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Physikalische Systeme werden meist anhand linearer Näherungen beschrieben. Ein klassisches
Beispiel hierfür ist der harmonische Oszillator. Auf der anderen Seite wird aber fast jedes System,
betreibt man es nur mit genügend großen Amplituden (Energien), nichtlinear. Als Beispiel sei
hier die Frequenzverdopplung in nichtlinearen Kristallen genannt, die erst durch die Entwicklung
einer leistungsstarken Lichtquelle, des Lasers, verwirklicht werden konnte.

In dem Versuch sollen, ausgehend von einem einfachen linearen Drehpendel (Pohlsches Rad),
verschiedene nichtlineare Phänomene demonstriert und analysiert werden. Beispiele sind die
Bistabilität, Resonanzfrequenzverschiebung, Periodenverdopplung und das Chaos.

Kenntnisse

• Angetriebener, gedämpfter, harmonischer Oszillator

• Superpositionsprinzip

• Potential, Stabilität, Gleichgewicht, Attraktor

• Phasenraum, Trajektorien

• Periodenverdopplung

• deterministisches Chaos, Return-Map

• logistische Parabel

• Bifurkation
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1 Grundlagen

Lineare physikalische Systeme lassen sich einfach durch lineare Differentialgleichungen beschrei-
ben, die eine Inhomogenität enthalten können. Als Beispiel sei hier die Ausbreitung von Licht als
elektromagnetische Welle im Vakuum genannt. Ein schwingungsfähiges, lineares System schwingt
z. B. mit einer definierten Amplitude und Frequenz, wobei die Amplitude unabhängig von der
Frequenz ist. Die allgemeine Lösung der entsprechenden Differentialgleichungen erhält man aus
der Lösung der homogenen Gleichung plus einer speziellen Lösung der inhomogenen Gleichung.
Die Superposition zweier Lösungen ergibt wieder eine Lösung der linearen DGL. Dieses Super-
positionsprinzip gilt nicht mehr in nichtlinearen Systemen. Nichtlineare Systeme werden durch
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nichtlineare Differentialgleichungen beschrieben, die sich im Allgemeinen nicht einfach analy-
tisch lösen lassen. Ein schwingungsfähiges, nichtlineares System kann gleichzeitig mit mehreren
Frequenzen schwingen, wobei die Frequenz von der Amplitude abhängt. Laserlicht führt z. B. in
einem Medium zu einer Polarisation, welche bei großen Lichtintensitäten nicht mehr linear zur
anregenden Amplitude des Feldes ist. Es entstehen höhere Harmonische, so dass auf diese Art
und Weise Licht mit der doppelten Frequenz erzeugt werden kann.

Bei nichtlinearen Systemen kann man eine interessante Beobachtung machen, wenn man die
Parameter entsprechend wählt: Chaotisches Verhalten. Mit Chaos ist gemeint, dass das Messsi-
gnal unregelmäßig wird und keine Periode erkennbar ist. Scheinbar spielen Zufallskräfte eine
Rolle, die aber bei den zu untersuchenden Systemen auszuschließen sind. Vielmehr werden die
Systeme durch einige wenige Differentialgleichungen beschrieben. So hat sich der Begriff

”
de-

terministisches Chaos“ gebildet. Das Verhalten des Systems ist durch die Anfangsbedingungen
vorherbestimmt, hängt aber sehr empfindlich von diesen ab.

Als nichtlineares System dient in diesem Versuch ein angetriebenes, gedämpftes Drehpendel mit
einer Nichtlinearität (siehe Abb. 1). Zuerst wird die Bewegungsgleichung aufgestellt und der

Abbildung 1: Schematischer Aufbau des Drehpendels (Pohlsches Rad)

statische sowie dynamische Fall für kleine und große Nichtlinearitäten untersucht. Über Peri-
odenverdopplungen gelangt man schließlich ins Chaos. Abschließend wird ein Zusammenhang
zwischen der logistischen Parabel und dem Pohlschen Rad hergestellt.

1.1 Bewegungsgleichung der angetriebenen, gedämpften Oszillation mit einer Nicht-
linearität

Das Drehpendel (Pohlsches Rad) besitzt das Trägheitsmoment J0 und eine Spiralfeder mit der
Direktionskonstanten D erzeugt das rücktreibende Drehmoment. Die Dämpfung wird (abgese-
hen von der Reibung) durch eine Wirbelstrombremse bewirkt, wodurch ein winkelgeschwindig-
keitsabhängiges Drehmoment Kφ̇ auf das Rad einwirkt. Das freie Pendel wird somit durch die
Differentialgleichung:

J0φ̈ + Kφ̇ + Dφ = 0 (1)

beschrieben. Das Drehpendel wird durch einen Motor angeregt, der über einen Exzenter den
Befestigungspunkt der Drehfeder bewegt (siehe Abb. 1). Dann ergibt sich:

J0φ̈ + Kφ̇ + Dφ = F̂ sin(ωt + Ω) . (2)

Dabei ist ω/2π die Frequenz der Anregung und F̂ ein Maß für die Amplitude der Anregung und
Ω eine beliebige Phase.
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Eine Nichtlinearität wird durch ein zusätzliches Gewicht mg (siehe Abb. 1) eingeführt, wodurch
ein zusätzliches Drehmoment −mgr sin φ auf das Rad einwirkt. Außerdem wird das Trägheits-
moment zu

J = J0 + mr2 (3)

verändert (Steinerscher Satz), so dass aus Gl. (2) die Bewegungsleichung für das angetriebene,
gedämpfte, nichtlineare Drehpendel wird:

Jφ̈ + Kφ̇ + Dφ − N sin φ = F̂ sin(ωt + Ω) , (4)

wobei N durch
N = mgr (5)

definiert ist. Man erkennt sofort, dass der neue hinzugekommene Term nichtlinear in φ ist. Wir
wollen uns nun dieses System für den statischen und den dynamischen Fall genauer ansehen.

1.2 Der statische Fall

Zur Behandlung des statischen Falles setzt man F̂ = 0, Φ̇ = 0, Φ̈ = 0 und erhält:

Dφ0 = N sin φ0 , (6)

wobei φ0 die Lösung im statischen Fall, also den
”
Ruhewinkel“ bezeichnet. Bei verschwindender

Nichtlinearität erhält man
φ0|N=0 = 0 . (7)

Für wachsende Nichtlinearität N > 0 löst man Gl. (6) grafisch (siehe Abb. 2). Man erkennt, dass

Abbildung 2: Graphische Lösung der Gleichung D
N

Φ0 = sinΦ0

für D/N > 1 (kleine Nichtlinearität) nur die Lösung φ0 = 0 existiert, während für D/N < 1
mindestens drei Lösungen existieren. Zwei Lösungen sind stabil (symmetrisch zu φ0 = 0) und
eine ist instabil (φ0 = 0), wie man sich an dem Potential

V (φ) =
1

2
DΦ2 + N cos φ (8)

veranschaulichen kann. Wie hängt das Potential mit der Bewegungsgleichung zusammen? Wie
sieht dieses Potential in Abhängigkeit von D und N aus? Wann kann man von einem stabilen
Punkt sprechen?

3



Um die Lösungen φ0 näherungsweise zu berechnen, entwickelt man den Sinus

sin φ = φ −
1

6
φ3 + . . . (9)

und setzt in Gleichung (6) ein. Mit φ0 = 0 existiert immer eine Lösung und für D < N existieren
zwei Lösungen:

φ0 ≈ ±
√

6(1 − D/N) . (10)

Trägt man φ0 über D/N auf, erhält man an der Stelle D = N eine Gabelung. Diese Änderung
der Lösungsstruktur nennt man Bifurkation. Weil die Bifurkation die Form einer Heugabel hat,
spricht man auch von einer Pitchfork-Bifurkation.

Liegt der Nullpunkt des Pendels für N = 0 nicht bei φ0 = 0 ◦, so ist das Potential nicht mehr
symmetrisch zum Ursprung. Es entstehen neue Lösungen der Ruhelage für N 6= 0

”
aus dem

Nichts“. Man spricht von einer Sattel-Knoten-Bifurkation.

1.3 Der dynamische Fall mit Antrieb

1.3.1 Linearer Fall (N = 0)

Ohne angehängte Masse ist die Ruhelage φ0 = 0, und es ist Gl. (4) mit N = 0 zu lösen. Die
Lösung für den freien Fall (F̂ = 0) ist die bekannte gedämpfte, harmonische Schwingung

φ(t) = φ̄ exp(−t/τ0) sin(ωft + Ψ) . (11)

mit einer Amplitude φ̄ und einer Phase Ψ, die von den Anfangsbedingungen abhängen. Es
gilt ω2

0 = D/J0 (d.h. ω0 ist die Eigenfrequenz des ungedämpften Systems), τ0 = 2J0/K und
ωf =

√

ω2
0 − 1/τ2

0 . Für die erzwungene Schwingung erhält man

φ(t) = φ̂ sin(ωt) (12)

mit

φ̂2 =
(F̂ /J0)

2

(ω2
0 − ω2)2 + 4ω2/τ2

0

. (13)

Die Frequenz maximaler Amplitude (Resonanz) berechnet sich zu

ωRes =
√

ω2
0 − 2/τ2

0 = ω0(1 − (τ0ω0)
−2) . (14)

1.3.2 Kleine Nichtlinearität (N < D)

Für kleine Auslenkungen (linearer Grenzfall) um die Ruhelage φ0 = 0 berücksichtigt man nur
den ersten Term in der Entwicklung (9). Damit wird Gl. (4) zu

Jφ̈ + Kφ̇ + D′φ = F̂ sin(ωt + Ω) (15)

mit D′ = D − N . In dieser Näherung entsteht wieder eine lineare Schwingungsgleichung, die
sich auf die gewohnte Art und Weise lösen läßt. Damit erhält man eine homogene Lösung wie
in Gl. (11) mit den Resultaten (12) bis (14), wenn man die Ersetzungen J0 → J = J0 + mr2,
ω2

0 → ω̃2
0 = D′/J , τ0 → τ = 2J/K und ωf → ω̃f =

√

ω̃2
0 − 1/τ2 vornimmt. Für größere

Auslenkungen muss der nächste Term der Entwicklung (9) berücksichtigt werden, so dass sich
in Gl. (4) eine kubische Nichtlinearität ergibt:

Jφ̈ + Kφ̇ + D′φ +
1

6
Nφ3 = F̂ sin(ωt + Ω) . (16)
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Es gibt verschiedene physikalische Systeme, die durch diese Form von Differentialgleichung be-
schrieben werden. Man spricht auch von einem Duffing-Oszillator.

Mit dem harmonischen Ansatz (12) berechnet man den Term

1

6
Nφ3 =

N

6
φ̂3 sin3(ωt) =

N

6
φ̂3(

3

4
sin ωt −

1

4
sin 3ωt) =

N

8
φ̂3 sin ωt =

Nφ̂2

8
φ(t) . (17)

Die entstehende Oberwelle der Frequenz 3ω wird vernachlässigt, weil sie außerhalb der Reso-
nanzfrequenz liegt. Damit ergibt sich für die Bewegungsgleichung:

Jφ̈ + Kφ̇ + (D′ +
N

8
φ̂2) = F̂ sin(ωt + Ω) . (18)

Diese Gleichung hat zum erstenmal nichtlinearen Charakter, da in ihr formal eine amplitu-
denabhängige Federkonstante (D′ + N/8φ̂2) auftritt.

Die Amplitude kann man nun analog zum linearen Fall berechnen:

φ̂2 =
(F̂ /J)2

(ω̃2
0 + N

8J
φ̂2 − ω2)2 + 4ω2/τ2

=
(F̂ /J)2

(ω2
0,nl

− ω2)2 + 4ω2/τ2
. (19)

Die nichtlineare Frequenz ω0,nl ist damit definiert durch:

ω2
0,nl =

D′

J
+

N

8J
φ̂2 . (20)

Gleichung (19) stellt eine implizite Gleichung für φ̂ dar. Hieraus erhält man folgende Aussagen:
Gegenüber der linearen genäherten Resonanzfrequenz ω̃2

Res
= ω̃2

0 − 2/τ2 verschiebt sich die
Resonanzfrequenz nach

ω2
Res,nl = ω2

0,nl − 2/τ2 = ω̃0 +
N

8J
φ̂2 − 2/τ2 (21)

und wird damit amplitudenabhängig. Aus der Resonanzkurve im Kleinsignalfall erhält man die

f
2

Verschiebung um
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Abbildung 3: Konstruktion der nichtlinearen Resonanzkurve bei kubischer Nicht-
linearität durch Scherung mit Hilfe der Geraden ω2 = ω̃2

0 + N
8J

φ̂2.

nichtlineare Resonanzkurve näherunsweise durch Scherung (siehe Abb. 3). Die Amplitude φ̂, die
im Kleinsignalfall bei ω2 auftritt, wird im Großsignalfall bei dem

”
Frequenzquadrat“

ω′2 ≈ ω2 +
N

8J
φ̂2 (22)

auftreten. Aus Abb. 3 erkennt man, dass die Resonanzkurve
”
überhängt“, d. h., dass sie mehrdeu-

tig ist. Experimentell wird der Ast mit negativer Steigung nicht durchfahren, da dieser instabil
ist, sondern das System

”
springt“ entlang der gestrichelten Geraden, d. h. es ist bistabil. Man

erhält so eine Hystereseschleife.
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1.3.3 Große Nichtlinearität (N > D)

Bei großer Nichtlinearität ergeben sich zwei neue Ruhelagen φ0 6= 0. Man entwickelt nun sin φ
um φ0 mit φ = φ0+α und erhält so eine Taylor-Reihe. Es tritt wieder eine amplituedenabhängige
Resonanzfrequenz auf, die im Gegensatz zu kleiner Nichtlinearität zu tiefen Frequenzen verscho-
ben ist. Für die Amplitude erhält man:

α̂2 =
(F̂ /J)2

(ω2
0,NL

− ω2)2 + 4ω2/τ2
(23)

mit der nichtlinearen Frequenz

ω2
0,NL = ω2

0

(

1 −
N2

4D2
α̂2

)

. (24)

Man beachte, dass hier das ω0 aus dem linearen Fall zu verwenden ist(vgl. Abschnitt 1.3.1). Die
Resonanzkurve hängt nach links über (siehe Abb. 4).
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Abbildung 4: Konstruktion der nichtlinearen Resonanzkurve bei quadratischer
Nichtlinearität durch Scherung mit Hilfe der Geraden ω2 = ω2

0 −
N2

4DJ
α̂2.

1.4 Periodenverdopplungen und Chaos

Das getriebene Pohlsche Rad mit starker Nichtlinearität zeigt bei bestimmten experimentellen
Parametern chaotisches Verhalten. Der Weg ins Chaos führt über Periodenverdopplungen. Die
folgenden Überlegungen sollen nun eine

”
Ordung“ in dieses Chaos bringen. Hierbei wird zunächst

ein mathematisches Modell vorgestellt und dann eine
”
Messvorschrift“ entwickelt, die dann im

Experiment einen Vergleich mit diesem Modell zulässt.

1.4.1 Das mathematische Modell: Die logistische Parabel

Gegeben sei eine Folge 〈xn〉 mit
0 < x1 < 1 (25)

und
xn+1 = f(xn) = axn(1 − xn) mit a ≤ 4 . (26)

Die Funktion f bildet das Intervall [0,1] wieder in das Intervall [0,1] ab, so dass alle Folgenglieder
dieser rekursiv definierten Folge in diesem Intervall liegen. Die Konstruktion der Folgenglieder
mit Hilfe der Winkelhalbierenden wird in Abb. 5 deutlich.
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a=2,9 a=3,3

a=3,5 a=3,7

Abbildung 5: Konstruktion der Folgenglieder xn mit Hilfe der logistischen Parabel
f(x) = ax(1 − x).

Das Verhalten der Folgenglieder hängt stark vom Parameter a ab. Wählt man z. B. a = 2.5,
so werden die Folgenglieder xn sich immer weiter dem Fixpunkt xn = f(xn) = 0.6 nähern,
wobei der Startwert x1 zwischen 0 und 1 liegen darf. Bei a = 3.3 verliert der Fixpunkt seine
Stabilität, 〈xn〉 pendelt dann asymptotisch zwischen zwei Werten, die Fixpunkte von f ◦ f sind.
Dieses Verhalten wird mit Periode 2 (P2) oder 2-Zyklus bezeichnet, während für a = 2.5 die
Bezeichnung P1 (1-Zyklus) zutrifft. Der Übergang erfolgt in einer sog. Flip-Bifurkation. Bei
a = 3, 5 erhält man P4, bei a = 3.56 P8 usw. Für a > 3.5699 . . . erkennt man jedoch keine
Periode mehr. Die getroffenen Punkte 〈xn〉 streuen in unregelmäßiger Folge über einen breiten
Bereich der Parabel f(x), dieses Verhalten wird als Chaos bezeichnet. Bei a = 4 wird sogar
das ganze Intervall [0,1] dicht getroffen. Wie kann man die Stabilität eines Fixpunktes für die
logistische Abbildung definieren und prüfen?

Es gibt auch andere Iterationsfunktionen als die angeführte logistische Parabel, die chaotisches
Verhalten zeigen. Wie von M. J. Feigenbaum festgestellt, zeigen z.B. alle Funktionen, die sich
in ihrem Maximum quadratisch entwickeln lassen, qualitativ und asymptotisch quantitativ den-
selben Weg über Periodenverdopplungen ins Chaos.

1.4.2 Die Messvorschrift, Diskretisierung, Return-Map

Wie gewinnt man nun einen Zusammenhang zwischen dem Pohlschen Rad und der logistischen
Parabel?

Die Differentialgleichung (4) kann in ein autonomes System von drei Differentialgleichungen
überführt werden. Setzt man

y = φ̇ , (27)
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so ergibt sich

ẏ = −
K

J
y −

D

J
sin φ +

F̂

J
sin(ωz + Ω) (28)

φ̇ = y (29)

ż = 1 . (30)

Die Gleichung (30) lässt sich sofort lösen:

z = t .

Da die Variable z nur im periodischen Term von (28) vorkommt, kann z periodisch auf das Inter-
vall [0, 2π/ω] beschränkt werden. Man erkennt, dass man einen dreidimensionalen Phasenraum
mit den Phasenraumvariablen φ, y = φ̇ und z = t erhält. In diesem werden die Trajektorien
verlaufen. Für einen Vergleich mit dem mathematischen Modell muss nun aus diesen Trajekto-
rien eine diskrete Folge von Zahlen gewonnen werden. Für diese Diskretisierung gibt es keine
Vorschrift, sie muss durch das System, d. h. durch die Trajektorien im Phasenraum selbst er-
folgen. Hierzu legt man in den Phasenraum eine Hyperfläche und betrachtet nun nur noch
die Durchstoßpunkte der Trajektorien durch diese Fläche (Poincaré-Schnitt). Diese Durchstoß-
punkte bilden den in der Theorie bekannten

”
seltsamen Attraktor“. Eine häufig angewandte

Diskretisierung besteht darin, dass man sich aus dem zeitlichen Verlauf einer Phasenraumva-
riablen nur die Maxima oder Minima betrachtet. Aus dieser diskreten Folge von Zahlen kann
man dann die Return-Map entwickeln, indem man die n+1-te Zahl gegen die n-te Zahl aufträgt.
Viele Experimentatoren haben gezeigt, dass man mit dem exemplarisch vorgestellten Verfahren

”
Return-Maps“ erhalten kann, bei denen die Messpunkte auf Kurven liegen, statt über einen

breiten Bereich zu streuen, wie man es bei Zufallskräften erwarten würde. Wie muß man die
Hyperfläche legen, um Maxima und Minima zu erhalten?

Mithilfe der Return-Map lässt sich deterministisches Chaos von stochastischem Rauschen un-
terscheiden. Wie unterscheidet sich das Amplituden-Spektrum eines n-Zyklus vom Spektrum
stochastischen Rauschens?

a)

b)

c)

d)

ff

ff

f
.

f
.

f
.

f
.

Abbildung 6: Numerische Lösung der Differentialgleichung (4). Projektion der
Trajektorien auf die φ/φ̇-Ebene. Parameter: F/J = 2.1 s−2, K/J = 0.799 s−1,
N/J = 14.68 s−2, ω2

0 = 9.44 s−2. (a) ω = 2.50 s−1, (b) ω = 2.32 s−1, (c)
ω = 2.30 s−1, (d) ω = 2.25 s−1.

Das Verhalten des Systems kann anhand der Bewegungsgleichung (4) untersucht werden. Hierzu
wurde diese Gleichung numerisch integriert, wobei die Parameter für den Fall großer Nichtlinea-
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rität (N > D) gewählt wurden. In Abb. 6 sind Projektionen der erhaltenen Trajektorien auf die
φ/φ̇-Ebene dargestellt. Man erkennt deutlich die Perioden P1, P2 und P4 bei Veränderung des
Parameters. Bei weiterer Veränderung wird das Verhalten chaotisch. Für diesen Fall wurde die
Return-Map in Abb. 7 dargestellt, wobei die Minima des φ(t)-Verlaufs ausgewertet wurden. Der
Kurvenverlauf hat eine große Ähnlichkeit mit dem Modell der logistischen Parabel. Die Funktion
ist allerdings im Gegensatz zur logistischen Parabel im rechten Teil nicht eindeutig.

Abbildung 7: Return-Map: Numerische Lösung der Differentialgleichung (4). Pa-
rameter: F̂ /J = 2.1 s−2, K/J = 0.799 s−1, N/J = 14.68 s−2, ω2

0 = 9.44 s−2,
ω2 = 2.25 s−2.

2 Geräte und Zubehör

• Pohlsches Rad

• Computer mit Labview
Der Computer kann über den Winkelnehmer den Winkel des Rades in Abhängigkeit von
der Zeit aufnehmen. Die Bedienung erfolgt über eine Labview-Oberfläche.

• Frequenzgenerator

3 Aufgaben & Hinweise

3.1 Stabile Ruhelage, Bifurkationen

1. Bringen Sie das Drehpendel in die Nullstellung φ0 = 0. Wirbelstrombremse und Motor
bleiben ausgeschaltet. Bringen Sie verschiedene Massen an das Rad an und messen Sie die
Auslenkung φ in der Ruhelage. Wie sieht φ(N/D) aus? Erklären Sie das Verhalten anhand
des Potentials für N/D < 1, N/D = 1 und N/D > 1. Bestimmen Sie die Direktionskon-
stante D.

2. Bringen Sie durch Verschieben des Exzenters das Rad leicht aus der Ruhelage, so dass
φ0 ≈ 3 ◦ gilt. Bestimmen Sie wie in Punkt 1 die Ruhelagen in Abhängigkeit von N . Wie
sieht jetzt φ(N/D) aus? Wie sieht das entsprechende Potential aus?
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3.2 Freie Schwingungen mit und ohne Nichtlinearität

1. Nehmen Sie mit dem Computer-Programm eine freie Schwingung ohne zusätzliche Mas-
se auf. Achten Sie darauf, dass Sie dabei die gleiche Dämpfung wie in Aufgabenteil 3.3
verwenden. Wie sehen die Trajektorien im Phasenraum φ̇(φ) aus?

2. Bringen Sie eine Masse an, so dass N/D > 1 gilt, aber die Nichtlinearität noch nicht zu
groß ist. Wie unterscheiden sich die Trajektorien im Phasenraum φ̇(φ) von denen der freien
Schwingung?

3. Bestimmen Sie J0, ω0, K und τ aus der freien linearen Schwingung.

3.3 Erzwungene Schwingung und Resonanzverschiebung

Stellen Sie eine kleine (N/D < 1) oder große (N/D > 1) Nichtlinearität ein. Messen Sie die
Resonanzkurve φ(ω) der angetriebenen, gedämpften Schwingung im Bereich 0.1 Hz< ω <0.5 Hz.
Messen Sie die Resonanzkurve einmal für steigende und einmal für fallende Anregungsfrequen-
zen. Plotten Sie die Resonanzkurve in quadratischen Einheiten (vgl. Abb. 3 und 4) und zeichnen
Sie die in der Theorie hergeleitete Schergerade ein.

3.4 Periodenverdopplung und Chaos

Stellen Sie eine geeignete Nichtlinearität ein. Variieren Sie von hohen Frequenzen kommend
die Anregungsfrequenz und messen Sie die Periode 1, Periode 2, Periode 4 und Chaos. Die
Φ(t)-Kurve für das Chaos sollte 100 Schwingungen enthalten. Diskutieren Sie die Phasenraum-
und φ(t)-Diagramme. Stellen Sie eine Return-Map auf, indem Sie die Minima φmin(N) (oder
Maxima) der Schwingungen bestimmen und φmin(N + 1) gegen φmin(N) auftragen. Vergleichen
Sie mit der logistischen Parabel.

4 Fragen zur Vorbereitung

• Wie sind die Begriffe
”
lineares / nichtlineares System“ definiert?

• Welches sind die wesentlichen Unterschiede zwischen linearen und nichtlinearen Systemen?
Welche linearen und nichtlinearen Systeme kennen Sie?

• Welche Lösungstechniken kennen Sie für lineare und nichtlineare Differentialgleichungen?

• Wodurch wird die Bewegungsgleichung beim Pohlschen Rad nichtlinear?

• Was bezeichnet man als Bifurkation? Gibt es Bifurkationen in linearen Systemen?

• Für welche Systeme kann man ein Potential finden? Wie unterscheidet man stabile und
instabile Punkte in einem Potential?

• Was versteht man unter Phasenraum? Was ist ein Freiheitsgrad?

• Was ist eine Trajektorie? Wann sind Trajektorien eindeutig?

• Wie sieht die Bewegungsgleichung einer erzwungenen Schwingung mit Dämpfung und ohne
Nichtlinearität aus? Wie hängt bei der erzwungenen Schwingung die Amplitude von der
Erregerfrequenz ab?

• Was versteht man unter Periodenverdopplung?

• Wann spricht man von Chaos?

• Welcher Zusammenhang besteht zwischen der logistischen Parabel und der Bewegungs-
gleichung für das angetriebene, gedämpfte Pohlsche Rad mit Nichtlinearität?
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