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Abstract

We consider systems that operator far from thermal equilibrium and can be de-
scribed by means of nonlinear Fokker-Planck equations using mean field theory.
We determine the stability of stationary states by means of Prigogine’s Lyapunov

functional and self-consistency equations.
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1 Introduction

In various disciplines such as laser physics, chemical physics, biophysics and
economics, Fokker-Planck equations and Langevin equations have been proven
to be useful descriptions of nonequilibrium systems [1-12]. Using mean field
approximations, drift and diffusion coefficients of Fokker-Planck equations
can depend on order parameters. Thus, Fokker-Planck equations can become

nonlinear with respect to probability densities. Such nonlinear Fokker-Planck
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equations can describe continuous and discontinuous nonequilibrium phase
transitions [13-25], reentrant phase transitions [26-31], and pattern formation
[32—-34]. In particular, wetting transitions and surface growth have been suc-
cessfully examined in the context of nonlinear Fokker-Planck equations related

to the Kadar-Parisi-Zhang equation and the Pikovsky-Kurths model [35-38].

Despite the wide applicability of nonlinear Fokker-Planck equations in the
realm of nonequilibrium systems, a stability analysis for systems of this kind
has not been developed so far. Usually, one assumes that the concepts that
have been developed for equilibrium systems carry over to the nonequilibrium
case. More precisely, Shiino among others has given rigorous proof that for
nonlinear Fokker-Planck equations involving free energy functionals the stabil-
ity of stationary distributions can be determined by evaluating appropriately
defined self-consistency equations [39-43]. For nonequilibrium systems such a
proof has not been given so far although self-consistency equations are usually

used to determine the stability of stationary states.

The issue of a stability analysis for nonequilibrium mean field models has been
discussed recently [44]. However, this study was confined to a special case of
a nonlinear Fokker-Planck equation. Moreover, the stability analysis has not
been related to nonequilibrium thermodynamics and Prigogine’s Lyapunov
function L = —§2S5, where S denotes the Boltzmann-Gibbs-Shannon entropy
functional and %S is its second variation. Nonequilibrium thermodynamics
states that systems are stable if the excess entropy production defined by
d#%S/dt is positive. Consequently, the inequality d62S/dt < 0 is regarded as

a necessary condition for instability [45-47].

This manuscript is organized as follows. First, we will prove that self-consistency
equation analysis can be applied to nonequilibrium systems. We will derive a
control parameter \ and show that A\ < 0 is a sufficient condition for insta-

bility. In this context, we will discuss the role of §2S. Next, we will introduce



an alternative control parameter ¢. In this context, we will derive a Lyapunov
functional L = §%2B —§2S and derive sufficient conditions for stable and unsta-

ble stationary states and the emergence of nonequilibrium phase transitions.

2 Stability analysis
2.1 Self-consistency equations

Let X € 2 denote a random variable of an univariate stochastic process
defined on a phase space Q. Let P(x,t;u) describe the probability density of
X for X distributed like u(z) at the initial time ¢ = t,. That is, we have
P(z,t;u) = (§(x — X(t))) and P(z,ty;u) = u(z). We assume that for ¢ > ¢,
the stochastic process under consideration can be described by means of the

Fokker-Planck equation

0 0
EP(a:,t; u) = —%Dl(% (AP + =5 Da(a) P, (1)

which is nonlinear with respect P due to the dependency of D; on the order
parameter m = (A) = [ A(x)P(z,t;u)dz. Eq. (1) involves the probability
current [48]

J = Dy(z, (A))P — %Dg(x)P . 2)

We consider boundary conditions and coefficients D, Dy for which stationary

distributions can be computed from J = 0 and, consequently, are given by

Pule) = o exp { / Md} , 3)

Dg(wl)



where Z denotes a normalization constant. The order parameter (A)_, satisfies

the self-consistency equation

(A)g = R({(A)y) (4)
where R(m) is defined by
A(z) [ Di(a',m) .,
!Dg(x) exp{ Dy’ dx}dm
Rim) = — ] 5)
Q/ D2 (Qj) exp { D2 (;.I) dx'} dz
From Eq. (5) it follows that
dR(m)|  _ 0 D (A)) 4
dm |, “1a0a / Dy (z') dx] : (6)

where C describes the cross-correlation function

C(f, g) = <fg>st - <f>st <g>st = <(f - <f>st)(g - <g>st)>st (7)

for functions f(z) and g(z). In order to apply linear stability analysis, we
consider perturbations € = P — Py with [, €(z) dz = 0 of stationary solutions
Py;. Substituting P = Py + € into Eq. (1) and neglecting nonlinear terms with

respect to €, we obtain the linear evolution equation

0 o
EE(.’Z;, ) -
9 82 0 aDl(xa <A>st)
g D1 (et paDal@) e~ (A5 [P“(x)W] ®

with (A), = [, A(z) e(z,t) dz. Using Eq. (3), Eq. (8) can be written as [49]

) ) 0 € 0 [ () 2P (A)St)] o)

g = I p,p 2 (a) Z
gl = gy Dol p — e, d (A)

st



Let us apply Shiino’s expansion to the perturbation e [40]. That is, we first
write €(z,t) = /Pye'(z,t) with €(z,t) = B(t)VPsyo(z) + x(z,t). Next, we
assume that the function y is orthogonal to the first expansion function ¢(z) =

Py (2)d(x): o x(x,t)v/ Py (x)¢(z) dz = 0. Furthermore, we require that the
relation [, Psi(z)¢(x) dz = 0 holds which implies that [, \/@X(x, t)dz =0
because of [, €(x,t) dz = 0. We define ¢(z) by

0 [ Dia, (A),) o 1D (A),)
@ (0 = 5735~ | By dx‘<a<A> Dy (o) d>

st st

which gives us €(z,t) in form of

Note that in what follows we assume that ¢ # 0. Substituting (11) into the
right hand side of Eq. (9), we obtain

0 OD, (z, (A)g)

) = 8001 - O | Pul)

o +EK), (1)

st

where C' takes the same arguments as in Eq. (6) and E(y) describes terms
that depend on x and vanish for vanishing functions x. Multiplying Eq. (12)

with €/ Py, and performing the integration [, ...dz, one obtains

%! ;fo(;)) dz =-4*(1-0) <D% lé’a(i?)lstDN +E(),  (13)

where E'(x) describes terms containing y that satisfy E'(x) = 0 for x = 0.
Exploiting the orthogonality of x and /Py ¢, we get



@i P ] =m0 (5 ), e

(14)

Note that for perturbations with x(z,%y) = 0 we have d[f, x*(z,t) dz]/dt = 0
at t = to. Consequently, taking Eq. (6) into account for perturbations e(z, t)
that satisfy x =0 and 8 # 0 at t = ¢y, we obtain

d
=5 (¢), 750
B#0,x=0

d [é(x,to)
EQ/ 2P (z)
=—B(to) (1 4B

dm

<A>St> <D% lai%stnsﬁ - (15)

y

Eq. (15) states that if dR({A), /dm > 1 holds then the amplitude || of the
perturbation (11) increases at t = t;. Likewise, the norm of the perturba-
tion ||e|| with ||f]| = [q f?/Ps dx increases at t;. We assume that the spec-
trum of Lyapunov exponents is real valued. That is, we focus on fixed points
P exhibiting a non-oscillatory decay or growth of perturbations. (E.g., if
2 = R we consider stationary solutions P, for which the Fourier expansion
€(z,t) = [la(k,t) cos(kx)+b(k,t)sin(kz)] dk with a(k,t) = a(k,0) exp{A(k)t},
b(k,t) = b(k,0) exp{\'(k)t} involves only real valued exponents A, \'.) For this
fundamental class of fixed points Py the increase of ||¢|| means that Py is an
unstable distribution. In contrast, if Py describes an asymptotically stable
stationary distribution, every perturbation and in particular the perturba-
tion (11) for 5 # 0 and x = 0 vanishes, which implies that the inequality
dR((A),)/dm < 1 holds. We conclude:

d
Py; asymptotically stable = fi(m) 1, (16)
dm <A>st
dR
(m) > 1= Py unstable . (17)
dm (4.,



Thus, we have found rigorous proof that the stability of stationary distribu-

tions can be determined by means of self-consistency equation analysis.
2.2  The role of 6%S

Let us dwell now on the role of §2S with S = — [, PIn P dz. By means of the
relation 625[Py](€) = — [, €2(x) /Py (z) dz, we can write Eq. (15) as

d #S[P)(e) ) ) <D; laii>]> (18)

dt 2

= 5(to) (1 - j—:;

B#0,x=0,t=to

and arrive at the implication

d §2S[Py](e)
dt 2

dR(m)

<0<
dm

B#0,x=0,t=to

> 1= P, unstable . (19)

(A>st

That is, if the excess entropy production described by d§2S/dt is negative for
perturbations of the form (11), then the stationary distribution is an unstable
one. This is in line with the claim made by nonequilibrium thermodynam-
ics that d§?S/dt < 0 is a necessary condition for instability [45-47]. For the
systems described by Eq. (1) with monotonically decaying or growing per-
turbations we can draw the conclusion that the inequality d§?S/dt < 0 is a

sufficient condition for instability.

2.3 Sufficient conditions for stability

From Eq. (12) we have derived the evolution equation (15) that completely
describes the evolution of §(t) at t = ¢y in combination with the control
parameter A = 1 —dR({A),,)/dm. For X\ > 0 the amplitude |3(t)| decreases at
t = to, whereas for A < 0 the amplitude |3(t)| increases at ¢ = t,. From Eq.
(12) we may obtain alternative control parameters. These control parameters

will yield the same result but they may reveal some additional information



about the stability problem. Multiplying Eq. (12) with A(z), integration with

respect to z and partial integration, gives us

05100+ (P A G e - (25T (- s

v

y
(20)
for perturbations with x(z,f) = 0 and § # 0 at ¢t = t,. If there are per-
turbations (11) for which the contribution x(z,t) evolves in a subspace of the
function space which is orthogonal to A(z)v/Pg (and orthogonal to ¢(x)v/Pg;

see the preceding), then we have

/ (2, ) A(z)y/Pa() dz = 0 (21)

for t > ¢y and, consequently, the term ) in Eq. (20) vanishes. Considering
C =dR((A),,)/dm # 0 and using Eq. (6), we obtain

d dA 0D (X, (A4))
#700 = (ix 5 ), (1

dR(m)

dm

] ) ﬂ(to) ’ (22)
(At

which suggests to introduce the control parameter ¢ defined by

_ [ 44 ODI(X, {4),,)
= {5, ), )

Note that 0 has been derived in a previous study for a special case of Eq.
(1) with Dy(z,(A)) x (A(z) — (A)) [44]. Multiplying Eq. (22) with 8 and
comparing the result with Eq. (15) one finds
s 1 <L l oD, r> dR(m)
<¢2>st D2 6 <A>st st dm

~ > <A>st
>0

, (24)

which implies that if the constraint (21) can be satisfied, then the control
parameters 0 and dR({A),)/dm may differ in magnitude but they have the



same sign. An issue that seems to be of interest with regard to the parameter
0 are the conditions under which § becomes relevant at all. For example, on
account of the orthogonality properties of x with respect to ¢, the constraint
(21) is satisfied if there is a function f(z) such that

x

A@)F((A)) = 5 <i) / D l(l”;;’(if‘))st) da' . (25)

In our preceding analysis we have derived sufficient conditions for the insta-
bility of stationary states. Next, we will derive sufficient conditions for stable
stationary states. To this end, we will restrict our attention to systems for

which the matching condition (25) holds. First, we write Eq. (9) as

0 0 0

9 _ 9 0 | € (2, (A)g)
ate(ac,t) = 8:UD2PSt e d

r 8 Do ,
P_st_<A>€/8<A)st Ds (") x] -9

Using Eq. (25), we can write Eq. (26) as

0 0 0
aﬁ(m,t) = a—xDQPsta—x

Using B(z) with f(z) = —d®B/dz* and

we can transform Eq. (27) into

0 0 0 820 Py]
ot = 5P | 5P@sP(y)

e(y, 1) dy . (29)
Linear evolution equations similar to Eq. (29) have been derived for models
of equilibrium systems [44]. By the same reasoning as for these equilibrium

models, one can show that the relations

d2 d 2 2
— 5 < — 0¥ = ¥ =
0 0, =0°U=0&96 0 (30)



hold. Furthermore, generalizing Shiino’s expansion one can show that the con-

trol parameter

- d’B
A=1+Kag(X) — (31)

2
dm (A)

st

with K4 (X) = ([A — (4)4]?),, determines whether §*¥ is a positive or neg-
ative definite function. For stationary solutions with A > 0 one finds that 620

is positive for € # 0 and that L = §?U satisfies the relations

%Lgo,%L:O@L:O@P:Pa,L>O. (32)
For details see [44, Sec. 2.1.4]. In this case, L = §?°¥ = §2B — §S is a local
Lyapunov functional (i.e., a Lyapunov functional for perturbations) and the
stationary solutions correspond to asymptotically stable ones. In contrast, for
a stationary solution Py with A < 0 we have 620U < 0 for ¢ # 0. Since we have
dé?W¥ /dt < 0 the function |6*¥| increases at t = t;, which indicates that Py
describes an unstable stationary distribution. The local Lyapunov functional
520 can, for example, be used to examine the stability of stationary states
of systems exhibiting noise-induced reentrant phase transitions [44]. Finally,
note that using Eqgs. (7) and (25), one can show that Eq. (31) can equivalently
be expressed as A = 1 — dR((4),,)/dm.

3 Conclusions

We have shown that self-consistency equation analysis can be used to deter-
mine the stability of stationary states of nonequilibrium mean field models
described by nonlinear Fokker-Planck equations. In particular, if dé%S’/dt
denotes the change of S with time for perturbations (11) for 8 # 0 and
x = 0, then we can draw the following conclusions. First, if systems occupy

a stable stationary state then they exhibit a positive excess entropy produc-

10



tion dé2S’/dt. Second, stationary states are unstable for which the excess
entropy production d§%S’/dt is negative. Consequently, if the control param-
eter A = 1 — dR({A),,)/dm is changed from A > 0 to A < 0 which implies
that d6%25’/dt changes its sign from dé%25’/dt > 0 to dé2S’/dt < 0, then we
either have a phase transition point at A > 0 or at A = 0. If systems satisfy
a particular matching condition (see Eq. (25) above), we can draw stronger
conclusions. Then, the bifurcation point is at A = 0. Moreover, stationary
states with d6?W¥/dt < 0 (> 0) are stable (unstable), where §°¥ corresponds
to the expression —d2S shifted by a term 6B and B may be interpreted as

some kind of internal energy.
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