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Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system
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The trajectories of propagating self-organized, well-localized solitary patterns~dissipative solitons! in the
form of electrical current filaments are experimentally investigated in a planar quasi-two-dimensional dc
gas-discharge system with high Ohmic semiconductor barrier. Earlier phenomenological models qualitatively
describing the experimental observations in terms of a particle model predict a transition from stationary
filaments to filaments traveling with constant finite speed due to an appropriate change of the system param-
eters. This prediction motivates a search for a drift bifurcation in the experimental system, but a direct
comparison of experimentally recorded trajectories with theoretical predictions is impossible due to the strong
influence of noise. To solve this problem, the filament dynamics is modeled using an appropriate Langevin
equation, allowing for the application of a stochastic data analysis technique to separate deterministic and
stochastic parts of the dynamics. Simulations carried out with the particle model demonstrate the efficiency of
the method. Applying the technique to the experimentally recorded trajectories yields good agreement with the
predictions of the model equations. Finally, the predicted drift bifurcation is found using the semiconductor
resistivity as control parameter. In the resulting bifurcation diagram, the square of the equilibrium velocity
scales linearly with the control parameter.
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I. INTRODUCTION

Solitary structures are commonly observed in a rich va
ety of experiments, systems, and model equations includ
purely conservative systems@1,2# as well as systems with
weak@3# and strong dissipation@4,5#. Due to the particlelike
properties of these solitary structures, their dynamics
interactions are of considerable interest to modern scie
Here we focus on well-localized solitary structures in dis
pative systems, which we refer to as dissipative solito
~DSs!, following Refs.@3,5#. They exist in biological system
as nerve pulses@6#, in chemical systems as concentrati
drops of chemical reagents@7–9#, in optical systems as
bright spots in the transverse plane of propagating la
beams@10,11#, and as current filaments in semiconduc
devices @12–15# as well as in quasi-one- and -two
dimensional ac and dc gas-discharge systems with h
Ohmic and dielectric barriers@5,16–21#. The modeling of
these nonlinear dissipative systems often leads to reac
diffusion equations@4,13,14,22–29#, which, in the case of
optical systems, contain cross-diffusion terms@10,11#.

As well-localized solitary patterns were found as so
tions of reaction-diffusion models, particle concepts ha
been derived starting from the original field equations. T
first successful methods were developed in the contex
inhomogeneity influenced trigger fronts@30#, but similar
methods have also been applied successfully to deal with
propagation and mutual interaction of DSs@26#. In this par-
ticle approach, the dynamics of the DSs is described by
dinary differential equations. A comparison of the results
this reduced dynamical description~in the following called
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reduced dynamics! with the results obtained from the unde
lying field equations yields good agreement if the shape
moving and stationary DSs does not differ significantly@26#.
In particular, both reaction-diffusion equations and cor
sponding reduced dynamics predict a transition from stati
ary DSs to DSs traveling with constant finite velocity for a
appropriate change of the system parameters@31#. These the-
oretical predictions give rise to the question whether t
drift bifurcation can also be observed in experimental s
tems.

As a proper candidate for such a system, we have cho
a planar semiconductor gas-discharge system which u
suitable conditions exhibits DSs in the form of well-localize
current density filaments@17#. This choice is motivated by
the fact that the experimental system was modeled as
electrical equivalent circuit for which two- and three
component reaction-diffusion equations have been set
@22,23,31#. These equations qualitatively take account
many pattern formation phenomena that are observed in
experimental system and can be reduced to a particle m
near the drift bifurcation point@26,32#.

However, a direct comparison of experimental obser
tions to the model predictions is hardly possible as the
perimentally recorded trajectories indicate a strong influe
of noise in the system that the theoretical models do not t
into account. Motivated by the particlelike properties of t
DSs observed in the experiment, a Langevin equation is
up for the description of the experimentally recorded dyna
ics, using only the symmetries of the experimental syste
The validity of the Langevin equation allows the applicati
of a data-driven stochastic analysis method@33,34# which
allows for the separation of the deterministic and stocha
parts of the dynamics. To verify the efficiency of the da
analysis method, the technique is tested on data numeric
generated from the equations of the reduced dynamics w
©2003 The American Physical Society20-1
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are extended to a Langevin equation by adding appropr
noise terms. It turns out that the application of the techniq
with respect to the analysis of the recorded experimental
makes possible a comparison of the deterministic part of
experimentally observed dynamics of DSs to the predicti
of the model equations. In this way we prove that the
duced dynamics is suitable to describe the deterministic
of the dynamics of DSs in the experimental system, and
a drift bifurcation of these DSs can take place.

The article is organized as follows. Section II describ
the experimental system, the applied recording techniq
and the experimentally observed filament trajectories. In S
III we recall some aspects of the modeling of the experim
tal system by reaction-diffusion equations and describe
results of the reduction of these equations to ordinary dif
ential equations in a particle approach. Section IV prese
the stochastic data analysis technique and its adaptatio
the investigated system as well as a reliability test of
method based on numerically generated data. Section V d
with the results of the application of the technique to t
experimental data. Furthermore, the experimentally dete
drift bifurcation is presented in this section. The artic
closes with a summary and an outlook in Sec. VI.

II. THE EXPERIMENT

A. Experimental setup

The experimental system is a version of an electronic
vice initially designed for the high speed conversion of
frared images to the visible@18,35#. Figure 1 shows the basi
experimental setup, consisting of a high Ohmic semicond
tor cathode contacted from one side by a semitranspa
gold layer, a gas gap, and an anode consisting of a glass
coated with a layer of indium tin oxide~ITO!, which is trans-
parent for visible light. The semiconductor is a chromiu
doped gallium arsenide wafer cooled to 100 K. At this te
perature the semiconductor exhibits a linear current-volt
characteristic and a high specific resistivity ofrSC
'105–109 V cm, which can be controlled via the intern

FIG. 1. Schematic representation of the experimental setup.
resistivity of the semiconductor is controlled by variable homo
neous illumination with visible light. The current distribution in th
discharge gap is recorded via the luminescence radiation dist
tion emitted from the discharge gap.
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photo effect by illumination. The gas in which the dischar
takes place is pure nitrogen at a pressure ofp'300 hPa.
While the current-voltage characteristic of the wafer is line
the current-voltage characteristic of the gas is highly non
ear and partly exhibits negative differential resistivity. T
maximum global current of the system is restricted by a
ries resistorR0 of some MV. Since the electrical curren
density in the discharge plane of the described device and
density of the luminescence radiation emitted from the d
charge space locally are proportional to each other ove
large range, the current density distribution can be measu
via the luminescence density distribution through the tra
parent anode~see Fig. 1!. To record the corresponding im
ages, a charge-coupled device~CCD! camera with video fre-
quency was used.

B. Experimental observations

For certain parameters of the gas-discharge system,
organized spatially inhomogeneous luminescence den
patterns are observed in the discharge gap. Among o
things, we also observe well-localized bright solitary spots
the luminescence radiation distribution that are related
self-organized current filaments. These filaments may tra
or stay at rest. In addition, they can interact, and scatter
formation of molecules, and generation and annihilation
frequently observed phenomena@17,36#. To obtain filament
trajectories from the recorded data, first the filaments of e
recorded image are identified using a recursive algorit
searching for connected regions of high luminance. In
second step, the ‘‘center of mass’’ of each filament is de
mined. Finally, a trajectory of each filament is generated
ing a nearest neighbor tracing algorithm. In the present
per, the system parameters are always chosen such that
one filament exists at a given time. In this way, the possi
interaction of filaments is excluded.

While performing the experiment, great care is taken
assure spatial homogeneity of the system since inhomog
ities may affect the filament dynamics. The homogeneity w
controlled in two ways. First, the device was operated in
mode where no spatial patterns occur. Under these co
tions, no indications of possible inhomogeneities in the
minescence distribution were observed. Second, trajecto
of moving filaments were analyzed with respect to their s
tistical behavior. The fact that the relevant statistical char
teristics for different trajectories that in general probe diffe
ent areas of the discharge plane show no signific
deviations also strongly supports the hypothesis that the
tem is rather homogeneously prepared.

Figures 2~a! and 2~b! show trajectories of filaments ob
tained in the described way for two different sets of syst
parameters. The circle indicates the border of the area of
gas-discharge plane defined by the mechanical spacer u
Clearly, this boundary has no measurable influence on
dynamics of the DSs since they tend to be located in
internal circle of diameter 15 mm in the center of the d
charge area. This confinement in the ‘‘active discharge ar
is caused by homogeneously illuminating the high Ohm

he
-

u-
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FIG. 2. Experimentally recorded trajectorie
of moving DSs. The circle of diameterD
530 mm indicates the boundary of the area
the gas-discharge plane defined by the mecha
cal spacer. The active discharge area is sligh
larger than the space filled with trajectories.~a!
Parameters: global voltageU052740 V, semi-
conductor resistivityrSC54.953107 V cm, se-
ries resistance R0520 MV, pressure p
5280 hPa, temperature of semiconductorTSC

5105 K, thickness of semiconductoraSC

51 mm, discharge gap widthd5250 mm, expo-
sure timetexp50.02 s, recording frequencyf rep

550 Hz, observed global currentI 546 mA.
~b! Parameters: U053600 V, rSC52.02
3106 V cm, R0510 MV, p5282 hPa, d
5550 mm, all other parameters as in~a!, ob-
served global currentI 5116 mA.
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semiconductor electrode, generating a circular shaped ar
defined specific resistivity.

Both trajectories indicate a strong influence of noise in
system as the direction of motion changes inside the ac
area in spite of the homogeneous preparation of the sys
The fluctuations might be related to noise in the semicond
tor ~generation and recombination, 1/f noise!, thermal fluc-
tuations in the gas, or noisy processes of charge transp
tion through the semiconductor-gas interface@37#. However,
a comparison of Figs. 2~a! and 2~b! shows that in~a! the
trajectories are somewhat smoother than in~b!. This is re-
flected by the fact that the direction of motion in~b! changes
significantly more frequently than in~a!. Since from theoret-
ical considerations one may expect a nontrivial determini
part to the dynamics of the DSs, the difference of the beh
ior of the trajectories of~a! with respect to~b! may be attrib-
uted to a difference in this part of the dynamics.

III. A QUALITATIVE MODEL FOR THE
EXPERIMENTAL SYSTEM

A. The three-component reaction-diffusion model

To interpret the pattern formation in the experimental d
vice, we recall that for such systems a phenomenolog
two-component and a three-component qualitative activa
inhibitor reaction-diffusion model have been proposed on
basis of an electric equivalent circuit@23,31,38–40#. In these
models, the activating component is related to the avalan
multiplication of charge carriers in the discharge gap, wh
the voltage drop at the semiconductor wafer takes the rol
one inhibitor. The two-component version of the reactio
diffusion model permits a qualitative understanding of t
formation of many stationary patterns, e.g., Turing structu
05622
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@29,41–45# and stationary DSs@5,22,38,23,44# and their
bound states@32# in planar dc gas-discharge systems. Simi
models have also been investigated in various other fie
@27–29#. In particular, we mention the work@46,47#, in
which the authors investigated moving DSs in more than
spatial dimension, showing that a single moving DS can
stabilized using a global feedback term. However, as d
cussed in Refs.@26,40#, the global feedback term is not su
ficient to stabilize two distinct DSs. It has also been sho
analytically that a moving two-dimensional DS exists,
principle, in a delicate limit case of the standard FitzHug
Nagumo model@48#. However, this result has not been co
firmed by numerical simulations. The difficulty of describin
the motion of more than one DS in two- and thre
dimensional space can easily be overcome by introducin
second inhibiting component phenomenologically, so that
description of multiple stable moving DSs becomes poss
without a change of the fundamental dynamical princip
@26,31,40,49#. In the context of planar dc gas-discharge sy
tems, the second inhibitor component might be related to
voltage drop in the gas region close to one of the electro
@50# or to the influence of surface charges at t
semiconductor-gas interface. Therefore, in the present an
sis we apply the following three-component reactio
diffusion system:

u̇5DuDu1lu2u32k3v2k4w1k1 ,

t v̇5DvDv1u2v, ~1!

uẇ5DwDw1u2w.
0-3
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BÖDEKER et al. PHYSICAL REVIEW E 67, 056220 ~2003!
Here, u(r,t), v(r,t), and w(r,t) are elements ofC2(V
3R), whereV is a finite subset ofR2, andDu , Dv , Dw , l,
t, u, k1 , k3, andk4 are real constants, which are positiv
except fork1. In the parameter limitDv→0 andu→0, the
system ~1! reduces to a two-component reaction-diffusi
system with local feedback term due to the fast inhibitorw.
For this parameter limit and concerning stationary DSs,
shape of the slow inhibitorv is identical with the shape o
the activatoru, and it can be proved@26,31# that a drift
bifurcation from stationary to moving DSs occurs if the tim
constantt of the slow inhibitorv is increased above th
critical thresholdtc51/k3.

The weak point of the model of Eqs.~1! is, first of all, that
it is not possible to identify the componentw in the experi-
mental system in an unambiguous way. The same prob
exists for some of the parameters. We also remark that
experimental setup contains a series resistorR0 ~see Fig. 1!
that should lead to global inhibition via an integral term
the first line of Eqs.~1!. However, this term has been elim
nated to simplify numerical calculations:

k182
k2

iVi EV
udV→k15const ~2!

if the integral term is approximately constant. In contrast
the mentioned drawbacks of Eqs.~1! to describe the pattern
formation in the experimental gas-discharge system,
amazing fact is that a large variety of phenomena observe
the experimental system can also be found in the behavio
the solutions of Eqs.~1!. Among these phenomena we fin
the formation of various patterns like periodic stripes, he
agonal arrangements, spirals, target patterns, and DSs
the last, phenomena like generation, annihilation, scatter
formation of molecules, etc., are observed both in the exp
ment and in the mathematical equations. Also, the Tur
bifurcation and the subcritical nature of bifurcations to
creasing numbers of DSs can be observed in the experim
and the model equations. Some of the phenomena were
dicted from the model of Eqs.~1! and were later found in the
experiment, while other phenomena were first detected
perimentally and could later be identified in Eqs.~1!. From
these qualitative successes of the model, we draw the
clusion that strong ties exist between Eqs.~1! and more spe-
cific model equations for the experimental system based
the momentum development of the Boltzmann equation, e
in the form of a drift-diffusion approximation similar to th
set of equations applied to describe pattern formation in
nar ac gas-discharge systems@51#. From these consideration
we reason that using Eqs.~1! for a qualitative description o
patterns and their bifurcations in dc gas-discharge syst
with high Ohmic barriers has some justification.

B. The reduced dynamical system

Close to the point of the drift bifurcation, the dynamics
DSs as solutions of the field equations~1! can be reduced to
ordinary differential equations by projecting the system o
its relevant modes. The drift of the DS in the described
rameter limit is induced by the so-calledpropagator mode,
which corresponds to the displacement between the activ
05622
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and the slow inhibitor distribution of the individual DS
@26,30#. In the reduced system, the direction of motion a
the velocity of the movement are given by the amplitude
propagator modea5a(t) which, for a single soliton, is con
nected to the positionp5p(t) of the DS by the following
relations~called the reduced dynamics!:

ṗ5k3a, ~3!

~4!

The angular brackets denote averaging over the whole
main. The shape factorQ can be computed from the activato
distribution ū of a stationary DS solution for a given set o
system parameters. If several DSs are interacting, Eqs~3!
and ~4! have to be solved for every DS, and each equat
must be supplemented by an interaction termF(upi2pj u)(pi
2pj ) for each interacting pair of DSs at positionspi andpj .
This interaction term depends on the distance between
interacting DSs and, like the shape factorQ, can be com-
puted from a stationary DS solution.

From Eq.~3! it can be seen that for a single noninteracti
DS, the amplitude of the propagator modea is proportional
to the velocity ṗ. In addition, Eq. ~4! shows that fort
<1/k3 only stationary solutions withuṗu50 exist, whereas
for t.1/k3 this solution becomes unstable and a stable
lution moving with the intrinsic velocity

uṗu5v05k3
3/2At21/k3

Q
~5!

appears@26,31#. A comparison of this result with solutions o
the field equations~1! in two- and three-dimensional system
shows good agreement@31,49#. We note that the reduce
dynamics of a single DS@Eqs.~3! and~4!# can be written in
terms of a single ordinary differential equation of seco
order as

p̈5k3~k3t21!ṗ2
Q

k3
uṗu2ṗ, ~6!

formally describing the dynamics of a unit mass particle t
can undergo a bifurcation from a stationary state to a mov
state with dynamically stabilized intrinsic velocity when th
‘‘friction’’ k3(k3t21) changes sign. The nature of this b
furcation corresponds to the normal form of a drift bifurc
tion, which is commonly observed in synergetic syste
with continuous symmetries@30,52–54#.

In contrast to the deterministic dynamics described
Eqs.~1!, ~3!, and~4!, we observe that in the experiment th
dynamics of DSs is strongly influenced by stochastic fluct
tions, which make a direct comparison of the experimen
findings with predictions of the above equations impossib
Therefore we choose for the description of the experime
recordings an appropriate stochastic ansatz as a basis
data analysis technique discussed in the next section.
0-4
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FIG. 3. Illustration of the stochastic data analysis in one dimension. A short trajectoryq(t) with superimposed deterministic an
stochastic dynamics is shown. The trajectory is known at discrete points of timet j and therefore represents a time seriesqj5q(t j ). The
differenceDqj5(qj 112qj ) of eachqj from its successorqj 11 is visualized by a vector of appropriate length. In order to determine

deterministic part of the dynamics, the interval@qmin ,qmax# is divided into three binsBi , i 51,2,3, with centerq̃i and of widthDq. In this
diagram the averaging algorithm is visualized for binB1, where all differencesDqj with qjPB1 ~dark vectors! are summed up and divide

by their numberN155. The result is the approximated deterministic part of the dynamics atq̃1 multiplied by the time intervalDt.
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goal of this is to make available a method that permits se
ration of the deterministic and stochastic part of the dyna
ics of the experimentally observed DSs, allowing a comp
son with the model equations.

IV. STOCHASTIC DATA ANALYSIS

A. General introduction to stochastic data analysis

A wide and important class of stochastic dynamical s
tems are the continuous Markovian systems inn dimensions
which are governed by the Langevin equation

d

dt
qi~ t !5hi~$qk~ t !%,t !1gi j ~$qk~ t !%,t !G j~ t !, i 51, . . . ,n,

~7!

consisting of a deterministic and a stochastic part for a se
n stochastic variables$qk(t)%, k51, . . . ,n. The functionh
describes the deterministic drift whereas the stochastic pa
expressed by the second term, which is a product of
matrix of noise amplitudesgO(q,t)5$gi j (q,t)% and a vectorG
of n fluctuating Langevin forces. These forces are usua
assumed to bed-correlated Gaussian-distributed noise forc
with vanishing mean:

^G i~ t !&50, i 51, . . . ,n, ~8!

^G i~ t !G j~ t8!&52d i j d~ t2t8!, i , j 51, . . . ,n. ~9!

Here, the angular brackets denote the ensemble ave
Equation ~9! characterizes the fluctuations as white noi
Under these conditions, the following relations have be
proved in a strict mathematical way@55,56#, using Stra-
tonovich’s definition for stochastic integrals@57#:

hi~q!1gk j~q!
]

]qk
gi j ~q!

5 lim
Dt→0

1

Dt
^qi8~ t1Dt !2qi8~ t !&uq8(t)5q , ~10!
05622
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gik~q!gjk~q!5
1

2
lim

Dt→0

1

Dt
^@qi8~ t1Dt !2qi8~ t !#@qj8~ t1Dt !

2qj8~ t !#T&uq8(t)5q , ~11!

if q8(t) is a solution of Eq.~7!. For the practical data analysi
it is assumed that Eqs.~10! and~11! stay approximately valid
for finite Dt, if Dt is smaller than the characteristic tim
scale of the system dynamics@33,34#. Here the ensemble
average is replaced by the average over all timest5t i of the
time series for whichq8(t i)'q with t i5t01 iDt. An illus-
trative example of this noise filtering technique for the on
dimensional case is given in the following subsection.

B. Illustration of the stochastic data analysis technique

To illustrate the technique presented in the last sectio
simple example has been considered. Figure 3 shows
one-dimensional trajectory of a dynamic variab
q(t)e@mintq(t),maxtq(t)#5@qmin,qmax#,R. A stroboscopic
view onto the trajectory at equally spaced points of timet j
5t01 j Dt, j 50, . . . ,10 yields a time seriesqjªq(t j ). A
discretization is chosen such that the interval@qmin ,qmax# is
divided into three nonoverlapping subsetsBi5@ q̃i2Dq/2,q̃i

1Dq/2@ for i 50,1 and B25@ q̃22Dq/2,q̃21Dq/2#, with
equal widthDq and centerq̃i . In the following these subset
Bi are calledbins.

The analysis algorithm now works as follows. Each binBi

is assigned a scalarq̂i50 and a counterNi50. The algo-
rithm assigns each elementqj of the time series to its corre
sponding binBi ~i.e., qjPBi), increases the counterNi by 1,
and adds (qj 112qj ) to q̂i . After all elementsqj of the time
series have been assigned to a bin, the deterministic pa
the dynamics is computed by dividing the valueq̂i of each
bin Bi by its counting rateNi and the time discretizationDt.

This algorithm is visualized in Fig. 3, where for eac
element of the time seriesqj the difference (qj 112qj ) is
symbolized by a vector of appropriate length. The vect
starting in binB1 are marked black, whereas all other vecto
0-5
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BÖDEKER et al. PHYSICAL REVIEW E 67, 056220 ~2003!
are shown in gray. In accordance with the averaging al
rithm discussed, all black vectors are assigned to binB1,
added, and divided by their numberN1. If the noise ampli-
tude is independent ofq @derivatives drop out of Eq.~10!#,
the deterministic part of the dynamics inq̃1 is approximately
given by

h~ q̃1!'
^qj 112qj&uqj PB1

Dt
, ~12!

if the corresponding counting rateN1 is high enough and the
time discretizationDt is small compared to the time scale
the deterministic dynamics.

C. Adaptation to the experimental system

In a classical particle approach for a conservative sys
one would assume that the dynamical variables for the
tion of a single particle are the two-dimensional spatial
ordinates of its center of mass, denoted byp(t)
5„px(t),py(t)…

T. In such a system, the dynamics can be
scribed by an equation of the form

p̈~ t !5f„p~ t !…. ~13!

As the gas-discharge system is highly dissipative, additio
terms for fluctuation and friction have to be added:

p̈~ t !5f„p~ t !…1h„p~ t !,ṗ~ t !…1R„p~ t !,ṗ~ t !…G„p~ t !,t….
~14!

Here h describes acceleration due to friction and inter
degrees of freedom, whereasRG includes all forms of fluc-
tuation asR represents the matrix of noise amplitudes. In t
following, ṗ will be denoted byv5„vx(t),vy(t)…

T. The ho-
mogeneous preparation of the discharge area and other
sures provide translational and rotational invariance; the
fore h, R, andG do not depend onp, andf[0 . This yields
the equation

v̇5h~v !1R„v~ t !…G~ t !. ~15!

In order to apply the analysis technique described abo
Eqs.~8! and~9! have to be satisfied. Equation~8! can always
be satisfied by introducing an offset inh. Equation~9! is
approximately satisfied as long as the correlation of the n
of the systems decays on a smaller time scale than the c
acteristic time scale of the dynamics investigated.

An experimental determination ofR by applying Eq.~11!
to the two-dimensional experimental system described
Eq. ~15! yields velocity independent fluctuations, i.e.,R(v)
5R5const. This allows a determination of the determinis
part of the experimentally observed dynamics using Eq.~10!,
showing thath features radial symmetry with respect tov.
This symmetry can also be derived from the O~2! symmetry
of the system if the finite size of the system is neglect
Introducing h(v)5hv(v)ev with v5uvu and ev5v/v, Eq.
~15! can therefore be rewritten as

v̇5hv~v !ev1RG~ t !. ~16!
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Unfortunately, the number of experimentally available da
points for the described analysis is limited, resulting in
rather unsatisfying resolution of the calculated determinis
part h(v). This problem can be overcome by taking in
consideration the radial symmetry ofh(v), which allows a
reduction of the degrees of freedom by one dimension,
sulting in much better statistics and therefore providing
major step toward the analysis of experimentally detec
trajectories of particles in the original two-dimension
system. According to the rotational symmetry one m
rewrite Eq. ~16! in polar coordinates, introducingv
5(v cosw,v sinw)T andG5(Gx ,Gy)

T:

S v̇

ẇ
D 5S hv~v !

0 D 1S R cosw R sinw

2
R

v
sinw

R

v
coswD S Gx

Gy
D . ~17!

Note that Eq.~17! is interpreted according to the Stratono
ich calculus. It can be proved~see the Appendix! that

hv~v !1
R2~v !

v
'

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)'v ~18!

if v8(t) is a solution of Eq.~17!. Alternatively,hv(v) can be
calculated directly fromv8(t) by applying the following pro-
jection ~for proof see the Appendix!:

hv~v !'
1

Dt K @v8~ t1Dt !2v8~ t !#•v8~ t !

v8~ t !
L U

v8(t)'v

.

~19!

In Eqs. ~18! and ~19!, the bins introduced in the one
dimensional example take the form of circular rings arou
the origin. Compared with the two-dimensional averagi
process, the counting rate in each bin is greatly increa
increasing the reliability of the calculated results.

D. Efficiency test of the analysis technique on numerically
generated data

Although the validity of Eqs.~18! and~19! can be proved
in an exact mathematical way~see the Appendix!, no exact
information is given on the effectiveness of the techniq
when using a finite number of input data points. In order
guarantee the efficiency of the technique, suitable Lange
equations should be solved numerically and the soluti
should be analyzed with the technique~19! discussed above
The resulthv(v) of this analysis can then be compared w
the known deterministic term of the numerically solve
Langevin equation, providing an appropriate test for the d
analysis technique.

As a promising candidate for this comparison, the redu
dynamics~6! of a single DS in the three-component reactio
diffusion system~1! have been chosen. It can be seen t
Eq. ~6! can easily be extended to a Langevin equation
adding a noise term satisfying Eqs.~8! and ~9!:
0-6
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FIG. 4. Numerically calculated trajectories a
a solution of the noise-extended reduced dyna
ics ~20!. ~a! Trajectory of a DS above the drif

bifurcation point (t53.8.tc53.3̄). Parameters:
k350.3, Dt50.05, R5331024k3 , Q51950,
200 000 time steps.~b! Trajectory of a DS below

the drift bifurcation point (t52.87,tc53.3̄).
All other parameters are as in~a!.
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p̈5k3~k3t21!ṗ2
Q

k3
uṗu2ṗ1RG. ~20!

This equation features rotational symmetry~16! with respect
to ṗ5v, allowing the application of Eq.~19!. For the nu-
merical simulation, the following recursive algorithm h
been used@56#:

vn115vn1DtS k3~k3t21!vn2
Q

k3
vn

2vnD1RADtwn .

~21!

Here Dt is the time step width andwn5(wn,x ,wn,y)
T is a

vector of Gaussian-distributed random numbers satisfy
^wn,i&50 and ^wn,iwn8, j&52d i j dnn8 , with i , j 5x,y. The
random numbers are generated from an equidistribu
~pseudo!random numberr n with 0<r n,1 and^r n&5 1

2 via
@56#

wn,i5A24

M (
n51

M S r n2
1

2D , ~22!

where M is a large integer~in the simulation,M520 has
been used!. As a starting point for the simulation of the nois
influenced DS dynamics according to Eq.~20!, the following
set of parameters of the three-component reaction-diffus
system~1! was chosen, as introduced in the context of m
ecule formation processes@26,58#:

Du51.131024, Dv50, Dw59.6431024,

l51.01, k1520.1, k350.3, k451, u50. ~23!

These parameters provide stable DS solutions in the th
component reaction-diffusion system and yield for the
duced dynamics a shape factor ofQ51950. The reduced
dynamics predicts for this choice of parameters a superc
cal bifurcation from stationary to moving DSs at the bifu
cation pointtc53.3̄.

Figure 4 shows the numerically calculated trajectory
~a! an intrinsically moving DS (t53.8.tc) and ~b! a sta-
tionary DS (t52.87,tc) under the influence of noise with
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factor R5331024k3. Note the striking qualitative similari-
ties of the numerically generated and experimentally
corded trajectories~Fig. 2!.

In order to test the discussed data analysis technique
took the trajectory of the numerically calculated examples
raw data, calculated the velocities from the spatial coor
nates in lowest order, and analyzed the dynamics with
discussed technique. The result is depicted in Figs. 5~a! and
6~a!, where the crosses represent the deterministic part of
acceleration as a function of the particle velocity calcula
using Eq.~19!, and the dotted curve represents the freque
polygon of the counting rateNi of the corresponding bins. As
in every statistic analysis, the reliability of the result i
creases with the counting rate. As a rule of thumb, the cou
ing rate of the bins must at least take a value between 10
20 to consider the corresponding result as reliable.1

It can be seen that as long as the counting rate is h
enough, the result of the data analysis technique appr
mates quite well the gray curve representing the theoret
deterministic part of the dynamics~20! used to calculate the
raw data for the time series. The intersection points of
theoretical curve with the abscissa mark the intrinsic veloc
v0 of the DS for the chosen system parameters. This velo
can be determined very well by the data analysis techniq
Therefore we conclude that the data analysis techniqu
reliable and can be used for the analysis of experiment
observed two-dimensional trajectories of noninteracting D

V. APPLICATION OF THE STOCHASTIC DATA ANALYSIS
TO THE EXPERIMENT

A. The deterministic dynamics of experimentally observed
dissipative solitons

Due to the qualitative similarity of the experimentally r
corded trajectories in Fig. 2 to their numerically genera

1Note that the distribution of the counting rate is not identical w
the distributionPst given by the stationary solution of the Fokke
Planck equation belonging to the Langevin equation~16!. The dif-
ference results from the nonlinear transformation of infinitesim
area elements from Cartesian to polar coordinates,

**dvxdvy5**vdvdw52p*vdv, ~24!

which has to be taken into account for the calculation ofPst .
0-7
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BÖDEKER et al. PHYSICAL REVIEW E 67, 056220 ~2003!
counterparts in Fig. 4, the corresponding data series
considered as a good starting point for the experime
application of the data analysis that was described
Sec. III.

In Fig. 2~a!, the luminance distribution of the gas di
charge was recorded for an overall time of 62 s. The resu
applying the data analysis technique to the correspond
time series with 50 bins of widthDv50.5 mm s21 is shown
in Fig. 5~b!. Here, as in Fig. 5~a!, the dotted curve represen
the frequency polygon of the counting rate and the bla
crosses represent the calculated acceleration due to the in
sic dynamics of the DS. For the reliable bins (Ni.10), mo-
tivated by Eq.~6! a cubic curve, which is depicted as th
gray line, has been fitted to the result of the data anal
with the least squares method. The intersection point of
curve with the abscissa atv0511 mm s21 corresponds to the

FIG. 5. Results of the stochastic data analysis technique for
trajectories shown in Figs. 2~a! and 4~a!. Crosses mark the dete
ministic parthv(v) of the dynamics for each bin as a result of t
data analysis technique, and dotted curves correspond to the
quency polygons of the corresponding counting ratesNi . ~a! Analy-
sis of the numerically calculated trajectory of Fig. 4~a! with bin
width Dv53.631025. The gray curve shows the theoretical det
ministic dynamics given by Eq.~20! for the corresponding param
eters. The intersection point of the theoretical curve with the
scissa is the intrinsic velocityv0 @see Eq.~5!#. ~b! Analysis of the
experimentally observed trajectory depicted in Fig. 2~a! with bin
width Dv50.5 mm s21. Here the gray line is a nonlinear fit accord
ing to Eq. ~6! for bins with counting ratesNi.10. The filament
moves with an intrinsic velocityv0'11 mm s21.
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intrinsic velocity of the experimentally observed DS for th
chosen parameters. As in the case of the simulated par
dynamics in Fig. 5~a!, the frequency polygon has its max
mum close to this point, confirming that the DS moves w
its intrinsic velocity most of the time. In the absence of no
and for an ideal homogeneous and unbounded system
experimentally observed DS would travel with finite consta
velocity v0 for infinite time.

The trajectories depicted in Fig. 2~b! were recorded for
72 s. In view of the apparent difference of Fig. 2~a! from Fig.
2~b!, a different result of the analysis may be expected. T
is confirmed when using the method discussed with 20 b
of width Dv52 mm s21. The result is depicted in Fig. 6~b!,
where it can be seen that the acceleration of the DS is alm
proportional to the velocity with a negative proportionali
constant. This means that, in contrast to the intrinsica
moving DS in Fig. 2~a!, the motion is purely damped, in th
depicted case with a damping constant ofg537.661.5 s21

computed from a linear least squares fit. The DS has
intrinsic deterministic velocity at all and would remain st
tionary without the driving influence of noise. This case co

e

re-

-

FIG. 6. Results of the data analysis technique for the trajecto
shown in Figs. 2~b! and 4~b!. ~a! Calculated~crosses! and theoret-
ical ~gray curve! deterministic dynamics for the numerically calcu
lated trajectory depicted in Fig. 4~b!. The data analysis algorithm
has been run with bin widthDv55.331025. ~b! Calculated
~crosses! and fitted~gray curve! deterministic dynamics of the ex
perimentally observed DS propagating as depicted in Fig. 2~b! with
bin width Dv52 mm s21.
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NOISE-COVERED DRIFT BIFURCATION OF . . . PHYSICAL REVIEW E 67, 056220 ~2003!
responds to a classical Ornstein-Uhlenbeck process.2 Note
that the Ornstein-Uhlenbeck process is also approxima
realized in the theoretical model@Fig. 6~a!#.

The results depicted in Fig. 5 and 6 provide an expla
tion for the qualitative similarities of the experimentally o
served and numerically calculated trajectories: although
the derivation of Eq.~16! only symmetry arguments wer
used, the deterministic part of the dynamics extracted fr
the experimental data can be represented by the theoreti
derived reduced dynamics in a satisfying way. Further inv
tigations for other points in parameter space in which o
one filament is present at a given time have confirmed
the deterministic part of the dynamics can always be cla
fied according to the two qualitatively different cases p
sented above, and that the functional form of the drift fun
tion can be represented by the theoretically predicted th
order polynomial. This observation gives rise to the quest
whether a drift bifurcation, i.e., a transition between the t
states, can be detected in the experiment and which ex
mental parameter should be used as the control parame

B. The drift bifurcation

In a systematic investigation, it turned out that a dr
bifurcation can actually be found in the experiment by us
the specific resistivityrSC of the semiconductor as the con
trol parameter. Keeping all other parameters fixed, the s
cific resistivity was varied and the corresponding intrin
velocity v0 was extracted from the recorded trajectories
ing a third-order polynomial fit. In order to visualize th
dependence of the measured intrinsic velocity on the con

2This is confirmed through the calculation ofPst , the stationary
solution of the corresponding Fokker-Planck equation, from
counting rate distribution, asPst is a Gaussian distribution with a
central second moment of 19.1 mm s21.

FIG. 7. Results of the stochastic data analysis for intrinsic
locity v0 of the experimentally observed DSs as a function of
specific resistivity of the semiconductor. For every value of
resistivity, the velocityv0 was determined by a polynomial fit. Pa
rameters:U053700 V, R0510 MV, p5286 hPa,d5750 mm, all
other parameters as in Fig. 2~a!. The global current wasI
5107 mA.
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parameterrSC, the square ofv0 has been plotted as a func
tion of rSC ~Fig. 7!, revealing a supercritical bifurcation o
pitchfork shape.

These findings are reflected in the three-compon
reaction-diffusion system~1! and its reduced dynamics~3!
and ~4!, predicting a pitchforklike bifurcation when varyin
t @see Eq.~6! and the corresponding scaling law~5! for the
velocity of the DS# @31#. Due to the correct qualitative pre
dictions given by the model equations for many experimen
observations, it is tempting to relate the parametert of the
theoretical model to the parameterrSC of the gas-discharge
device. In fact, it can be seen from the original derivation
the reaction-diffusion system using equivalent circuit cons
erations@23,38# that t increases monotonically withrSC.
However,rSC also enters into other parameters of Eq.~1!.
This means that, while the transition from a region of s
tionary DSs to a region of intrinsically moving DSs d
scribed by Eq.~5! takes place along a line parallel to thet
axis, the transition due to a variation ofrSC takes place along
a different path in the model parameter space. Despite
fact, a linear dependance ofv0

2 on the bifurcation paramete
is observed in both cases, as the qualitative properties o
bifurcation are independent of the exact path in the gen
case when close to the bifurcation point.

VI. SUMMARY AND OUTLOOK

In the present work we have investigated the dynamics
electrical current filaments in a quasi-two-dimensional
gas-discharge system with high Ohmic barrier. We refer
these filaments as dissipative solitons. As the dynamics
the experimentally observed DSs is strongly influenced
noise, a data-driven stochastic time series analysis techn
has been developed to separate the deterministic from
stochastic part of the dynamics. The efficiency of the ana
sis technique was proved using a set of ordinary differen
equations which provide a qualitative description of t
propagation of DSs in the mentioned gas-discharge sys
To these deterministic equations, uncorrelated Gaus
noise was added artificially. Using this technique, the corr
deterministic part of the dynamics of the DSs could be
constructed.

The analysis of the dynamics of the experimentally o
served DSs has demonstrated that their dynamic beha
can be separated into two qualitatively different regimes.
one hand, one deals with noise-driven DSs, which wo
remain stationary in the absence of stochastic fluctuations
this case, the dynamics corresponds to that of a class
Brownian particle. On the other hand, we observe intrin
cally moving DSs that travel with a dynamically stabilize
finite velocity. The DSs in this regime are also referred to
active Brownian particles@59#. A transition between these
two regimes was detected by choosing the specific resisti
of the semiconductor as the control parameter. The co
sponding experimentally obtained drift bifurcation is in go
agreement with the prediction of a supercritical pitchforkli
bifurcation resulting from modeling of the experimental ga
discharge system using a set of reaction-diffusion equatio

e

-
e
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As a rather wide class of dynamic systems can be
scribed by Langevin equations of the form~7!, this stochastic
data analysis technique will certainly find many other ar
of application.
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APPENDIX: MATHEMATICAL PROOF

The goal of the appendix is to prove the validity of Eq
~18! and ~19!. A direct transformation of Eq.~15! into polar
coordinates using the chain rule yields Eq.~17! with multi-
plicative noise. To find a stochastically equivalent equat
with additive noise, one has to set up the correspond
Fokker-Planck equation. Using the notation of Eq.~7!, the
drift coefficientDi

(1) with i P$v,w% for the velocity compo-
nent takes the form

Dv
(1)5hv1gk j

]

]qk
gi j 5

~17!

hv1gwv

]

]w
gvv1gww

]

]w
gvw

5hv1
R2

v
. ~A1!

For the diffusion coefficientDik with i ,kP$v,w%, one finds
for i ,k5v ~see also@56#, Sec. 12.1.2!

Dvv
(2)5R. ~A2!

This yields the Langevin equation

v̇~ t !5hv~v !1
R2

v
1RGv~ t !, ~A3!

with the effective force

he f f~v !5hv~v !1
R2

v
~A4!

and Gv(t) satisfying Eqs.~8! and ~9!. Applying the data
analysis technique discussed in Sec. IV yields the fi
Kramers-Moyal~KM ! coefficient of Eq.~A3!:
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Dv
(1)~v !5 lim

Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v . ~A5!

The second KM coefficient of Eq.~A3! can be determined by

Dv
(2)~v !5R25

1

2
lim

Dt→0

1

Dt
^@v8~ t1Dt !2v8~ t !#2&uv8(t)5v ,

~A6!

wherev8(t) is a solution of Eq.~A3!. CalculatingR2 is also
possible by determining the second KM coefficientsDik

(2)

with i ,k5x,y from Eq. ~16! using

Di ,k
(2)~v !5

1

2
lim

Dt→0

1

Dt
^@v i8~ t1Dt !2v i8~ t !#

3@vk8~ t1Dt !2vk8~ t !#&uv8(t)5v ~A7!

if v8(t) is a solution of Eq.~16!. With a noise amplitude
independent ofv, Eq. ~A7! can be transformed into

R2d ik5
1

2
lim

Dt→0

1

Dt
^@v i8~ t1Dt !2v i8~ t !#

3@vk8~ t1Dt !2vk8~ t !#&u uv8(t)u5uvu . ~A8!

In order to prove Eq.~19! one adds Eq.~A8! with i ,k5x and
i ,k5y, to find

2R25
1

2
lim

Dt→0

1

Dt
^v82~ t1Dt !1v82~ t !

22v8~ t1Dt !v8~ t !&uv8(t)5v . ~A9!

Substracting Eq.~A6! from Eq. ~A9! yields

R25 lim
Dt→0

1

Dt
^v8~ t1Dt !v8~ t !2v8~ t1Dt !v8~ t !&uv8(t)5v .

~A10!

In order to calculatehv(v) without determiningR from the
experimental data, one takes advantage of

hv~v !5 lim
Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v2

R2

v
~A11!

@see Eq.~A5!# and inserts Eq.~A10!:
hv~v !5 lim
Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v2

1

v
lim

Dt→0

1

Dt
^v8~ t1Dt !v8~ t !2v8~ t1Dt !•v8~ t !&U

v8(t)5v

5 lim
Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v2 lim

Dt→0

1

Dt K v8~ t1Dt !v8~ t !2v8~ t1Dt !•v8~ t !

v L U
v8(t)5v
0-10
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5 lim
Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v2 lim

Dt→0

1

Dt K v8~ t1Dt !v8~ t !2v8~ t1Dt !•v8~ t !

v8~ t !
L U

v8(t)5v

5 lim
Dt→0

1

Dt
^v8~ t1Dt !2v8~ t !&uv8(t)5v2 lim

Dt→0

1

Dt K v8~ t1Dt !2v8~ t1Dt !•
v8~ t !

v8~ t !
L U

v8(t)5v

5 lim
Dt→0

1

Dt K v8~ t1Dt !•
v8~ t !

v8~ t !
2v8~ t !L U

v8(t)5v

. ~A12!

This corresponds to Eq.~19!. Note that this ‘‘projection method’’ gives a solution to the problem addressed in@56#, Sec. 12.1.2,
of how to determinehv without explicitly computing the fluctuation strengthR.
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