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Abstract

A method is proposed to identify deterministic components of stable and unstable
time-delayed systems subjected to noise sources with finite correlation times (col-
ored noise). Both neutral and retarded delay systems are considered. For vanishing
correlation times it is shown how to determine their noise amplitudes by minimizing
appropriately defined Kullback measures. The method is illustrated by applying it
to simulated data from stochastic time-delayed systems representing delay-induced
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1 Introduction

Fluctuations are often observed in physical systems. They are generally known
as thermal noise leading to Brownian motion [1-3] and can be found in various
equilibrium and non-equilibrium systems ranging from magnetic systems [4]
and lasers [5], chemical systems [6,7], and polymer fluids [8,9] to ecological
systems [10-12], neural networks [13—15], financial systems [16], human move-
ment systems [17,18], and other biological systems such as Brownian motors
[19,20]. Fluctuations exhibit many properties that may be beneficial to the
functioning of a system. In general, however, they obscure the on-going de-
terministic processes of a system. Therefore, a crucial issue is to reveal these
deterministic processes by evaluating noisy data. In particular, systems that
are governed by fundamental Newtonian principles, such as human movement
systems and a broad class of mechanical systems, will evolve according to
second-order differential equations of the form mi(t) = f + £(t), where z(t) is
a state variable, m reflects a generalized mass, f is a deterministic force and
&(t) corresponds to a fluctuating force. Equations of the form mi(t) = f+£(%)
can account for both dissipation and fluctuations. As shown in Fig. 1a), the
deterministic force (or drift function) f will depend on the state variable z(t)
and a generalized velocity v(t) = #(¢). In addition, in many instances there
will be a feedback subjected to a time delay 7 [21-26].
Insert Fig. 1 about here

Feedback components may be classified into delayed feedback via stiffness if f
involves the retarded variable x, = z(t — 7) and delayed feedback via friction
if f involves the retarded velocity variable v, = v(t — 7). In view of Fig. 1a),
reconstructing the drift force implies identifying how f depends on z, v, z,,
v;. As a by-product one would also be interested in determining the amplitude
of the fluctuating force £ (see Fig. 1 panel a). In short, we will assume that

the dynamics of a system is given by

mi(t) = f(z, ., v,0;) + (1) , (1)



where the fluctuating force £(¢) is additive, has vanishing mean, and exhibits
a noise amplitude @ (to be defined more precisely below). The objective then
is to determine f and if possible () from noisy data. In contrast to previously
proposed data analysis methods for time-delayed processes [27-31], we will
exploit a data analysis method that is tailored to address stochastic differen-
tial equations such as Langevin equations [32,33], differential equations driven
by Levy noise [34] and stable time-delayed equations involving Langevin noise
[35—-37]. Using this method, we will show that estimates for the drift function
f can be derived in various instances that have not been explored before in
the literature, see Fig. 1 panel (b). For example, neutral delay systems' have
not been addressed so far. Such systems, however, have found various applica-
tions in physics and engineering sciences [23,38-41] because they correspond to
overdamped time-delayed second-order dynamical systems. Similarly, hardly
any efforts have been made to develop data analysis methods for time-delayed
systems that are unstable (or non-stationary) and/or driven by colored noise.
In Sec. 2.1 we will consider overdamped systems that can be described by
neutral time-delayed equations including systems that become non-stationary
due to a delay-induced bifurcation. In Sec. 2.2 we will address second-order
dynamical systems such as self-oscillating systems below and above their Hopf
bifurcation points. In addition, we will apply the method to simulated data
from stochastic time-delayed systems representing postural sway and rolling
motions of ships. In Sec. 2.1 and Sec. 2.2 systems with colored noise and delta-
correlated Langevin noise will be studied. In line with an earlier proposal [42],
the noise amplitudes of Langevin forces will be determined by means of a

Kullback distance measure.

1 E.g. first-order dynamical systems that involve time-delayed velocity variables,
second-order dynamical systems that involve time-delayed acceleration variables,

and so on.



2 Data analysis
2.1 Qverdamped case/neutral time-delayed systems

First, we are interested in the case that the damping force dominates the sys-
tem dynamics. That is, we consider the overdamped case and neglect the accel-
eration term in Eq. (1). We further assume that one can write f(x,z,,%,4,;) =
—% + h(z,x;,&,). The second-order dynamical system (1) then becomes the

first-order dynamical system

&(t) = h(z, z7,37) + £(1). (2)

Since the deterministic force h(-) involves delayed feedback via both stiffness
or friction, Eq. (2) is a stochastic delay differential equation of the neutral
type. We now discuss a data analysis method for this type of equation that
can be used to determine the drift function A(-) from noisy data. Since the
fluctuating force £(¢) is additive and has zero mean, any conditional ensemble
average of £(t) vanishes. Consequently, the conditional ensemble average of

Eq. (2) yields
(2(t)) |a:(t):a;,a;(t—7—):z.,.,q';(t—r):a'cT = h(z,,,i,), (3)
where z, x, and z, can be regarded as coordinates related to the random vari-

ables z(t), x(t — 7) and Z(t — 7), respectively. Using a standard discretization

of the time derivative of z(t), it follows from Eq. (3) that

<x(t + At) — x(t)>

At = h(z, ., %,) + O(At), (4)

w(t):%w(t*’r)::c-r ,i(tf’r) :;ﬁ_,_

where At denotes the sample interval of the data at hand. Obviously, Eq. (4)
reduces to Eq. (3) in the limit At — 0. In the following, we exemplify the



proposed data analysis method for two systems driven separately by colored

noise and a delta-correlated fluctuating force.

Ezxample 1

In our first example we consider a system for which the following a priori
information is available: (i) the deterministic system exhibits a fixed point at
the origin (i.e. zg = 0), (ii) it involves a feedback via a neutral time-delayed
variable £, (iii) the stochastic system involves some kind of additive colored
noise &(t), and (iv) the stochastic system can be described by means of a

first-order dynamical differential equation

#(t) = bz, :) + £(t) (5)

where the drift function A is not known. The fixed point may be stable or
unstable. The objective is to determine in the vicinity of the fixed point the
dependency of h on the feedback variable &, both for the stable and unstable
case and for arbitrary colored noise. That is, we are interested in reconstructing
h(z =0, ,) from the given data. From Eq. (4) it follows that

<:r(t + AAtzj — x(t)>

= h(0, &) (6)

z(t)=0,z(t—7)=2+

holds up to terms of the order At.

We applied Eq. (6) to the data computed from a linear system with h(z,Z,) =
—ax — bz, with a,b > 0 driven by a colored noise Ornstein-Uhlenbeck process
£(t) = —AE(t) + AT(t), where T'(¢) is a Langevin force with (I'(£)T(¢)) =
d(t — t"). The fixed point of this system in the absence of noise is stable for
b < 1 and unstable for b > 1 irrespective of a [23,38]. Consequently, the

first moment (x(t)) of the stochastic system decays to zero for b < 1 and

tends to infinity for b > 1 when time evolves, see Fig. 2 panel (a). Panel



(b) of Fig. 2 shows the drift function h(0, z,) calculated from the conditional
average Eq. (6) for the cases b < 1 and b > 1. Fig. 2 demonstrates that the
data analysis method can deal with colored noise and works well both for the
stable and unstable case. Qualitatively, we could conclude from Fig. 2 that
there is a linear dependency of h on z,. Quantitatively, we determined the
parameter b using linear regression analysis and re-obtained the exact value
with an inaccuracy smaller than 1%.

Insert Fig. 2 about here

Ezample 2

In this example we assume that we are dealing with a linear system

i(t) = —az — bi, +/QL(t) , (7)

where a,b > 0 and I'(¢) denotes the Langevin force again. The parameter @
describes the amplitude of the force fluctuations. The system has a stationary

distribution Py (z) for b < 1 given by [43]

Pst(xaQ): \/211_783{1){_%‘_2}7 (8)

where

o? — Q {\/1 — beosh(wT/2) + V1 + bsinh(wT/Z)} (©)
241 =82 | 1+ beosh(wr/2) + /1 — bsinh(wr/2) [’

is the variance of Py and w = a/v/1 — b2. The objective is to estimate the
unknown parameters a, b, () from the data generated by a linear system of the
form (7). To this end, we first computed the drift parameters a and b — as in
the previous example. Fig. 3a) shows the reconstruction of the drift function
h using Eq. (4). Regression analysis provided us with estimates for a and

b. Subsequently, we computed the distribution P& (z) from the data. We



estimated the noise strength Q by fitting Py (z, Q) to P (z) on the basis of
the previously determined estimates for a and b. To this end, we required that
the difference between P(eXp)( ) and Py(z, Q) becomes minimal as measured

by the Kullback distance measure [44]
P(exp)( )
PP dz 10
/ t { st (.T Q) ( )

Fig. 3b) shows the Kullback distance measure (10) as a function of noise
strength (). We found that the minimum of the Kullback measure corresponds
nicely to the value of () used to produce the data.

Insert Fig. 3 about here

2.2 Time-delayed second-order dynamical systems

Eq. (1) can be normalized by g = f/m and { = £/m. This then gives us

=gz, z,,v,0;)+ ((t) . (11)

In order to determine the drift function g(-) we take the conditional average

<$(t)> |z(t):z,z(t—7):w.r,v(t):v,v(t—T):v., = g(x, Ly U, UT)‘ (12)

We discretize Eq. (12) with respect to time. By means of the velocity one

obtains

:g(xa Zr, U, U'r) + O(At)

<v(t+AAti—v(t)>

z(t)=z,2(t—7) =2, ,0(t)=v,0(t—7)=0,

(13)

Note that Eq. (13) can alternatively be derived by separating Eq. (11) into
the two first-order dynamical subsystems v = g + (, £ = v. Subsequently, we

take the conditional average with respect to the v dynamics.



In general, the time-delayed second-order dynamical system (11) represents a
nonlinear oscillatory system that is subjected to feedback control and involves
all the components shown in Fig. 1. In particular, Eq. (11) can describe noise-

induced oscillations, human movement and ship sway.

Ezample 1: noise-induced oscillations

We now consider the time-delayed second-order dynamical systems of the form

E(t) = gosc(w, ) + K (2, — &) + ((2), (14)

where K > 0 describes the strength of a linear feedback control loop and gy
is a nonlinear function that describes the intrinsic properties of the oscillator.
((t) is a colored noise satisfying an Ornstein-Uhlenbeck process ¢ = —y¢ +
AT'(t). Feedback control via friction as described by the expression K (&, — &)
has been successfully applied to various systems, in particular chaotic ones [45].
In what follows, we assume that K has been determined using the conditional
average (%), ;) —y(y)=0,0(t—r)=v, = K Ur or is known from the experimental setup.
Furthermore, we assume that the oscillator has a fixed point at the origin
(z,v) = (0,0) that might be stable or unstable. The question then arises
how to determine the intrinsic properties of the oscillator as reflected by the
function g.s.. For example, in the case of a van der Pol oscillator we have
Josc(7,%) = (a0 — Bz*)z — wiz with 8 > 0. In this case for a < 0 (a > 0)
we are dealing with an overdamped (self-excited) oscillator. In fact, there has
been considerable interest in such time-delayed van der Pol oscillators. It has
been found that the correlation time of noise-induced oscillations (o < 0) of
the van der Pol oscillator depends significantly on the time delay 7 involved
in the feedback term K (&, — &) [46-48|. In order to reconstruct ges. from
experimental data, it follows from Eqs. (13) and (14) that



+ Kv = gose(,v) + O(AL).  (15)
z(t)=z,v(t)=v,0(t—7)=0

<v(t+AAti—v(t)>

We applied Eq. (15) to the computer generated data of the aforementioned van
der Pol oscillator. The results are shown in Fig. 4. Panel (a) gives an example
for the analysis of the data for an oscillator with a < 0. From the figure
in panel (a) we concluded that g.s. describes an overdamped system with a
stable fixed point at the origin. Moreover, we find that the nonlinearity is of a
parabolic type. By means of least square fits we have determined the oscillator
parameters. Parameter estimates differed from the original parameters by less
than 1%. Panel (b) refers to an oscillator with o > 0. Again, from the figure
in panel (b) we can draw both qualitative and quantitative conclusions. We
concluded that the fixed point is unstable. However, as can be seen in panel
(b), if the distance in the z-v plane from the origin becomes large, then the
system is decelerated. Consequently, we inferred that g, describes a self-
exited limit oscillator. In addition, we found that the parabolic nature of the
nonlinearity was evident and parameter estimates obtained by means of least
square fits were found to be close to the exact values.

Insert Fig. 4 about here

Ezxample 2: human movement

In many cases, human multi-joint movements can be decomposed into time-
independent eigenvectors and time-dependent amplitudes, see Fig. 5a). To
this end, principle component analysis and independent component analysis
methods have been used [49-52]. Since Newtonian mechanics applies to human
movements, the amplitude dynamics often satisfies second-order dynamical

equations. For small amplitudes linearized amplitude equations of the form

i(t) = —yi — wiz — K13, — Koz, + ((2), (16)



have been used, where 7, wy, K; and K, are positive parameters [53,54].
Eq. (16) belongs to the fundamental class of visco-elastic models involving ac-
tive and passive components. Elastic (spring-like) properties of the amplitude
dynamics are accounted for by the terms —w2x and —Ksz, involving a gen-
eralized position variable (feedback via stiffness), whereas viscous properties
are reflected by the terms —vyz and —K;z, involving a generalized velocity
variable (feedback via friction). Moreover, it is usually assumed that the non-
delayed terms —w?x and —y& describe passive components of motor control
systems, whereas the time-delayed terms — Kz, and —Ksz, describe active
components [26,37,54]. The time delay 7 denotes a neuro-physiological delay
that accounts for finite transmission times of the neural signals traveling be-
tween muscles, receptors and cortical regions. For large amplitudes and peak
velocities, nonlinearities become important. In particular, the output of motor
control components is naturally bounded from above. That is, there are maxi-
mum values and saturation thresholds. In such cases the linearized model (16)
has to be generalized. For example, we may consider an amplitude dynamics

given by [55]

LE(t) - g’y(j:) + gO(x) + gl("tT) + g?(mT) + C(t)’ (17)

where ¢, go, g1, g2 are in general nonlinear functions of their arguments (e.g.
we may have g(z) = tanh(z)). The function ((¢) in Eq. (17) denotes colored
noise which will be modeled in terms of an Ornstein-Uhlenbeck process ¢ =
—v(¢ + AL(t). Note that Eq. (17) is an additive nonlinear model because the
components of the motor control system act together in an additive fashion.
In addition, the noise term is additive. Note also that we assume that for small
amplitudes Eq. (17) reduces to Eq. (16), which implies that ¢,(0) = go(0) =
91(0) = g2(0) = 0.

In order to demonstrate how to determine the structure (e.g. the functions

g1 and go) of the active motor control components from movement data, we

10



analyzed the data generated by the tanh movement model proposed in [35,55—~
57] using the central relationship (13). That is, we computed g; and g, from

<v(t+At) - v(t>> = g1(d:) + O(A)

At z(t)=z(t—7)=v(t)=0,0(t—7)=2~
v(t+ At) —v(t
< ( Ai ( )> =g(z;) + O(AL) . (18)
z(t)=0,z(t—7)=z- ,v(t)=v(t—7)=0

Fig. 5b) shows the reconstructions of the drift functions g¢;(&,) and go(z;).
We estimated the feedback parameters K; and K5 involved in the tanh model
using least square fits and found estimation errors smaller than 1%.

Insert Fig. 5 about here

2.2.1 FExample 3: ship rolling

Our last example concerns ships rolling on the waves. Ship motions can be
described by the angle of tilt z(¢) measured with respect to the upright position
of the ship body, see Fig. 6a). The ship body is subjected to gravity and
buoyancy. In addition, there is friction between the ship body and the water.
For small angles of tilt all forces can be linearized such that the ship motions
satisfy the equation of a damped pendulum: Z(t) = —yi(t) — wiz(t), where
v > 0 describes an effective damping constant and wy > 0 the eigenfrequency
of the rolling motions [58,59]. The classical engineering problem is to avoid
underdamped (i.e. oscillatory) rolling motions. In order to avoid this kind
of motions typically the friction constant is increased with the help of roll
tanks. That is, tanks are installed on both sides of the ship body that are
partially filled with water as indicated in Fig. 6a). If the ship body swings to
the right (left), the water is pumped from the left to the right tank (right to
the left tank) such that (in the linearized case) there is an additional friction
term of the form — Kz with K > 0. The pumping mechanism cannot respond
instantaneously which implies that — Kz has to be replaced by —Kz(t — 7),

where 7 is the characteristic time delay of the roll tank device. In sum, ship
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motions under the impact of roll tanks are assumed to satisfy the second-order
delay differential equation Z(t) = —yi(t) — K& (t —7) — wiz(t) for small angles
of tilt. This is the classical Minorsky problem [58,60]. We will consider this
problem in a stochastic framework and show how to analyze data from the

ship rolling related to the stochastic Minorsky model

i(t) = —yd — K, — wiz +/QU(1), (19)

where I'(t) is the Langevin force used in the previous examples and @) is the
noise amplitude of the stochastic driving force. We assume that v and wq
are known from the construction of the ship body or have been determined
experimentally as shown in example 1 of this section (in this context note also
that v and wy can be derived independently using the conditional averages
() sn=v.8-m)=0.2y=0 = =70 A () 3420 4(1-r)=0.0()=2 = —w;z). Then, the
problem that remains to be solved is to determine K and () from ship rolling

data.

In order to determine K and (), we basically proceeded in the same manner
as in example 2 of Sec. 2.1. We first determined the dependency of the drift
function g of #(t — 7) using (%)|;-0.4¢t r)=vrey=0 = 91T = v = 0) =
—Kuv,, see Fig. 6b. Linear regression analysis yielded an estimate of K. Second,
we estimated @) by requiring that the analytical solution Py (v) of the Minorsky
problem (19) approximates best the distribution P (v) obtained from the

data. The analytical solution is [61]

Py(v) = \/2;763@ {_%:2} , (20)

where the variance can be calculated from o2 = a; + as with

a; =

Quin 1+ K nsinh(w; )
2(w? —w3) \ v+ K cosh(w7)

12



_ KQB/2 — (v + K cosh(wi7))ar)

a2 v + K cosh(wsT) ’
g 1 | wpsinh(wp7) — wysinh(wiT)
K w? — w? ’
/T 2 2 _ |2
wl,Z = ry 2 :l: ’Y 4 - wgi (21)

and n = /| K? — +2|. Note that we have here K < v, K? < 72 —4w?. For other
parameter cases similar expressions are available [61]. As shown in Fig. 6¢, we

computed the Kullback measure

plexp) (v)
K :/P(""P) Ind s Wy, 22
(Q) st (U) n Pst(U;Q) v ( )
as a function ). We obtained a minimum of the Kullback measure close to

the exact value () = 1.0 of the original model.

Insert Fig. 6 about here

3 Conclusions

In the present study, we generalized a previous data analysis method [32,35-37]
to deal with stable and unstable colored noise time-delayed systems of the neu-
tral and retarded type. Since both stable and unstable systems can be analyzed
with this proposed method, it represents a useful tool for studying bifurcations
in time-delayed systems. For example, we showed how delay-induced bifurca-
tions leading to unstable systems (see Sec. 2.1) and the onset of self-excited
oscillations in oscillators with non-invasive feedback control (see Sec. 2.2) can
be studied. Since delay systems of both the neutral and retarded type can be
addressed, the proposed method allows one to delineate feedback involving
friction from feedback involving stiffness. In Sec. 2.2 we showed, using simu-
lated data, that it is possible in principle to apply this method to gain insight
into the nature of feedback loops underlying human motor control. In general,

one can say that, because the proposed method can resolve nonlinearities both

13



qualitatively and quantitatively, it can be usefully applied in the life sciences
(e.g. to determine saturation functions and estimate feedback parameters, see
example 2 of Sec. 2.2) as well as the engineering sciences (e.g. in the context of
ship rolling and non-invasively controlled nonlinear oscillators, see examples
1 and 3 of Sec. 2.2). However, when considering or seeking application of the
method to actual experimental data, researchers will be confronted with three
important issues that each require a solution, namely the estimation of time
delays, the determination of time derivatives and the use of averages, which

we will therefore discuss in turn, drawing the article to a close.

In our study we assumed that the relevant time delays are known a priori.
Indeed, in physics and engineering sciences they are likely to be known from
the construction of the devices and machines being studied. In life sciences
estimates for the time delays may be available in the literature. Alternatively,
time delays can be estimated in combination with data analysis methods, in
general, and in combination with our proposed method, in particular. For
example, a so-called optimal time delay can be defined such that it minimizes
the error of the reconstruction with respect to the data [53,54]. This optimal

time delay may be interpreted as an estimate for the actual time delay.

In Sec. 2 we approximated time derivatives by means of first-order differ-
ence formulas (e.g. we used #(t) = [z(t + At) — z(t)]/At + O(At)). Es-
timates of this kind can result in relatively large errors for experimental
data. Therefore, the question arises whether the accuracy can be improved by
using higher-order difference formulas based on polynomial approximations
of time series [62]. Unfortunately, in our context such polynomial approxi-
mations should be regarded as weighted time averaging procedures. Conse-
quently, in general they destroy the correlation properties of time series that
are crucial for our understanding of the underlying stochastic processes. For
example, such polynomial approximations would destroy the Markov prop-

erty of data obtained from an Ornstein-Uhlenbeck process. In sum, the ap-

14



plication of higher-order difference formulas to experimental data that ex-
hibit a high degree of fluctuations needs to be justified by detailed calcu-
lations. For the sake of simplicity, we will discuss such a justification only
for overdamped systems satisfying Eq. (2). Let M(z,z,,,,z) denote the
conditional average M(-,z) = (z(t + 2) = T(O))|stymsa(t—r)=zr i(t—r)=i, With
M (-,0) = 0. Then, Eq. (3) can equivalently be expressed as dM (-,0)/dz = h.
Since M(+, z) is assumed to be a smooth function, we can compute the (right-
hand side) derivative of M by means of various (forward) higher-order dif-
ference formulas. That is, using the smooth function M(-, z) instead of the
stochastic trajectory z(t) we can circumvent the problem that higher-order
interpolation procedures will affect time series correlations. For example, the
first-order difference scheme L(W[M],_o = [M(-, At) — M(-,0)]/At [62] gives
us dM(-,0)/dz = LM[M],—g + O(At) = h and is equivalent to the ap-
proach discussed in Sec. 2.1. That is, we have LM[M],_y = [M(-,At) —
M 0)]/At = (A6) (o(t + A8) = 20|y —saror) e 1rys, I contrast,
for the second-order difference scheme L [M],—g = [-3M(-,0) +4M (-, At) —
M (-, 2At)]/(2At) [62] we obtain dM(-,0)/dz = L& [M],—y + O(A?) = h,
which improves the accuracy of our estimates for time derivatives by one or-
der. For example, for an Ornstein-Uhlenbeck process given by & (t) = —yxz(t)+
AT'(t) we find that M = xz(exp{—vz} — 1) and can explicitly verify that
LO[M],—g = —yx + O(At) and LO[M],_y = —yx + O(At?). Next, we note
that for the conditional average M and any nth-order difference scheme the
following properties hold: (i) M is linear with respect to =, (ii) L(™ is linear
with respect to M, and (iii) we have LW[M + ¢] = L™[M] for arbitrary
real values c. Substituting ¢ = z, one can then show that LM[M(, z)]‘zzo =
<L(") [a:(t)]> (O a(t Tyt (e ), holds. That is, the time derivative i (¢) can
be replaced by any nth-order difference scheme L([z(t)] such that Eq. (4)
becomes <L(") [x(t)]> = h + O(At"). As a result, we

w(t):waw(t_T):w-r ,i(t—T):;&T

have explicitly demonstrated that as far as the derivation of the deterministic

force h is concerned higher-order difference schemes can be applied not only
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on the level of conditional ensemble averages (such as M) but also on the level
of single trial data. By similar reasonings, one can show that this result also

holds for the second-order dynamical systems discussed in Sec. 2.2.

Finally, we would like to mention that in our study (conditional) ensemble
averages have been used. For autonomous systems (i.e. for systems that do
not depend explicitly on time) these ensemble averages can be replaced by
time averages in the stationary case. The situation, however, is fundamentally
different for non-autonomous, non-stationary systems. For example, the pro-
posed data analysis method should be treated with caution in the context of

time-delayed systems that are driven by periodic external driving forces [63].
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Fig. 1. Panel (a): basic components of time-delayed dynamical systems addressed

in this study. Panel (b): solved (!) and unsolved (7) problems. See text for details.
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Fig. 2. Panel (a): first moment (z(¢)) as a function of time for the stable and
unstable case. On the vertical axis different scales were used in order to allow for
a comparison of both cases. Panel (b): reconstruction of the drift function A(0, z,)
of a neutrally delayed linear system. Solid lines represent the exact drift function
h(0,%,;) = —bi, of the system. The points describe the reconstruction of h(0,Z;).
The dashed line describes the instability point b = 1. Using regression analysis
we found b = 0.500 £ 0.004 (stable case) and b = 2.002 £ 0.004 (unstable case).
Parameters: v = 1.0, A = 1.0, a = 0.5, b = 0.5 (stable case) and b = 2.0 (unstable

case).
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Fig. 3. Panel (a): reconstruction of the drift function h with respect to %, (squares)
and with respect to z (circles) for the linear system (7). A regression analysis yielded
the parameter estimates a = 0.198+0.003 and b = 0.504£0.004. Solid lines represent
the exact drift function as used to produce the data (parameters: a = 0.2, b = 0.5
and Q = 0.5). Panel (b): Kullback measure calculated from Eq. (10) using the
estimates ¢ = 0.198, b = 0.504. The minimum of the Kullback measure can be

observed at @ =~ 0.5 in agreement with the noise amplitude () = 0.5 of the original

model.
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Fig. 4. Reconstruction of the drift function gesc(z,v) of a van der Pol system with
delay and colored noise (14) for the overdamped (panel a) and self-excited case
(panel b). Solid lines represent gos. of the two original oscillators. Points describe
reconstructions of gos. from computer generated data. The functions gosc(z,v = 1),
gosc(z,v = 0), and gosc(z,v = —1) are shown (gosc(z,v = 0) is not shown in panel
b). Least square fits were performed on the functions gosc(v = 1) = a — Bz? — Wiz
and gosc(v = —1) = —a+ Bx? — wiz. Parameter estimates thus obtained differed by
less than 1% from the original parameters. Original oscillator parameters: wy = 0.9,
B = 1.0, « = —0.5 for panel (a) and @ = 2.0 for panel (b). Other parameters:
K=1.0,y=1.0and A =1.0.
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Fig. 5. Panel (a): Example of a principle component decomposition: bimodal arm
movements performed in the xy-plane are regarded as superpositions of anti-parallel
and parallel eigenvector movements (labeled PC1 and PC2, respectively). Panel
(b): Drift functions g1(%;) (squares) and go(z;) (circles) of active motor control
components as derived from data of a tanh model for the amplitude dynamics of an
independently controlled eigenvector. Solid lines represent the exact drift functions
of the model. Feedback parameters K; and Ky were estimated from data by means
of least square fits: K3 = 1.004 £ 0.009, K5 = 1.998 + 0.009. Original tanh model:
9+(%) = =&, go = —wiz, g1 (&) = —Ki tanh(i,), go(z,) = — K> tanh(z,). Original
parameters: v = 1.0, wo = 0.9, A = 1.0, K1 = 1.0, Ko = 2.0.
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Fig. 6. Analysis of ship rolling data as obtained from the Minorsky model. Panel
(a): illustration of the Minorsky model (19). Panel (b): reconstruction of the drift
function g with respect to z, (circles). The solid line represents the exact function
g(Zr,z = v = 0) of the model (19). Using regression analysis, we obtained an
estimate for K given by K = 0.998 & 0.003. Panel (c): Kullback measure calculated
from Eq. (22) as a function of @). A minimum of the Kullback measure was observed
at @ = 1.0. Original parameter of the Minorsky model (19) used to produce the
ship rolling data: v = 2.0, wp = 0.8, K = 1.0 and Q = 1.0.
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