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Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system
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The trajectories of propagating self-organized, well-localized solitary patteissipative solitonsin the

form of electrical current filaments are experimentally investigated in a planar quasi-two-dimensional dc
gas-discharge system with high Ohmic semiconductor barrier. Earlier phenomenological models qualitatively
describing the experimental observations in terms of a particle model predict a transition from stationary
filaments to filaments traveling with constant finite speed due to an appropriate change of the system param-
eters. This prediction motivates a search for a drift bifurcation in the experimental system, but a direct
comparison of experimentally recorded trajectories with theoretical predictions is impossible due to the strong
influence of noise. To solve this problem, the filament dynamics is modeled using an appropriate Langevin
equation, allowing for the application of a stochastic data analysis technique to separate deterministic and
stochastic parts of the dynamics. Simulations carried out with the particle model demonstrate the efficiency of
the method. Applying the technique to the experimentally recorded trajectories yields good agreement with the
predictions of the model equations. Finally, the predicted drift bifurcation is found using the semiconductor
resistivity as control parameter. In the resulting bifurcation diagram, the square of the equilibrium velocity
scales linearly with the control parameter.
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[. INTRODUCTION reduced dynamigswith the results obtained from the under-
lying field equations yields good agreement if the shape of

Solitary structures are commonly observed in a rich vari-moving and stationary DSs does not differ significanf@].
ety of experiments, systems, and model equations includintn particular, both reaction-diffusion equations and corre-
purely conservative systenjg,2] as well as systems with sponding reduced dynamics predict a transition from station-
weak[3] and strong dissipatiof#,5]. Due to the particlelike ary DSs to DSs traveling with constant finite velocity for an
properties of these solitary structures, their dynamics andppropriate change of the system paramdi&t§ These the-
interactions are of considerable interest to modern scienceretical predictions give rise to the question whether this
Here we focus on well-localized solitary structures in dissi-drift bifurcation can also be observed in experimental sys-
pative systems, which we refer to as dissipative solitongems.

(DS9, following Refs.[3,5]. They exist in biological systems As a proper candidate for such a system, we have chosen
as nerve pulse$6], in chemical systems as concentrationa planar semiconductor gas-discharge system which under
drops of chemical reagenis—9], in optical systems as suitable conditions exhibits DSs in the form of well-localized
bright spots in the transverse plane of propagating lasecurrent density filamentgl7]. This choice is motivated by
beams[10,11], and as current filaments in semiconductorthe fact that the experimental system was modeled as an
devices [12-15 as well as in quasi-one- and -two- electrical equivalent circuit for which two- and three-
dimensional ac and dc gas-discharge systems with higbomponent reaction-diffusion equations have been set up
Ohmic and dielectric barrierg5,16—21. The modeling of [22,23,3]. These equations qualitatively take account of
these nonlinear dissipative systems often leads to reactiomany pattern formation phenomena that are observed in the
diffusion equationd4,13,14,22—-29 which, in the case of experimental system and can be reduced to a particle model
optical systems, contain cross-diffusion terfa,11]. near the drift bifurcation poinft26,32.

As well-localized solitary patterns were found as solu- However, a direct comparison of experimental observa-
tions of reaction-diffusion models, particle concepts haveions to the model predictions is hardly possible as the ex-
been derived starting from the original field equations. Theperimentally recorded trajectories indicate a strong influence
first successful methods were developed in the context abf noise in the system that the theoretical models do not take
inhomogeneity influenced trigger fron{80], but similar into account. Motivated by the particlelike properties of the
methods have also been applied successfully to deal with theSs observed in the experiment, a Langevin equation is set
propagation and mutual interaction of DE8]. In this par-  up for the description of the experimentally recorded dynam-
ticle approach, the dynamics of the DSs is described by orics, using only the symmetries of the experimental system.
dinary differential equations. A comparison of the results ofThe validity of the Langevin equation allows the application
this reduced dynamical descriptigim the following called of a data-driven stochastic analysis metH88,34] which

allows for the separation of the deterministic and stochastic

parts of the dynamics. To verify the efficiency of the data
*Corresponding author. analysis method, the technique is tested on data numerically
Email address: boedeker@uni-muenster.de generated from the equations of the reduced dynamics which
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discharge gap photo effect by illumination. The gas in which the discharge
semiconductor takes place is pure nitrogen at a pressurgef300 hPa.
ol T \ glass disk While the current-voltage characteristic of the wafer is linear,
\ the current-voltage characteristic of the gas is highly nonlin-
illuminated area

ear and partly exhibits negative differential resistivity. The
maximum global current of the system is restricted by a se-

T > ries resistorR, of some M). Since the electrical current
®\ - z density in the discharge plane of the described device and the
- . \ density of the luminescence radiation emitted from the dis-
camera

light source and

optical system charge space locally are proportional to each other over a

Ro TG lager large range, the current density distribution can be measured
via the luminescence density distribution through the trans-
Uo parent anoddsee Fig. 1 To record the corresponding im-

. ages, a charge-coupled devi€&CD) camera with video fre-
FIG. 1. Schematic representation of the experimental setup. Theg 9 P { )

resistivity of the semiconductor is controlled by variable homoge-quency was used.
neous illumination with visible light. The current distribution in the ) .
discharge gap is recorded via the luminescence radiation distribu- B. Experimental observations

tion emitted from the discharge gap. For certain parameters of the gas-discharge system, self-
) . . . organized spatially inhomogeneous luminescence density
are extended to a Langevin equation by adding appropriat§aierms are observed in the discharge gap. Among other

hoise terms. It tuns out that the application of th_e techniqu hings, we also observe well-localized bright solitary spots in
with respect ta the analysis of the recorded experimental datfﬁe luminescence radiation distribution that are related to

make; possible a comparison Of the deterministic part_ of th%elf-organized current filaments. These filaments may travel
experimentally observed dynamics of DSs to the predictions I ; .
of the model equations. In this way we prove that the re2r stay at rest. In addition, they can llnteract, anq ;cqttermg,
duced dynamics is suitable to describe the deterministic pafPrmation of molecules, and generation and annihilation are

of the dynamics of DSs in the experimental system, and tha‘{equent_ly observed phenomeh]a7,3§|. To obFain filament
a drift bifurcation of these DSs can take place. trajectories from the recorded data, first the filaments of each

The article is organized as follows. Section Il describes®corded image are identified using a recursive algorithm
the experimental system, the applied recording technique§€earching for connected regions of high luminance. In the
and the experimentally observed filament trajectories. In Segecond step, the “center of mass” of each filament is deter-
1l we recall some aspects of the modeling of the experimenmined. Finally, a trajectory of each filament is generated us-
tal system by reaction-diffusion equations and describe thég a nearest neighbor tracing algorithm. In the present pa-
results of the reduction of these equations to ordinary differper, the system parameters are always chosen such that only
ential equations in a particle approach. Section IV presentsene filament exists at a given time. In this way, the possible
the stochastic data analysis technique and its adaptation toteraction of filaments is excluded.
the investigated system as well as a reliability test of the While performing the experiment, great care is taken to
method based on numerically generated data. Section V deaigsure spatial homogeneity of the system since inhomogene-
with the results of the application of the technique to theities may affect the filament dynamics. The homogeneity was
experimental data. Furthermore, the experimentally detectegbntrolled in two ways. First, the device was operated in a
drift bifurcation is presented in this section. The article mode where no spatial patterns occur. Under these condi-

closes with a summary and an outlook in Sec. VI. tions, no indications of possible inhomogeneities in the lu-
minescence distribution were observed. Second, trajectories
Il. THE EXPERIMENT of moving filaments were analyzed with respect to their sta-

tistical behavior. The fact that the relevant statistical charac-
teristics for different trajectories that in general probe differ-
The experimental system is a version of an electronic deent areas of the discharge plane show no significant
vice initially designed for the high speed conversion of in-deviations also strongly supports the hypothesis that the sys-
frared images to the visible.8,35. Figure 1 shows the basic tem is rather homogeneously prepared.
experimental setup, consisting of a high Ohmic semiconduc- Figures 2a) and 2Zb) show trajectories of filaments ob-
tor cathode contacted from one side by a semitranspareiined in the described way for two different sets of system
gold layer, a gas gap, and an anode consisting of a glass diglarameters. The circle indicates the border of the area of the
coated with a layer of indium tin oxidé¢TO), which is trans-  gas-discharge plane defined by the mechanical spacer used.
parent for visible light. The semiconductor is a chromium-Clearly, this boundary has no measurable influence on the
doped gallium arsenide wafer cooled to 100 K. At this tem-dynamics of the DSs since they tend to be located in an
perature the semiconductor exhibits a linear current-voltageternal circle of diameter 15 mm in the center of the dis-
characteristic and a high specific resistivity gfsc  charge area. This confinement in the “active discharge area”
~10°-10 Q cm, which can be controlled via the internal is caused by homogeneously illuminating the high Ohmic

A. Experimental setup
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FIG. 2. Experimentally recorded trajectories

of moving DSs. The circle of diameteDb
=30 mm indicates the boundary of the area of
the gas-discharge plane defined by the mechani-
cal spacer. The active discharge area is slightly
larger than the space filled with trajectorida)
Parameters: global voltagd,=2740 V, semi-
conductor resistivitypsc=4.95< 10" () cm, se-
ries resistance Ry=20 M(Q), pressure p
=280 hPa, temperature of semiconductbgc
=105 K, thickness of semiconductoragc
=1 mm, discharge gap widtth= 250 um, expo-
sure timet,,,=0.02 s, recording frequenchy,
=50 Hz, observed global current=46 uA.
(b) Parameters: Uy=3600V, pgc=2.02
x10f Qecm, Ry=10MQ, p=282hPa, d
=550 um, all other parameters as i@, ob-
served global current=116 uA.

coordinate p, (mm)
coordinate p, (mm)

s s : , s .
-150 75 0.0 75 15.0 -150 75 0.0 75 150
coordinate p; (mm) coordinate p, (mm)

semiconductor electrode, generating a circular shaped area [#9,41-49 and stationary DS$5,22,38,23,44 and their
defined specific resistivity. bound stateg32] in planar dc gas-discharge systems. Similar
Both trajectories indicate a strong influence of noise in themodels have also been investigated in various other fields
system as the direction of motion changes inside the activi27-29. In particular, we mention the work46,47, in
area in spite of the homogeneous preparation of the systermhich the authors investigated moving DSs in more than one
The fluctuations might be related to noise in the semiconducspatial dimension, showing that a single moving DS can be
tor (generation and recombination,f Iioise, thermal fluc-  stabilized using a global feedback term. However, as dis-
tuations in the gas, or noisy processes of charge transportaussed in Refq.26,4(, the global feedback term is not suf-
tion through the semiconductor-gas interf§8&]. However, ficient to stabilize two distinct DSs. It has also been shown
a comparison of Figs.(2) and Zb) shows that in(a) the  analytically that a moving two-dimensional DS exists, in
trajectories are somewhat smoother thar(ip This is re-  principle, in a delicate limit case of the standard FitzHugh-
flected by the fact that the direction of motion(in) changes Nagumo mode[48]. However, this result has not been con-
significantly more frequently than if@). Since from theoret- firmed by numerical simulations. The difficulty of describing
ical considerations one may expect a nontrivial deterministithe motion of more than one DS in two- and three-
part to the dynamics of the DSs, the difference of the behavdimensional space can easily be overcome by introducing a
ior of the trajectories ofa) with respect tqb) may be attrib- second inhibiting component phenomenologically, so that the

uted to a difference in this part of the dynamics. description of multiple stable moving DSs becomes possible
without a change of the fundamental dynamical principles

ll. A QUALITATIVE MODEL FOR THE [26,31,40,4% In the context of planar dc gas-discharge sys-
EXPERIMENTAL SYSTEM tems, the second inhibitor component might be related to the

] o voltage drop in the gas region close to one of the electrodes
A. The three-component reaction-diffusion model [50] or to the influence of surface charges at the
To interpret the pattern formation in the experimental de-semiconductor-gas interface. Therefore, in the present analy-
vice, we recall that for such systems a phenomenologicasis we apply the following three-component reaction-
two-component and a three-component qualitative activatordiffusion system:
inhibitor reaction-diffusion model have been proposed on the .
basis of an electric equivalent circ(it3,31,38—40 In these U=D AU+NU— U~ k30 — KW+ K1,
models, the activating component is related to the avalanche
multiplication of charge carriers in the discharge gap, while )
the voltage drop at the semiconductor wafer takes the role of v=D,Av+u—v, (1)
one inhibitor. The two-component version of the reaction-
diffusion model permits a qualitative understanding of the )
formation of many stationary patterns, e.g., Turing structures ow=D,Aw+u—w.
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Here, u(r,t), v(r,t), and w(r,t) are elements ofC?() and the slow inhibitor distribution of the individual DS
X R), where() is a finite subset oR?, andD,,, D,, D,,, \,  [26,30. In the reduced system, the direction of motion and
7, 0, k1, k3, andk, are real constants, which are positive the velocity of the movement are given by the amplitude of
except fork,. In the parameter limiD,—0 and#—0, the  propagator mode= a(t) which, for a single soliton, is con-
system(1) reduces to a two-component reaction-diffusionnected to the positiop=p(t) of the DS by the following
system with local feedback term due to the fast inhibitor relations(called the reduced dynamijcs

For this parameter limit and concerning stationary DSs, the .

shape of the slow inhibitos is identical with the shape of p= K3, (3

the activatoru, and it can be proved26,31 that a drift

bifurcation from stationary to moving DSs occurs if the time 1 (2
constantr of the slow inhibitorv is increased above the a=K3| - —) — K, _xz" |af? . )
critical thresholdr,= 1/«;. 3. (uy

The weak point of the model of Eqdl) is, first of all, that jQ—‘

it is not possible to identify the componewtin the experi-

mental system in an unambiguous way. The same problethhe angular brackets denote averaging over the whole do-
exists for some of the parameters. We also remark that thenain. The shape fact@ can be computed from the activator
experimental setup contains a series resiBpfsee Fig. 1  distributionu of a stationary DS solution for a given set of
that should lead to global inhibition via an integral term in system parameters. If several DSs are interacting, Bjs.
the first line of Eqs(1). However, this term has been elimi- and (4) have to be solved for every DS, and each equation

nated to simplify numerical calculations: must be supplemented by an interaction tﬁ(,hpi—p”)(pi
—p;) for each interacting pair of DSs at positiopsandp; .
= K2 udQ — x, = const 2) This interaction term depends on the distance between the
tolallae interacting DSs and, like the shape fac®@r can be com-

. . . . puted from a stationary DS solution.
if the mtggral term is approximately consta_nt. In contrast 0 Erom Eq.(3) it can be seen that for a single noninteracting
the mentioned drawbacks of Eq4) to describe the pattern pg he amplitude of the propagator modés proportional

formation in the experimental gas-discharge system, th oo .
amazing fact is that a large variety of phenomena observed fr? the velocity p. In addition, Eq.(4) shows that fors

the experimental system can also be found in the behavior GF 1/<3 only stationary solutions withp| =0 exist, whereas
the solutions of Eqs(1). Among these phenomena we find for 7>1/k3 this solution becomes unstable and a stable so-
the formation of various patterns like periodic stripes, hex-ution moving with the intrinsic velocity

agonal arrangements, spirals, target patterns, and DSs. For Y
the last, phenomena like generation, annihilation, scattering, |b|=vo=f<§/2‘ [T K3 (5)
formation of molecules, etc., are observed both in the experi- Q

ment and in the mathematical equations. Also, the Turing 26.31. A . f thi it with soluti f
bifurcation and the subcritical nature of bifurcations to in- appear$26,31. A comparison of this result with solutions o

creasing numbers of DSs can be observed in the experimeHz]e field equationgl) in two- and three-dimensional systems

and the model equations. Some of the phenomena were prs_ows_good agreemefi81,49. We note that the reduced
dicted from the model of Eq$1) and were later found in the 9YNamics of a single DEQS-(?’) and(_4)] can b_e written in
experiment, while other phenomena were first detected eX€rMs of a single ordinary differential equation of second
perimentally and could later be identified in E¢%). From order as

these qualitative successes of the model, we draw the con- o)

clusion that strong ties exist between E€9.and more spe- p=Kk3(x37—1)p— —|p|?p, (6)
cific model equations for the experimental system based on Ks3

Fhe momentum deyelopment of the Bpltzrr'lann'equatmn, e'gformally describing the dynamics of a unit mass particle that
in the form of a drift-diffusion approximation similar to the

. can undergo a bifurcation from a stationary state to a moving

disch tofbal. F h derati %tate with dynamically stabilized intrinsic velocity when the
nar ac gas-discharge systefBs]. From these considerations “friction” «3(k37—1) changes sign. The nature of this bi-

we reason that using Eqel) for a qualitative description of . -ation corresponds to the normal form of a drift bifurca-

p"?‘“eff‘s and their bifurcations in d(.: ga}s_—di§charge SySte”}?on, which is commonly observed in synergetic systems
with high Ohmic barriers has some justification. with continuous symmetriei80,52—54.

In contrast to the deterministic dynamics described by
Egs.(1), (3), and(4), we observe that in the experiment the

Close to the point of the drift bifurcation, the dynamics of dynamics of DSs is strongly influenced by stochastic fluctua-
DSs as solutions of the field equatiofis can be reduced to tions, which make a direct comparison of the experimental
ordinary differential equations by projecting the system ontdindings with predictions of the above equations impossible.
its relevant modes. The drift of the DS in the described paTherefore we choose for the description of the experimental
rameter limit is induced by the so-callgdopagator modge  recordings an appropriate stochastic ansatz as a basis for a
which corresponds to the displacement between the activatalata analysis technique discussed in the next section. The

B. The reduced dynamical system
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FIG. 3. lllustration of the stochastic data analysis in one dimension. A short trajegfoyywith superimposed deterministic and
stochastic dynamics is shown. The trajectory is known at discrete points ot tieved therefore represents a time sedgs q(t;). The
differenceAq;=(q;;,1—0q;) of eachq; from its successoq; ., is visualized by a vector of appropriate length. In order to determine the
deterministic part of the dynamics, the interfiglh,i,,dmay] iS divided into three bin®; , i =1,2,3, with centery; and of widthAq. In this
diagram the averaging algorithm is visualized for Bipy where all differenced q; with g; € B; (dark vectorsare summed up and divided
by their numbeiN,=5. The result is the approximated deterministic part of the dynamigs atultiplied by the time intervalt.

goal of this is to make available a method that permits sepa- 11

ration of the deterministic and stochastic part of the dynam- Gik(9)gjx(a) =z lim A_t<[qi,(t+At)_qi’(t)][qj’(t-i_At)
ics of the experimentally observed DSs, allowing a compari- At=0

son with the model equations. —qj'(t)]T>|qr(t):q, (11)

IV. STOCHASTIC DATA ANALYSIS if g’ (t) is a solution of Eq(7). For the practical data analysis
A. General introduction to stochastic data analysis it is assumed that Eq€10) and(11) stay approximately valid
for finite At, if At is smaller than the characteristic time
'scale of the system dynami¢83,34. Here the ensemble
average is replaced by the average over all tibveg of the
time series for whichg' (t;)~q with t;=tg+iAt. An illus-
d trative example of this noise filtering technique for the one-
aqi(t)zhi({qk(t)},t)+gij({qk(t)},t)l“j(t), i=1,...n, dimensional case is given in the following subsection.

(@)

consisting of a deterministic and a stochastic part for a set of
n stochastic variablesq(t)}, k=1, ... n. The functionh
describes the deterministic drift whereas the stochastic part

expressed by the second term, which is a product of tha(t)6[mintq(t),maxq(t)]=[qmin,qmax]CR. A stroboscopic

matrix of noise amplitudeg(q.t) ={g;j(q.t)} and avectol’ o\ onto the trajectory at equally spaced points of time
of n fluctuating Langevin forces. These forces are usually:to+jAt j=0 10yields a time series); :=q(t;). A
, y ooy 1 1/

assumed to bé-correlated Gaussian-distributed noise forcesdiscretization is chosen such that the intefi@h;,qma IS

with vanishing mean: divided into three nonoverlapping subs&s=[q,— Aq/2,;
(Ty(1))=0, i=1,...n, @® t+Ag/2 for i=0,1 and@zz[az—Aq/zaﬁAq/z], with
equal widthAq and centeq; . In the following these subsets
(Ty(OT(t")y=28;8(t—t"), i,j=1,...n. (99 Biarecalledins .
The analysis algorithm now works as follows. Each Bjn
Here, the angular brackets denote the ensemble average.assigned a scala}izo and a counteN;=0. The algo-
Equation(9) characterizes the fluctuations as white noiserithm assigns each element of the time series to its corre-
Under these conditions, the following relations have beersponding binB; (i.e., q; € B;), increases the countd¥; by 1,

proved in a strict mathematical wa5,56, using Stra-  and addsq;.;—q;) to g; . After all elementsy; of the time

A wide and important class of stochastic dynamical sys
tems are the continuous Markovian systems limensions
which are governed by the Langevin equation

B. lllustration of the stochastic data analysis technique

To illustrate the technique presented in the last section, a
simple example has been considered. Figure 3 shows the
Bne-dimensional trajectory of a dynamic variable

tonovich's definition for stochastic integrdlS7]: series have been assigned to a bin, the deterministic part of
p the dynamics is computed by dividing the valﬁeof each
hi(9) + gij(9) =——gi; (@) bin Bi. by its cpuntlng rateNi .and the tl'me discretizatioAt.
Jq This algorithm is visualized in Fig. 3, where for each
1 element of the time serieg; the difference §;,,—q;) is
= lim _<qi,(t+At)_qi,(t)>|q’(t)=q1 (10) symbolized by a vector of appropriate length. The vectors
at—0At starting in binB; are marked black, whereas all other vectors

056220-5



BODEKER et al. PHYSICAL REVIEW E 67, 056220(2003

are shown in gray. In accordance with the averaging algoUnfortunately, the number of experimentally available data
rithm discussed, all black vectors are assigned tolhin  points for the described analysis is limited, resulting in a
added, and divided by their numbiy. If the noise ampli- rather unsatisfying resolution of the calculated deterministic
tude is independent af [derivatives drop out of Eq10)],  part h(v). This problem can be overcome by taking into

the deterministic part of the dynamicsdn is approximately ~ consideration the radial symmetry b{v), which allows a

given by reduction of the degrees of freedom by one dimension, re-
sulting in much better statistics and therefore providing a

~ <q1'+1—q1'>|qu]Bl major step toward the analysis of experimentally detected
h(ql)*T, (12 trajectories of particles in the original two-dimensional

system. According to the rotational symmetry one may
if the corresponding counting rad, is high enough and the rewrite Eqg. (16) in polar coordinates, introducing
time discretization\t is small compared to the time scale of = (v cosgusing)T andl'=(T,,T',)":
the deterministic dynamics.
Rcose Rsing

R R
— —SIn — COS
v ¢ v ¢

Iy

C. Adaptation to the experimental system ( U) _
r

¢

hv(v))
o |t

) . (17
In a classical particle approach for a conservative system y

one would assume that the dynamical variables for the mo-

tion of a single particle are the two-dimensional spatial CONote that Eq(17) is interpreted according to the Stratonov-

ordinates of its center of mass, denoted Ip(t) ich calculus. It b dee the A dixthat
=(px(t),py(t))T. In such a system, the dynamics can be de—IC caleulus. It can be provegee the Appendbdha

scribed by an equation of the form

p(t) =f(p(t)). (13

As the gas-discharge system is highly dissipative, additional ,,.. . . .
terms fgr fluctuatiog an)(; friction hgveyto bepadded: 'lf v'(t) is a solution of Eq(17). Alternatively, h, (v) can be

calculated directly fromy ' (t) by applying the following pro-
Bt =F(p(t))+ (P(t), P(t)+ R(P(t), DT (P(L). ). Jection (for proof see the Appendix
(14

R*(v)

1
~ (0 (t+A)—v (D) y~y (18)

h,(v)+ At

1 <[v’(t+At)—v’(t)]~v’(t)>

Here h describes acceleration due to friction and internal  h, (v)~—

degrees of freedom, whereR¥" includes all forms of fluc- At v'(t) o () ~v

tuation asR represents the matrix of noise amplitudes. In the (19

following, bwill be denoted byv=(vx(t),vy(t))T. The ho-

mogeneous preparation of the discharge area and other mda- Egs. (18) and (19), the bins introduced in the one-

sures provide translational and rotational invariance; theredimensional example take the form of circular rings around

fore h, R, andI" do not depend op, andf=0. This yields the origin. Compared with the two-dimensional averaging

the equation process, the counting rate in each bin is greatly increased,
increasing the reliability of the calculated results.

v=h(v)+R(t)I(t). (15)

D. Efficiency test of the analysis technique on numerically

In order to apply the analysis technique described above,
generated data

Egs.(8) and(9) have to be satisfied. Equatid®) can always
be satisfied by introducing an offset m Equation(9) is Although the validity of Eqs(18) and(19) can be proved
approximately satisfied as long as the correlation of the noisgh an exact mathematical wagee the Appendix no exact
of the systems decays on a smaller time scale than the chanformation is given on the effectiveness of the technique
acteristic time scale of the dynamics investigated. when using a finite number of input data points. In order to
An experimental determination & by applying Eq.(11) guarantee the efficiency of the technique, suitable Langevin
to the two-dimensional experimental system described bgquations should be solved numerically and the solutions
Eqg. (15) yields velocity independent fluctuations, i.(v) should be analyzed with the technigq{i®) discussed above.
=R=const. This allows a determination of the deterministicThe resulth,(v) of this analysis can then be compared with
part of the experimentally observed dynamics using(E@),  the known deterministic term of the numerically solved
showing thath features radial symmetry with respectdo  Langevin equation, providing an appropriate test for the data
This symmetry can also be derived from thé2Dsymmetry  analysis technique.
of the system if the finite size of the system is neglected. As a promising candidate for this comparison, the reduced
Introducing h(v) =h,(v)e, with v=|v| ande,=v/v, Eq.  dynamics(6) of a single DS in the three-component reaction-

(15) can therefore be rewritten as diffusion system(1) have been chosen. It can be seen that
) Eqg. (6) can easily be extended to a Langevin equation by
v=h,(v)e,+RI(t). (16)  adding a noise term satisfying Eq8) and (9):
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k3=0.3, At=0.05, R=3X10 *k;, Q=1950,
200 000 time stepgb) Trajectory of a DS below

1 the drift bifurcation point ¢=2.87<7.=3.3).
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. . Q... factorR=3x10"“k3. Note the striking qualitative similari-
p=k3( k37— 1)p——|p|2p+ RI'. (20 ties of the numerically generated and experimentally re-
K3 corded trajectorieFig. 2.

. . , , In order to test the discussed data analysis technique, we
This equation features rotational symmeti) with respect ook the trajectory of the numerically calculated examples as
to p=v, allowing the application of Eq(19). For the nu- raw data, calculated the velocities from the spatial coordi-
merical simulation, the following recursive algorithm has nates in lowest order, and analyzed the dynamics with the
been used56]: discussed technique. The result is depicted in Fig®. &nd

6(a), where the crosses represent the deterministic part of the
Q , acceleration as a function of the particle velocity calculated
Uni1=0n+ At| k3(kg7—D)v,— o lnen |t RVAtw,. using Eq.(19), and the dotted curve represents the frequency
(21) polygon of the counting ratl; of the corresponding bins. As
in every statistic analysis, the reliability of the result in-
Here At is the time step width ane,=(w,,,w,,)" is a Creases with the counting rate. As a rule of thumb, the count-
vector of Gaussian-distributed random numbers satisfyindd rate of the bins must at least take a value between 10 and
(Wp,)=0 and (Wy Wy )=28; 8y, With i,j=x,y. The 0 to consider the corresponding result as re_IlébIe. o
random numbers are generated from an equidistributed It can be seen that as long as the counting rate is high

(pseudarandom number , with 0<r,<1 and(r,)=3% via  enough, the result of the data analysis technique approxi-
[56] : . . mates quite well the gray curve representing the theoretical

deterministic part of the dynami¢®0) used to calculate the
5aM 1 raw data for the time series. The intersection points of the
=\ _Z (22) theoretical curve with the abscissa mark the intrinsic velocity

Wn,l M rV 2 1 . .

v=1 v Of the DS for the chosen system parameters. This velocity
can be determined very well by the data analysis technique.
whereM is a large integefin the simulation,M=20 has Therefore we conclude that the data analysis technique is
been used As a starting point for the simulation of the noise reliable and can be used for the analysis of experimentally
influenced DS dynamics according to ER0), the following  observed two-dimensional trajectories of noninteracting DSs.

set of parameters of the three-component reaction-diffusion
system(1) was chosen, as introduced in the context of mol- V- APPLICATION OF THE STOCHASTIC DATAANALYSIS

ecule formation process¢g6,58: TO THE EXPERIMENT
4 4 A. The deterministic dynamics of experimentally observed
D,=11x10"% D,=0, D,=9.64x10"", dissipative solitons

Due to the qualitative similarity of the experimentally re-

A=101, k;=-01, x3=0.3, w=1, 6=0. (23  (5geqg trajectories in Fig. 2 to their numerically generated

These parameters provide stable DS solutions in the three———
component reaction-diffusion system and yield for the re- inqe that the distribution of the counting rate is not identical with
duced dynamics a shape factor @=1950. The reduced e gistributionP,, given by the stationary solution of the Fokker-

dynamics predicts for this choice of parameters a supercritipjanck equation belonging to the Langevin equatib®. The dif-
cal bifurcation from stationary to moving DSs at the bifur- ference results from the nonlinear transformation of infinitesimal

cation pointr.= 3.3. area elements from Cartesian to polar coordinates,

Figure 4 shows the numerically calculated trajectory of 3 3
(a) an intrinsically moving DS {=3.8>17,) and (b) a sta- JJto,dvy=] fodvde=27[vdv, 24
tionary DS (r=2.87<7.) under the influence of noise with a which has to be taken into account for the calculatiorPgf
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FIG. 5. Results of the stochastic data analysis technique for the FIG. 6. Results of the data analysis technique for the trajectories
trajectories shown in Figs.(@ and 4a). Crosses mark the deter- shown in Figs. &) and 4b). (a) Calculated(crossesand theoret-
ministic parth,(v) of the dynamics for each bin as a result of the ical (gray curvé deterministic dynamics for the numerically calcu-
data analysis technique, and dotted curves correspond to the fréated trajectory depicted in Fig.(d). The data analysis algorithm
quency polygons of the corresponding counting rétes(a) Analy- has been run with bin widthAv=5.3x10"5. (b) Calculated
sis of the numerically calculated trajectory of Figapwith bin (crosseps and fitted(gray curve deterministic dynamics of the ex-
width Av=3.6x10"°. The gray curve shows the theoretical deter- perimentally observed DS propagating as depicted in Flg.\&ith
ministic dynamics given by Eq20) for the corresponding param- bin width Av=2 mms .
eters. The intersection point of the theoretical curve with the ab-
scissa is the intrinsic velocity, [see Eq.5)]. (b) Analysis of the
experimentally observed trajectory depicted in Fi¢g) 2vith bin
width Av=0.5 mm s'1. Here the gray line is a nonlinear fit accord-
ing to Eq. (6) for bins with counting ratedN;>10. The filament
moves with an intrinsic velocity;~11 mms*.

intrinsic velocity of the experimentally observed DS for the
chosen parameters. As in the case of the simulated particle
dynamics in Fig. &), the frequency polygon has its maxi-
mum close to this point, confirming that the DS moves with
its intrinsic velocity most of the time. In the absence of noise
N . . and for an ideal homogeneous and unbounded system, the
counterparts in Fig. 4, the corresponding data series are : e
considered as a good starting point for the experimenta‘?Xpe”menta"y observed DS would travel with finite constant

application of the data analysis that was described jryelocity v, for infinite time.
SF;,F():. m y The trajectories depicted in Fig(l8 were recorded for

In Fig. 2@), the luminance distribution of the gas dis- 72 s. In view of the apparent difference of Figapfrom Fig.

charge was recorded for an overall time of 62 s. The result of(P) 2 different result of the analysis may be expected. This
applying the data analysis technique to the correspondini§ confirmed when using the method discussed with 20 bins
time series with 50 bins of widthv=0.5 mms ! is shown Of width Av=2 mms*. The result is depicted in Fig.(6),

in Fig. 5(b). Here, as in Fig. &), the dotted curve represents where it can be seen that the acceleration of the DS is almost
the frequency polygon of the counting rate and the blackoroportional to the velocity with a negative proportionality
crosses represent the calculated acceleration due to the intrigenstant. This means that, in contrast to the intrinsically
sic dynamics of the DS. For the reliable bir¥;&>10), mo- moving DS in Fig. 2a), the motion is purely damped, in the
tivated by Eq.(6) a cubic curve, which is depicted as the depicted case with a damping constantyef37.6+1.5 s'*
gray line, has been fitted to the result of the data analysisomputed from a linear least squares fit. The DS has no
with the least squares method. The intersection point of thigntrinsic deterministic velocity at all and would remain sta-
curve with the abscissa ay=11 mm s ! corresponds to the tionary without the driving influence of noise. This case cor-
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IS
8
T
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0 parametepsc, the square oby has been plotted as a func-
+’ I tion of pgc (Fig. 7), revealing a supercritical bifurcation of
/ - pitchfork shape.

i 4 1 These findings are reflected in the three-component
L 4}/ _ reaction-diffusion systengl) and its reduced dynamids)

g
>

g
T

and (4), predicting a pitchforklike bifurcation when varying
. 1 7 [see Eq.(6) and the corresponding scaling la®) for the
4 1 velocity of the DS [31]. Due to the correct qualitative pre-
1 dictions given by the model equations for many experimental
g observations, it is tempting to relate the parametaf the
, ’ theoretical model to the parametes: of the gas-discharge
05 1.0 L5 20 2.5 device. In fact, it can be seen from the original derivation of
specific resistivity psc (Mf2cm) the reaction-diffusion system using equivalent circuit consid-

FIG. 7. Results of the stochastic data analysis for intrinsic ve-S'ations[23,3§ that 7 increases monotonically witpsc.

locity v, of the experimentally observed DSs as a function of theHOWeVer, psc also enters into Oth_e_r parameters Qf ED).
specific resistivity of the semiconductor. For every value of theThis means that, while the transition from a region of sta-

resistivity, the velocityv, was determined by a polynomial fit. Pa- tionary DSs to a region of intrinsically moving DSs de-
rametersU,=3700 V,R,=10 MQ, p=286 hPad=750 um, all  scribed by Eq(5) takes place along a line parallel to the
other parameters as in Fig.(@ The global current wad  axis, the transition due to a variation @f. takes place along
=107 pA. a different path in the model parameter space. Despite this
fact, a linear dependance mg on the bifurcation parameter
responds to a classical Ornstein-Uhlenbeck protedste is observed in both cases, as the qualitative properties of the
that the Ornstein-Uhlenbeck process is also approximatelpifurcation are independent of the exact path in the generic

S
T
‘o
N

square of equil. vel. v3 (mm?s~?)

(=1

f
0
o
B
.
B

i

realized in the theoretical modgFig. 6a)]. case when close to the bifurcation point.
The results depicted in Fig. 5 and 6 provide an explana-
tion for the qualitative similarities of the experimentally ob- VI. SUMMARY AND OUTLOOK

served and numerically calculated trajectories: although in . _ )
the derivation of Eq(16) only symmetry arguments were " the present work we have investigated the dynamics of
used, the deterministic part of the dynamics extracted fronfl€ctrical current filaments in a quasi-two-dimensional dc
the experimental data can be represented by the theoretica%ﬁs'd'spharge system with high Ohmic barrier. We refer to
derived reduced dynamics in a satisfying way. Further investhese filaments as dissipative solitons. As the dynamics of

tigations for other points in parameter space in which onlythef expeéimeréta_llly obserr:/ed'DSS s strongly ilnflyencehd 'by
one filament is present at a given time have confirmed th oise, a data-driven stochastic time series analysis technique

the deterministic part of the dynamics can always be classi-2° bee.” developed to separate the d_efcerm|mst|c from the

fied according to the two qualitatively different cases pre-SFOCh":ISt'.C part of the dynaml_cs. L eff|C|en.cy of the anally—

sented above, and that the functional form of the drift func->"> tec_:hnlque was proyed using a set of ordinary differential
! equations which provide a qualitative description of the

tion can be represented by the theoretically predicted third—r tion of DSs in the mentioned disch ¢
order polynomial. This observation gives rise to the questio opagation 0 S In the mentioned gas-discharge system.
o these deterministic equations, uncorrelated Gaussian

whether a drift bifurcation, i.e., a transition between the two_". o : . .
states, can be detected in the experiment and which expetﬁ'—oIse was qdded artificially. Usmg this technique, the correct
mental parameter should be used as the control parameterfj(atermInIStIC part of the dynamics of the DSs could be re-
constructed.
I _ The analysis of the dynamics of the experimentally ob-
B. The drift bifurcation served DSs has demonstrated that their dynamic behavior
In a systematic investigation, it turned out that a drift can be separated into two qualitatively different regimes. On
bifurcation can actually be found in the experiment by usingone hand, one deals with noise-driven DSs, which would
the specific resistivitypsc of the semiconductor as the con- remain stationary in the absence of stochastic fluctuations. In
trol parameter. Keeping all other parameters fixed, the spehis case, the dynamics corresponds to that of a classical
cific resistivity was varied and the corresponding intrinsicBrownian particle. On the other hand, we observe intrinsi-
velocity vy was extracted from the recorded trajectories us-cally moving DSs that travel with a dynamically stabilized
ing a third-order polynomial fit. In order to visualize the finite velocity. The DSs in this regime are also referred to as
dependence of the measured intrinsic velocity on the contraictive Brownian particleg59]. A transition between these
two regimes was detected by choosing the specific resistivity
of the semiconductor as the control parameter. The corre-
2This is confirmed through the calculation Bf,, the stationary ~sponding experimentally obtained drift bifurcation is in good
solution of the corresponding Fokker-Planck equation, from theagreement with the prediction of a supercritical pitchforklike
counting rate distribution, aB is a Gaussian distribution with a bifurcation resulting from modeling of the experimental gas-
central second moment of 19.1 mm's discharge system using a set of reaction-diffusion equations.
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As a rather wide class of dynamic systems can be de- L 1
scribed by Langevin equations of the fof, this stochastic DM(v)= lim A_t<v/(t+At)_U/(t)>|v’(t)=v . (A5)
data analysis technique will certainly find many other areas At=0

of application. The second KM coefficient of EA3) can be determined by
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1 1
D@(v)= = lim —([v] (t+At)— v/ (t
APPENDIX: MATHEMATICAL PROOF (@) 2At—>0At<[vl( )~ei(]
The goal of the appendix is to prove the validity of Egs. ><[v(((t+At)—v(((t)mv/(t):v (A7)
(18) and (19). A direct transformation of Eq(15) into polar
coordinates using the chain rule yields Efj7) with multi-  if »’(t) is a solution of Eq.(16). With a noise amplitude

plicative noise. To find a stochastically equivalent equatiorindependent ob, Eq. (A7) can be transformed into
with additive noise, one has to set up the corresponding
Fokker-Planck equation. Using the notation of K@), the
drift coefficientD{") with i e {v,¢} for the velocity compo-
nent takes the form

R265 —1|' o A !
ik_EA:TOE<[Ui(t+ t)—vi(1)]

X[+ A —v(O) Dljoro)=jp| -  (AB)

g D J
1— Q= — _
Dy =h,+ 9y aqu'l h,+ 04 de Gout Geg e Yoo In order to prove Eq(19) one adds Eq.A8) with i, k=x and
i,k=y, to find
R2
:hv+'——. (Al) 1 1
v 2RP=2 lim (0" ?(t+At) +0'%(1)
For the diffusion coefficienD; with i,ke{v,¢}, one finds a0
for i,k=v (see alsd56], Sec. 12.1.2 — 20" (t+ AV (D)) (1)=0 - (A9)
Dl(;%):R- (A2) Substracting Eq(A6) from Eqg. (A9) yields
This yields the Langevin equation 1
R?= lim — (v’ (t+ Ao’ () —v ' (t+ A0 (1)), 1y -
. R? at—oAt
v(t)=h,(v)+ 7—!— R, (1), (A3) (A10)
with the effective force In ord_er to calculatén,(v) without determiningR from the
experimental data, one takes advantage of
R2
heti(v)=h,(v)+ — (A4) 1 R?
v = lim — (v’ _—— o — —
hv(v) AILTOAI<U (t+At) v (t)>|v (t)=v v
and I' ,(t) satisfying Egs.(8) and (9). Applying the data (A11)
analysis technique discussed in Sec. IV yields the first
Kramers-Moyal(KM) coefficient of Eq.(A3): [see Eq(A5)] and inserts Eq(A10):

1 1 1
h,(v)= lim A—(v’(t+At)—v’(t)>|vr(t)=v— —lim —(v'(t+At)v'(t)—v’(t+At)-v'(1))
at—0Al U at—0At

v/ (t)=v

= lim —(v'(t+At) —v' (1)), y=p— i

m —
AtHOAt At— OAt v

1 1 <v’(t+At)v’(t)—v’(t+At)-v’(t)>

v/ (t)=v
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_AI:TOA_<U (t+At) v (t)>|v’(t) v ||m E

v/ (t+ A (1) —v' (t+At)-v'(t )>
v'(1)

v'(t)=v

[ L t+ At ), | i "(t+At)—v'(t+At) vv
= m S0 A) =0 O rg-u i g o' AY ' (tr 8D T

v/ (t)=v

(A12)

= nmi v/ (t+AL)- L—v ‘(1)
At (t) v'(t)=v

This corresponds to E@19). Note that this “projection method” gives a solution to the problem addressggbinSec. 12.1.2,
of how to determinén, without explicitly computing the fluctuation strengih
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