X (t—7). Furthermore, recall that we have tanh(z) = sinh(z)/ cosh(z).
Then, in line with Eq. (1), we define a Hongler model with delay by means of

the stochastic delay differential equation

d __sinh(cX5;) V@
EX(t) -7 cosh(cX) * cosh(cX)F(t) ' @)

As we will show in the following, this stochastic model is a powerful tool to
study the interplay between impacts of time delays and multiplicative noise
sources because it features delay- and noise-induced transitions, on the one
hand, and can be solved analytically, on the other hand. Note that in what fol-
lows the noise term will be interpreted according to the Stratonovich calculus

[23].



Now, let us examine Eq. (2) in detail. Using the variable transformation

Y(t) = sinh(cX (t)) , (3)

C

we can transform Eq. (2) into the linear stochastic delay differential equation

%Y(t) =—cY(t—7)+/QI(t) . (4)

The stationary probability density Py (y) = (0(y — Y (t))) of Eq. (4) is given

by the Gaussian distribution

Puly) = e~ 2} 6)

involving the variance K = K(Q, T, yc) [24-26]. In particular, for 7 = 0 Eq.
(4) describes an Ornstein-Uhlenbeck process, which implies that [22]

K(Q,0,7¢) = 2% . (6)

For 7 > 0 but 7 < 7. = 7/(27y¢) we have [24-26]

Q 1+sin(yer)

K —
(@, 7,7¢) 2ve  cos(ryer)

(7)

At the critical parameter value 7 = 7, there is a Hopf bifurcation such that
for 7 > 7, there does not exist a stationary distribution. For 7 > 7. the first
moment (Y') oscillates with an exponentially growing amplitude [27] (see also
[28] for the deterministic case). Using the backwards transformation ¥ — X,
the probability distribution Py (z) = Py (y)|dy/dz| is given by

Pst(x) - \/27T—K exp 262K (8)

with K defined by Eq. (7). That is, Py(z) reads explicitly



Py (z) = ce S( ¢ ) cosh(czx) ex — ¢ S( ¢ ) sinh?(cx
St( ) Jﬂ'@[l +sin(’yc7')] ( ) p{ Qc[l +sin(’yc7')] ( )}
(9)

for 7 € [0, 7.). The Hopf bifurcation with respect to the y-coordinate system
carries over to the z-coordinate system. Therefore, for 7 > 7, our model (2)

does not exhibit stationary distributions.

Let us study now the transition to bistability known from the original Hongler
model (1) [2,20], which is a transition from a unimodal distribution centered
at the origin to a bimodal symmetrical distribution. The unimodal distribu-
tion reflects a monostable system. In this context, the state x = 0, which
is most probably state, may be regarded as a non-exited state. The bimodal
symmetrical distribution reflects a bistable system. The states corresponding
to the two peaks of this distribution may be interpreted as excited states.
Consequently, the transition to bistability may be interpreted as a transition
in which a non-excited system becomes an excited system. In order to study
the transition to bistability, we need to determine the extrema of Py(z). From
dPy(x)/dz = 0 and Eq. (8) it follows that

1
— sinh(cz) |1 — —— cosh? . 1
0 = sinh(cz) 2 ¢ (cx) (10)

From Eq. (10) it is clear that for all parameter values there is an extremum at
the origin: x = 0 < sinh(cz) = 0. In addition, there are two extrema satisfying
¢V K = cosh(cz) provided that the inequality cv/K > 1 holds. Finally, we can
show that for cv/K < 1 the extremum at z = 0 corresponds to a maximum of
Py (z), whereas for ¢cv/K > 1 the distribution Py (x) has a minimum at 2 = 0
and maxima at the two symmetric solutions of ¢cv/K = cosh(cz). Therefore,

critical parameters for the transition point are given by

K=1/c. (11)



At this point, we would like to mention that by rescaling the time variable ¢
and the state variable X in Eq. (2), we can eliminate two of the four parameters
of the model. Therefore, it is sufficient to discuss the bifurcation diagram of
Eq. (2) in a two-dimensional parameter space. Accordingly, we will use 7, Q
as free parameters while we assume that v, c assume fixed values. Then, the
constraint K = 1/c? describes a bifurcation line in parameter space given by

@, 7. The bifurcation line is given by Q* = Q*(7) with

K(Q(7),7,7,¢) = 1/c". (12)

Substituting Eq. (7) into Eq. (12), we obtain

Q'(r) = 2y cos(yer)

¢ 1+sin(yer) (13)

We see that the implication 7 = 0 = @* = 0 holds. Furthermore, we have

dQ* 2y
= — 0 14
dr 1 + sin(~yer) < (14)

for 7 € [0, 7). Finally, for 7 — 7. = 7/(2¢) we have Q* — 0. In sum, we arrive
at the bifurcation diagram shown in Fig. 1. From Fig. 1 we read off that the
transition to bistability can be induced by increasing the noise amplitude () or
the delay 7. That is, in contrast to the original Hongler model (1), the delay
Hongler model (2) describes both noise-induced and delay-induced transitions

to bistability.

Fig. 1 about here.

2.2 Numerics

Let us illustrate our results for the case v = ¢ = 1. In order to solve Eq. (2)

numerically, we first transform the Stratonovich stochastic delay differential



equation into the corresponding Ito equation using the relation [23]:

1d
g(@)l = g(@)L +5-—¢*. (15)
AN — 4dz
Stratonovich Ito

Thus, for v = ¢ = 1 we obtain the Ito stochastic delay differential equation

d _sinh(X;) @ sinh(X) V@
&X(t) " cosh(X) Ecosh3(X) * cosh(X) (t) - (16)

Eq. (16) can be discretized using an Euler forward scheme that reads

sinh(X,,_,,) @ sinh(X,) VQAL
cosh(X,) = 2cosh®(X,)| ' cosh(X,) W

X1 = X, — At (17)

where time is measured in single time steps At like ¢ = nAt and the delay is
regarded as a multiple of At like 7 = mA¢t (with m > 0 integer). Here, w,, are

Gaussian distributed random variables with (w,w},) = 0y [22].

2.2.1 Delay- and noise-induced transition

For v = c¢=1 Eq. (9) becomes

cos(T)

_Q[l + sin(7)]

cos(T)

Q[1 + sin(7)]

Py(2;Q,7) = J = cosh () exp{ sinh2(x)} .

(18)

Let us consider a fixed time delay 7 with 7 < 7, = 7/2. Then, the critical
noise amplitude is given by Q* = 2cos(7)/[1 + sin(7)] and can be used to
distinguish between the monostable case ) < @* (non-excited system) and
the bistable case ) > Q* (excited system). Figure 2 shows examples of Py ()
for the monostable case (left panel) and the bistable case (right panel) as
computed from the analytical solution (18) (solid lines) and as obtained by

solving the stochastic evolution equation (17) (diamonds).

Fig. 2 about here.



2.2.2  Hopf bifurcation

Now, let us study the evolution of the first moment M;(t) = (X (¢)). Given a
fixed noise amplitude @), we distinguish between the stationary regime with
T < 7. in which M (t) converges to a stationary value and the nonstationary
regime with 7 > 7, in which M, (¢) exhibits an oscillatory behavior. Figure 3
shows M; computed from Eq. (17) for the stationary case (left panel) and the
nonstationary case (right panel). Note that the amplitude of the oscillation
increases monotonically such that the amplitude of the oscillation shown in

the right panel of Fig. 3 tends to infinity for t — oc.

Fig. 3 about here.

3 Conclusions

We have supplemented the Hongler model with a time-delayed feedback in
order to study the impact of time delays on noise-induced transitions. We
have found that there is a critical bifurcation line @Q*(7) in the parameter
space spanned by the delay 7 and the noise amplitude (). This bifurcation
line separates monostable, non-exited systems from bistable, excited systems.
Transitions take place when the delay or the noise amplitude is increased
beyond this bifurcation line. Moreover, we have demonstrated that in addition
to these stationary parameter regimes there is another parameter regime for
which systems described by the generalized Hongler model are nonstationary.
The nonstationary behavior emerges via a delay-induced Hopf bifurcation. In
sum, the bifurcation diagram is composed of three different parameter regimes.
In particular, when the noise amplitude @ is fixed for < 2v/c and the
delay is gradually increased then there are two kinds of transitions. For small
delays the system is monostable and shows an overall non-excited behavior.

For moderate delays the system is bistable and can most probably found in



excited states. For large delays the system is unstable in the sense that it

exhibits a nonstationary behavior.

The focus of our study was on the first order statistics. Further insights into
the interplay between time delays and noise-induced transitions to bistability
may be derived by studying quantities of second order statistics. In the context
of the Hongler model (1) without delay, second order statistical quantities such
as mean first passage times derived from Green’s functions and eigenvalues of
Fokker-Planck operators have been examined [21]. In principle, similar consid-
erations could be carried out for the time-delayed version of the Hongler model
given by Eq. (2). So far, however, closed forms of Fokker-Planck operators and
the corresponding Green’s functions for stochastic delay differential equations
such as Eq. (2) have not been derived (only non-closed forms of Fokker-Planck
operators are available by now, see e.g. [19,29]). Therefore, future efforts may
be centered around the derivation of closed forms of Fokker-Planck operators
for stochastic systems with time delays. These closed forms could be used to
study properties of second order statistics and Green’s functions, in general,
and mean field passage times and eigenvalues of eigenfunction expansions, in

particular.
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Figure captions:

Fig. 1. Bifurcation diagram of the Hongler model with time-delayed feedback
given by Eq. (2). There are two bifurcation lines separating (i) monostable,
non-excited systems described by unimodal distributions, (ii) bistable, excited
systems that are described by bimodal distributions, and (iii) unstable systems

for which stationary distributions do not exist.

Fig. 2: Illustration of the transition to bistability described by the Hongler
model (2). Panel (a): unimodal distribution computed from the distribution
(18) (solid lines) and the delay Langevin equation (17) (diamonds) for @ <
Q*(7) with Q = 0.2, 7 = 0.5, @*(0.5) = 1.2 (At = 0.01, Py was computed
from N = 10° realizations). Panel (b): bimodal distribution computed from the
distribution (18) (solid lines) and the delay Langevin equation (17) (diamonds)
for Q@ > Q*(7) with Q = 2.0 and 7 = 0.5 (At = 0.01, N = 10°).

Fig. 3: Illustration of the Hopf bifurcation described by the Hongler model
(2). Panel (a): evolution of M;(t) in the stable case for 7 < 7., M;(0) = 0.1,
and parameters as in panel (a) of Fig. 2. Panel (b): evolution of M, (¢) in the
unstable case for 7 > 7., M1(0) = 0.1, and Q@ = 0.2, 7 = 2, 7. = 7/2 ~ 1.57
(At =0.01, N = 10°).
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