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Nichtlineare Schwingungen Dezember 2005

Physikalische Systeme werden meist anhand linearer N&herungen beschrieben. Ein klassisches
Beispiel hierfiir ist der harmonische Oszillator. Auf der anderen Seite wird aber fast jedes System,
betreibt man es nur mit geniigend grofien Amplituden (Energien), nichtlinear. Als Beispiel sei
hier die Frequenzverdopplung in nichtlinearen Kristallen genannt, die erst durch die Entwicklung
einer leistungsstarken Lichtquelle, des Lasers, verwirklicht werden konnte.

In dem Versuch sollen, ausgehend von einem einfachen linearen Drehpendel (Pohlsches Rad),
verschiedene nichtlineare Phdnomene demonstriert und analysiert werden. Beispiele sind die
Bistabilitéit, Resonanzfrequenzverschiebung, Periodenverdopplung und das Chaos.

Kenntnisse

e Angetriebener, geddmpfter, harmonischer Oszillator
e Superpositionsprinzip

e Potential, Stabilitit, Gleichgewicht, Attraktor

e Phasenraum, Trajektorien

e Periodenverdopplung

e deterministisches Chaos, Return-Map

e logistische Parabel

e Bifurkation
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1 Grundlagen

Lineare physikalische Systeme lassen sich einfach durch lineare Differentialgleichungen beschrei-
ben, die eine Inhomogenitit enthalten konnen. Als Beispiel sei hier die Ausbreitung von Licht als
elektromagnetische Welle im Vakuum genannt. Ein schwingungsfiahiges, lineares System schwingt
z.B. mit einer definierten Amplitude und Frequenz, wobei die Amplitude unabhéngig von der
Frequenz ist. Die allgemeine Losung der entsprechenden Differentialgleichungen erhélt man aus
der Losung der homogenen Gleichung plus einer speziellen Losung der inhomogenen Gleichung.
Die Superposition zweier Losungen ergibt wieder eine Losung der linearen DGL. Dieses Super-
positionsprinzip gilt nicht mehr in nichtlinearen Systemen. Nichtlineare Systeme werden durch
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nichtlineare Differentialgleichungen beschrieben, die sich im Allgemeinen nicht einfach analy-
tisch 16sen lassen. Ein schwingungsfihiges, nichtlineares System kann gleichzeitig mit mehreren
Frequenzen schwingen, wobei die Frequenz von der Amplitude abhéingt. Laserlicht fiihrt z. B. in
einem Medium zu einer Polarisation, welche bei grofien Lichtintensitdten nicht mehr linear zur
anregenden Amplitude des Feldes ist. Es entstehen hohere Harmonische, so dass auf diese Art
und Weise Licht mit der doppelten Frequenz erzeugt werden kann.

Bei nichtlinearen Systemen kann man eine interessante Beobachtung machen, wenn man die
Parameter entsprechend wéhlt: Chaotisches Verhalten. Mit Chaos ist gemeint, dass das Messsi-
gnal unregelméflig wird und keine Periode erkennbar ist. Scheinbar spielen Zufallskréfte eine
Rolle, die aber bei den zu untersuchenden Systemen auszuschlieen sind. Vielmehr werden die
Systeme durch einige wenige Differentialgleichungen beschrieben. So hat sich der Begriff , de-
terministisches Chaos“ gebildet. Das Verhalten des Systems ist durch die Anfangsbedingungen
vorherbestimmt, héingt aber sehr empfindlich von diesen ab.

Als nichtlineares System dient in diesem Versuch ein angetriebenes, geddmpftes Drehpendel mit
einer Nichtlinearitdt (siehe Abb. [1). Zuerst wird die Bewegungsgleichung aufgestellt und der

Abbildung 1: Schematischer Aufbau des Drehpendels (Pohlsches Rad)

statische sowie dynamische Fall fiir kleine und groSe Nichtlinearitéiten untersucht. Uber Peri-
odenverdopplungen gelangt man schliellich ins Chaos. Abschlieflend wird ein Zusammenhang
zwischen der logistischen Parabel und dem Pohlschen Rad hergestellt.

1.1 Bewegungsgleichung der angetriebenen, gedampften Oszillation mit einer Nicht-
linearitat

Das Drehpendel (Pohlsches Rad) besitzt das Trégheitsmoment Jy und eine Spiralfeder mit der
Direktionskonstanten D erzeugt das riicktreibende Drehmoment. Die Démpfung wird (abgese-
hen von der Reibung) durch eine Wirbelstrombremse bewirkt, wodurch ein winkelgeschwindig-
keitsabhiingiges Drehmoment K¢ auf das Rad einwirkt. Das freie Pendel wird somit durch die
Differentialgleichung:

Jop+ Kb+ Dp=0 (1)
beschrieben. Das Drehpendel wird durch einen Motor angeregt, der iiber einen Exzenter den
Befestigungspunkt der Drehfeder bewegt (siehe Abb.1). Dann ergibt sich:

Jod + Ké+ Do = Fsin(wt + Q). (2)

Dabei ist w/27 die Frequenz der Anregung und F ein Ma8 fiir die Amplitude der Anregung und
Q) eine beliebige Phase.



Eine Nichtlinearitdt wird durch ein zusétzliches Gewicht mg (siehe Abb.[1) eingefiihrt, wodurch
ein zusétzliches Drehmoment —mgr sin ¢ auf das Rad einwirkt. Auflerdem wird das Trégheits-
moment zu

J = Jo+ mr® (3)

verdndert (Steinerscher Satz), so dass aus Gl. (2) die Bewegungsleichung fiir das angetriebene,
geddmpfte, nichtlineare Drehpendel wird:

Jb+ K¢+ Do — Nsing = Fsin(wt +Q), (4)

wobei N durch
N = mgr (5)

definiert ist. Man erkennt sofort, dass der neue hinzugekommene Term nichtlinear in ¢ ist. Wir
wollen uns nun dieses System fiir den statischen und den dynamischen Fall genauer ansehen.

1.2 Der statische Fall

Zur Behandlung des statischen Falles setzt man F= 0, b = 0, d = 0 und erhélt:
D¢y = N sin ¢y, (6)

wobei ¢g die Losung im statischen Fall, also den ,,Ruhewinkel“ bezeichnet. Bei verschwindender
Nichtlinearitét erhélt man

$oln=0=0. (7)
Fiir wachsende Nichtlinearitdt N > 0 16st man Gl. (6]) grafisch (siehe Abb.2). Man erkennt, dass
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Abbildung 2: Graphische Lésung der Gleichung %@0 = sin @

fir D/N > 1 (kleine Nichtlinearitéit) nur die Losung ¢y = 0 existiert, wihrend fiir D/N < 1
mindestens drei Losungen existieren. Zwei Losungen sind stabil (symmetrisch zu ¢y = 0) und
eine ist instabil (¢9 = 0), wie man sich an dem Potential

1
V() = 5D<1>2 + N cos ¢ (8)
veranschaulichen kann. Wie hiingt das Potential mit der Bewegungsgleichung zusammen? Wie

sieht dieses Potential in Abhéingigkeit von D und N aus? Wann kann man von einem stabilen
Punkt sprechen?



Um die Lésungen ¢g ndherungsweise zu berechnen, entwickelt man den Sinus

) 1
smgb:qﬁ—ggb?’—i—... 9)
und setzt in Gleichung (6) ein. Mit ¢y = 0 existiert immer eine Losung und fiir D < N existieren

zwei Losungen:
¢o ~ £4/6(1 — D/N). (10)

Triigt man ¢g iiber D/N auf, erhilt man an der Stelle D = N eine Gabelung. Diese Anderung
der Losungsstruktur nennt man Bifurkation. Weil die Bifurkation die Form einer Heugabel hat,
spricht man auch von einer Pitchfork-Bifurkation.

Liegt der Nullpunkt des Pendels fiir N = 0 nicht bei ¢9 = 0°, so ist das Potential nicht mehr
symmetrisch zum Ursprung. Es entstehen neue Losungen der Ruhelage fiir N # 0 ,,aus dem
Nichts“. Man spricht von einer Sattel-Knoten-Bifurkation.

1.3 Der dynamische Fall mit Antrieb
1.3.1 Linearer Fall (N =0)

Ohne angehéingte Masse ist die Ruhelage ¢y = 0, und es ist Gl. (4) mit N = 0 zu l6sen. Die
Losung fiir den freien Fall (F' = 0) ist die bekannte geddmpfte, harmonische Schwingung

B(t) = ¢ exp(—t/7q) sin(wgt + ). (11)

mit einer Amplitude ¢ und einer Phase ¥, die von den Anfangsbedingungen abhingen. Es
gilt w = D/Jy (d.h. wy ist die Eigenfrequenz des ungeddmpften Systems), 79 = 2.Jo/K und
wr = \/wg -1/ Tg. Fiir die erzwungene Schwingung erhélt man

6(t) = dsin(wt) (12)

mit .
29 (F/Jo)?

YT @A )

Die Frequenz maximaler Amplitude (Resonanz) berechnet sich zu

WRes = \Jwd — 2/7¢ = wo(1 — (Towo) ?) . (14)

1.3.2 Kleine Nichtlinearitiat (N < D)

Fiir kleine Auslenkungen (linearer Grenzfall) um die Ruhelage ¢g = 0 beriicksichtigt man nur
den ersten Term in der Entwicklung (9)). Damit wird Gl. (4) zu

Jo+ K¢+ D'¢ = Fsin(wt + Q) (15)

mit D’ = D — N. In dieser Niherung entsteht wieder eine lineare Schwingungsgleichung, die
sich auf die gewohnte Art und Weise 16sen 1i3t. Damit erhélt man eine homogene Losung wie
in Gl. (11) mit den Resultaten (12) bis (14), wenn man die Ersetzungen Jo — J = Jy + mr?,
wG— @ =D)J, 10— 17 =2J/K und wy — @& = \/@w}—1/72 vornimmt. Fiir gréBere
Auslenkungen muss der nichste Term der Entwicklung (9) beriicksichtigt werden, so dass sich
in Gl (4) eine kubische Nichtlinearitit ergibt:

Jo+Kd+D'¢+ éN¢3 = Fsin(wt 4 Q). (16)
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Es gibt verschiedene physikalische Systeme, die durch diese Form von Differentialgleichung be-
schrieben werden. Man spricht auch von einem Duffing-Oszillator.

Mit dem harmonischen Ansatz berechnet man den Term

1 N . N .5,3 1 N - N¢?
6N¢3 = €¢3 sin®(wt) = ng)B(Zsinwt — 3 sindwt) = §¢3 sinwt = T“bgz)(t). (17)

Die entstehende Oberwelle der Frequenz 3w wird vernachlédssigt, weil sie auflerhalb der Reso-
nanzfrequenz liegt. Damit ergibt sich fiir die Bewegungsgleichung;:

Jo+ Ko+ (D + %&2) = Fsin(wt + Q). (18)

Diese Gleichung hat zum erstenmal nichtlinearen Charakter, da in ihr formal eine amplitu-
denabhiingige Federkonstante (D’ + N/8¢?) auftritt.
Die Amplitude kann man nun analog zum linearen Fall berechnen:

(F/J)° _ (F/J)°

¢* = - — . (19)
(@(2] + %¢2 — w?)2 4 4w? /72 (wanl — w?2)2 4 4w? /72
Die nichtlineare Frequenz wy ) ist damit definiert durch:
D' N .
W = Tt §¢2 - (20)

Gleichung (19) stellt eine implizite Gleichung fiir ¢ dar. Hieraus erhilt man folgende Aussagen:
Gegeniiber der linearen genédherten Resonanzfrequenz d}%{es = @(2) — 2/72 verschiebt sich die
Resonanzfrequenz nach

N,
wl%{es,nl = wg,nl - 2/7_2 = wo + gng - 2/7_2 (21)

und wird damit amplitudenabhéngig. Aus der Resonanzkurve im Kleinsignalfall erhélt man die

‘
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Abbildung 3: Konstruktion der nichtlinearen Resonanzkurve bei kubischer Nicht-
linearitat durch Scherung mit Hilfe der Geraden w? = &2 + 6.

nichtlineare Resonanzkurve niherunsweise durch Scherung (siche Abb.[3). Die Amplitude b, die
im Kleinsignalfall bei w? auftritt, wird im Grofsignalfall bei dem , Frequenzquadrat®

2 2, N o

auftreten. Aus Abb.[3/erkennt man, dass die Resonanzkurve , iiberhingt®, d. h., dass sie mehrdeu-
tig ist. Experimentell wird der Ast mit negativer Steigung nicht durchfahren, da dieser instabil
ist, sondern das System ,,springt“ entlang der gestrichelten Geraden, d.h. es ist bistabil. Man

erhilt so eine Hystereseschleife.

!
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1.3.3 GroBe Nichtlinearitat (N > D)

Bei grofler Nichtlinearitét ergeben sich zwei neue Ruhelagen ¢g # 0. Man entwickelt nun sin ¢
um ¢ mit ¢ = ¢p+a und erhilt so eine Taylor-Reihe. Es tritt wieder eine amplituedenabhéngige
Resonanzfrequenz auf, die im Gegensatz zu kleiner Nichtlinearitit zu tiefen Frequenzen verscho-
ben ist. Fiir die Amplitude erhilt man:

2 (F/J)

= 23
a ("J%,NL — w2)2 + 4w /72 (23)

mit der nichtlinearen Frequenz
N?
2 2 A2
wO,NL = Wy <1 — 4D204 ) . (24)

Man beachte, dass hier das wy aus dem linearen Fall zu verwenden ist(vgl. Abschnitt 1.3.1). Die
Resonanzkurve hingt nach links iiber (siche Abb. [4).

T

. 1 (ui~N2 ~2
Verschiebung um 4—D20.

Abbildung 4: Konstruktion der nichtlinearen Resonanzkurve bei quadratischer

Nichtlinearitat durch Scherung mit Hilfe der Geraden w? = wg — A 42,

1.4 Periodenverdopplungen und Chaos

Das getriebene Pohlsche Rad mit starker Nichtlinearitéit zeigt bei bestimmten experimentellen
Parametern chaotisches Verhalten. Der Weg ins Chaos fithrt iiber Periodenverdopplungen. Die
folgenden Uberlegungen sollen nun eine ,,Ordung® in dieses Chaos bringen. Hierbei wird zunichst
ein mathematisches Modell vorgestellt und dann eine ,,Messvorschrift“ entwickelt, die dann im
Experiment einen Vergleich mit diesem Modell zulésst.

1.4.1 Das mathematische Modell: Die logistische Parabel

Gegeben sei eine Folge (z,) mit
0<z <1 (25)
und
Tnt1 = flzn) =ax,(1 —2,) mit a<4. (26)

Die Funktion f bildet das Intervall [0,1] wieder in das Intervall [0,1] ab, so dass alle Folgenglieder
dieser rekursiv definierten Folge in diesem Intervall liegen. Die Konstruktion der Folgenglieder
mit Hilfe der Winkelhalbierenden wird in Abb.[5 deutlich.
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Abbildung 5: Konstruktion der Folgenglieder z,, mit Hilfe der logistischen Parabel

f(z) = az(l —x).

Das Verhalten der Folgenglieder hingt stark vom Parameter a ab. Wahlt man z. B. a = 2.5,
so werden die Folgenglieder x,, sich immer weiter dem Fixpunkt x,, = f(x,,) = 0.6 ndhern,
wobei der Startwert x; zwischen 0 und 1 liegen darf. Bei a = 3.3 verliert der Fixpunkt seine
Stabilitét, (x,) pendelt dann asymptotisch zwischen zwei Werten, die Fixpunkte von f o f sind.
Dieses Verhalten wird mit Periode 2 (P2) oder 2-Zyklus bezeichnet, wéhrend fiir a = 2.5 die
Bezeichnung P1 (1-Zyklus) zutrifft. Der Ubergang erfolgt in einer sog. Flip-Bifurkation. Bei
a = 3,5 erhélt man P4, bei a = 3.56 P8 usw. Fiir a > 3.5699... erkennt man jedoch keine
Periode mehr. Die getroffenen Punkte (x,) streuen in unregelméfiger Folge iiber einen breiten
Bereich der Parabel f(z), dieses Verhalten wird als Chaos bezeichnet. Bei a = 4 wird sogar
das ganze Intervall [0,1] dicht getroffen. Wie kann man die Stabilitit eines Fixpunktes fiir die
logistische Abbildung definieren und priifen?

Es gibt auch andere Iterationsfunktionen als die angefiihrte logistische Parabel, die chaotisches
Verhalten zeigen. Wie von M. J. Feigenbaum festgestellt, zeigen z.B. alle Funktionen, die sich
in ihrem Maximum quadratisch entwickeln lassen, qualitativ und asymptotisch quantitativ den-
selben Weg iiber Periodenverdopplungen ins Chaos.

1.4.2 Die Messvorschrift, Diskretisierung, Return-Map
Wie gewinnt man nun einen Zusammenhang zwischen dem Pohlschen Rad und der logistischen
Parabel?

Die Differentialgleichung (4) kann in ein autonomes System von drei Differentialgleichungen
iiberfithrt werden. Setzt man

y=9, (27)



so ergibt sich

K D | F
' = —7y—7sm¢+jsm(wz—|—9) (28)
¢ =y (29)
;o= 1. (30)

Die Gleichung (30) ldsst sich sofort losen:
z=1t.

Da die Variable z nur im periodischen Term von (28) vorkommt, kann z periodisch auf das Inter-
vall [0, 27 /w] beschriankt werden. Man erkennt, dass man einen dreidimensionalen Phasenraum
mit den Phasenraumvariablen ¢, y = ® und z = ¢ erhilt. In diesem werden die Trajektorien
verlaufen. Fiir einen Vergleich mit dem mathematischen Modell muss nun aus diesen Trajekto-
rien eine diskrete Folge von Zahlen gewonnen werden. Fiir diese Diskretisierung gibt es keine
Vorschrift, sie muss durch das System, d.h. durch die Trajektorien im Phasenraum selbst er-
folgen. Hierzu legt man in den Phasenraum eine Hyperfliche und betrachtet nun nur noch
die Durchstolpunkte der Trajektorien durch diese Fliche (Poincaré-Schnitt). Diese Durchsto$-
punkte bilden den in der Theorie bekannten ,seltsamen Attraktor“. Eine hiufig angewandte
Diskretisierung besteht darin, dass man sich aus dem zeitlichen Verlauf einer Phasenraumva-
riablen nur die Maxima oder Minima betrachtet. Aus dieser diskreten Folge von Zahlen kann
man dann die Return-Map entwickeln, indem man die n+1-te Zahl gegen die n-te Zahl auftrigt.
Viele Experimentatoren haben gezeigt, dass man mit dem exemplarisch vorgestellten Verfahren
,Return-Maps“ erhalten kann, bei denen die Messpunkte auf Kurven liegen, statt {iber einen
breiten Bereich zu streuen, wie man es bei Zufallskriften erwarten wiirde. Wie mufi man die
Hyperfliche legen, um Maxima und Minima zu erhalten?

Mithilfe der Return-Map ldsst sich deterministisches Chaos von stochastischem Rauschen un-
terscheiden. Wie unterscheidet sich das Amplituden-Spektrum eines n-Zyklus vom Spektrum
stochastischen Rauschens?

Abbildung 6: Numerische Lésung der Differentialgleichung (4). Projektion der
Trajektorien auf die ¢/¢-Ebene. Parameter: F/J = 21572, K/J = 0.799s~,
N/J = 1468572, w2 = 944572 (a) w = 2.50s7!, (b) w = 2.32571, (c)
w=230s"!, (d) w=225s"1

Das Verhalten des Systems kann anhand der Bewegungsgleichung untersucht werden. Hierzu
wurde diese Gleichung numerisch integriert, wobei die Parameter fiir den Fall grofier Nichtlinea-



ritdt (V > D) gewéhlt wurden. In Abb.[6 sind Projektionen der erhaltenen Trajektorien auf die
o/ gﬁ—Ebene dargestellt. Man erkennt deutlich die Perioden P1, P2 und P4 bei Verénderung des
Parameters. Bei weiterer Verdnderung wird das Verhalten chaotisch. Fiir diesen Fall wurde die
Return-Map in Abb.[7 dargestellt, wobei die Minima des ¢(t)-Verlaufs ausgewertet wurden. Der
Kurvenverlauf hat eine grofe Ahnlichkeit mit dem Modell der logistischen Parabel. Die Funktion
ist allerdings im Gegensatz zur logistischen Parabel im rechten Teil nicht eindeutig.
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Abbildung 7: Return-Map: Numerische Losung der Differentialgleichung (4). Pa-
rameter: F'/J = 2.1s72, K/J = 0.799s™!, N/J = 14.68s572, wg = 94452,
w? =2.25572,

2 Gerate und Zubehor

e Pohlsches Rad

e Computer mit Labview
Der Computer kann iiber den Winkelnehmer den Winkel des Rades in Abh#ngigkeit von
der Zeit aufnehmen. Die Bedienung erfolgt iiber eine Labview-Oberfliche.

e Frequenzgenerator

3 Aufgaben & Hinweise

3.1 Stabile Ruhelage, Bifurkationen

1. Bringen Sie das Drehpendel in die Nullstellung ¢9 = 0. Wirbelstrombremse und Motor
bleiben ausgeschaltet. Bringen Sie verschiedene Massen an das Rad an und messen Sie die
Auslenkung ¢ in der Ruhelage. Wie sieht ¢(/N/D) aus? Erkliren Sie das Verhalten anhand
des Potentials fiir N/D < 1, N/D =1 und N/D > 1. Bestimmen Sie die Direktionskon-
stante D.

2. Bringen Sie durch Verschieben des Exzenters das Rad leicht aus der Ruhelage, so dass
¢o ~ 3° gilt. Bestimmen Sie wie in Punkt 1 die Ruhelagen in Abhéngigkeit von N. Wie
sieht jetzt ¢(N/D) aus? Wie sieht das entsprechende Potential aus?



3.2 Freie Schwingungen mit und ohne Nichtlinearitit

1. Nehmen Sie mit dem Computer-Programm eine freie Schwingung ohne zusétzliche Mas-
se auf. Achten Sie darauf, dass Sie dabei die gleiche Dédmpfung wie in Aufgabenteil 3.3
verwenden. Wie sehen die Trajektorien im Phasenraum ¢(¢) aus?

2. Bringen Sie eine Masse an, so dass N/D > 1 gilt, aber die Nichtlinearitét noch nicht zu
grof} ist. Wie unterscheiden sich die Trajektorien im Phasenraum ¢(¢) von denen der freien
Schwingung?

3. Bestimmen Sie Jy, wp, K und 7 aus der freien linearen Schwingung.

3.3 Erzwungene Schwingung und Resonanzverschiebung

Stellen Sie eine kleine (N/D < 1) oder groBe (N/D > 1) Nichtlinearitéit ein. Messen Sie die
Resonanzkurve ¢(w) der angetriebenen, geddmpften Schwingung im Bereich 0.1 Hz< w <0.5 Hz.
Messen Sie die Resonanzkurve einmal fiir steigende und einmal fiir fallende Anregungsfrequen-
zen. Plotten Sie die Resonanzkurve in quadratischen Einheiten (vgl. Abb. 3 und 4) und zeichnen
Sie die in der Theorie hergeleitete Schergerade ein.

3.4 Periodenverdopplung und Chaos

Stellen Sie eine geeignete Nichtlinearitit ein. Variieren Sie von hohen Frequenzen kommend
die Anregungsfrequenz und messen Sie die Periode 1, Periode 2, Periode 4 und Chaos. Die
®(t)-Kurve fiir das Chaos sollte 100 Schwingungen enthalten. Diskutieren Sie die Phasenraum-
und ¢(t)-Diagramme. Stellen Sie eine Return-Map auf, indem Sie die Minima ¢min(N) (oder
Maxima) der Schwingungen bestimmen und ¢min (N + 1) gegen ¢nmin(N) auftragen. Vergleichen
Sie mit der logistischen Parabel.

4 Fragen zur Vorbereitung

e Wie sind die Begriffe ,lineares / nichtlineares System* definiert?

e Welches sind die wesentlichen Unterschiede zwischen linearen und nichtlinearen Systemen?
Welche linearen und nichtlinearen Systeme kennen Sie?

o Welche Losungstechniken kennen Sie fiir lineare und nichtlineare Differentialgleichungen?
e Wodurch wird die Bewegungsgleichung beim Pohlschen Rad nichtlinear?
e Was bezeichnet man als Bifurkation? Gibt es Bifurkationen in linearen Systemen?

e Fiir welche Systeme kann man ein Potential finden? Wie unterscheidet man stabile und
instabile Punkte in einem Potential?

e Was versteht man unter Phasenraum? Was ist ein Freiheitsgrad?
e Was ist eine Trajektorie? Wann sind Trajektorien eindeutig?

o Wie sieht die Bewegungsgleichung einer erzwungenen Schwingung mit Ddmpfung und ohne
Nichtlinearitdt aus? Wie hingt bei der erzwungenen Schwingung die Amplitude von der
Erregerfrequenz ab?

e Was versteht man unter Periodenverdopplung?
e Wann spricht man von Chaos?

o Welcher Zusammenhang besteht zwischen der logistischen Parabel und der Bewegungs-
gleichung fiir das angetriebene, geddmpfte Pohlsche Rad mit Nichtlinearitat?

10



	Abstract
	Kenntnisse
	Literatur
	Grundlagen
	Bewegungsgleichung der angetriebenen, gedämpften Oszillation mit einer Nichtlinearität
	Der statische Fall
	Der dynamische Fall mit Antrieb
	Linearer Fall (N=0)
	Kleine Nichtlinearität (N<D)
	Große Nichtlinearität (N>D)

	Periodenverdopplungen und Chaos
	Das mathematische Modell: Die logistische Parabel
	Die Messvorschrift, Diskretisierung, Return-Map


	Geräte und Zubehör
	Aufgaben & Hinweise
	Stabile Ruhelage, Bifurkationen
	Freie Schwingungen mit und ohne Nichtlinearität
	Erzwungene Schwingung und Resonanzverschiebung
	Periodenverdopplung und Chaos

	Fragen zur Vorbereitung

