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Die Hauptaufgabe der Nachrichtentechnik besteht darin, aus einem Signal Information zu ge-
winnen. Dazu ist es im Allgemeinen notwendig, ein empfangenes Signal mit einem anderen,
bekannten Signal zu vergleichen. Ein Signal ist die Darstellung einer Nachricht durch physikali-
sche Größen wie z.B. elektrische Spannungen oder Feldstärken, wobei ein Signal sich gewöhnlich
zeitlich verändert. In allen Korrelationsverfahren wird ein Maß für die Ähnlichkeit zweier Sig-
nale berechnet. Auf diesem Ähnlichkeitsvergleich lassen sich z.B. wichtige Empfangsverfahren
aufbauen.

In dem Versuch werden Autokorrelationsfunktionen von determinierten Signalen (Sinus, Dreieck,
Rechteck, ...) gemessen. Dazu wird das Eingangssignal in zwei Signale geteilt, wobei ein Signal
gegenüber dem anderen zeitlich verzögert wird. Beide Teilsignale werden nachfolgend elektro-
nisch multipliziert und integriert. Mit derselben Technik lässt sich auch eine Fourieranalyse z.B.
eines Rechteck-Signals durchführen. Eine technische Anwendung der Korrelationstechnik ist die
Lock-In Technik zur Messung kleinster periodischer Signale, was am Beispiel eines Widerstandes
demonstriert wird, wo der zu messende Strom sehr klein ist.

Kenntnisse

• Energie und Leistung von Signalen

• Fouriertransformation

• Korrelation und Faltung

• Autokorrelation, Kreuzkorrelation

• Schematischer Aufbau eines Lock-In Verstärkers
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1 Grundlagen

1.1 Korrelationskoeffizient für Energiesignale

Wir wollen uns zunächst auf Signale beschränken, deren
”
Energie“

Es =

+∞
∫

−∞

s2(t) dt (1)

endlich ist. Ein solches Signal heißt Energiesignal. Wie muss es beschaffen sein? Um ein Maß für
die Ähnlichkeit zweier Signale s(t) und g(t) anzugeben, liegt es nahe, die Energie des Differenz-
signals ∆(t) = s(t) − g(t),

E∆ =

+∞
∫

−∞

[s(t) − g(t)]2 dt (2)

zu betrachten. E∆ entspricht der mittleren quadratischen Abweichung der beiden Signale von-
einander. Um ein Ähnlichkeitsmaß ϕsg anzugeben, das maximal wird für möglichst ähnliche
Signale, und für das ϕsg = 0 gilt, wenn s(t) und g(t)

”
völlig unähnliche“ Signale sind, definiert

man den Korrelationskoeffizienten

ϕE
sg =

1

2
(Es + Eg − E∆) . (3)

Das hochgestellte E soll andeuten, dass diese Definition nur für Energiesignale gilt. Wir erhalten
damit

ϕE
sg =

+∞
∫

−∞

s(t)g(t) dt . (4)

Diese Definition von ϕE
sg besitzt die Eigenschaft eines Skalarproduktes, es ist also ϕE

sg = 0 für
orthogonale Signale.

1.2 Korrelationsfunktion für Energiesignale

Bei der Betrachtung der Korrelationskoeffizienten fällt nun auf, dass Signale s(t) und g(t), die
im Prinzip identisch sind, einen Korrelationskoeffizienten ϕE

sg = 0 aufweisen, wenn sie zeitlich

gegeneinander verschoben sind, so dass sie keinen
”
Überlapp“ mehr aufweisen. Solche unerhebli-

chen Signalverzögerungen sind jedoch allgegenwärtig, sie werden z. B. durch endliche Laufzeiten
auf Nachrichtenkanälen verursacht. Um solche Phänomene behandeln zu können, führt man die
Korrelationsfunktion ϕE

sg(τ) ein, in der eine Zeitverzögerung τ explizit berücksichtigt ist:

ϕE
sg(τ) =

+∞
∫

−∞

s(t)g(t + τ) dt . (5)

Beim Durchfahren der Verzögerung τ werden die Signale s(t) und g(t) quasi
”
durcheinander

durchgeschoben“. Im Fall s(t) = g(t) heißt ϕE
ss Autokorrelationsfunktion (AKF), während im

Fall s(t) 6= g(t) man ϕE
sg Kreuzkorrelationsfunktion (KKF) nennt. Aus der Definition Gl. (5)

folgt ϕE
sg(τ) = ϕE

gs(−τ), die AKF ist also stets eine gerade Funktion.
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1.3 Korrelation und Faltung

Führt man im Korrelationsintegral die Substitution t = −Θ durch, so erhält man

ϕE
sg(τ) =

+∞
∫

−∞

s(−Θ)g(τ − Θ) dΘ . (6)

Mit der Definition des Faltungsproduktes1

s(τ) ∗ g(τ) =

+∞
∫

−∞

s(t)g(τ − t) dt (7)

lässt sich die Korrelationsfunktion demnach als Faltung schreiben:

ϕE
sg = s(−τ) ∗ g(τ) . (8)

Sei S(f) die Fouriertransformierte von s(t). Da die Faltung zweier Zeitsignale einer Multiplika-
tion ihrer Fouriertransformierten entspricht, folgt mit

S∗(f)S(f) = |S(f)|2 , (9)

dass das Betragsspektrum |S(f)|2 die Fouriertransformierte der AKF ist. Dieser Zusammenhang
ist auch als Wiener-Khintchine-Theorem bekannt. Rücktransformation liefert

ϕE
ss(τ) =

+∞
∫

−∞

|S(f)|2ei2πfτ df . (10)

Mit E = ϕE
ss(0) =

∫ +∞

−∞
|S(f)|2 df folgt das Parsevalsche Theorem, das besagt, dass man die

Signalenergie Es auch als Integral über das Betragsspektrum erhält:

+∞
∫

−∞

s2(t) dt = E =

+∞
∫

−∞

|S(f)|2 df . (11)

|S(f)|2 heißt deshalb auch Energiedichtespektrum.

1.4 Leistungssignale

Viele Signale von technischer Relevanz besitzen keine endliche Signalenergie, z. B. alle periodi-
schen Signale. Für diese Signale lässt sich aber eine Leistung

Ps = lim
T→∞

1

2T

+T
∫

−T

s2(t) dt (12)

definieren. Solche Signale heißen deshalb auch Leistungssignale. Da unsere bisherige Definition
der Korrelationsfunktion sich eng an den Begriff der Signalenergie anlehnte, ist diese Definition
für Leistungssignale entsprechend anzupassen:

ϕsg = lim
T→∞

1

2T

+T
∫

−T

s(t)g(t + τ) dt . (13)

1Die Faltung wird meistens mit dem Symbol
”
∗“ beschrieben
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Das Zeitintegral in der Definition von ϕE
sg (Gl. (5)) wird also durch eine zeitliche Mittelung

ersetzt. In der Definition ϕE
sg waren die unendlichen Integrationsgrenzen unproblematisch, da

ein Energiesignal hinreichend schnell verschwindet. Für Leistungssignale ist das jedoch nicht der
Fall. In der praktischen Anwendung ist daher darauf zu achten, dass die Zeit T , über die in
Gl. (13) gemittelt wird, groß genug ist.

1.5 Fourieranalyse

Da Sinus- und Cosinus-Funktionen nicht nur orthogonal zueinander sind, sondern auch ein
vollständiges Funktionensysthem darstellen, lässt sich jede Funktion nach diesem Funktionen-
systhem entwickeln (Fourierentwicklung):

s(t) =

∞
∫

0

[A(ω) sin(ωt) + B(ω) cos(ωt)] dω . (14)

Für periodische Signale der Periodenlänge T geht dieses Fourier-Integral in die Fourier-Reihe
über:

s(t) =
∞
∑

n=0

[

An sin

(

2πn

T
t

)

+ Bn cos

(

2πn

T
t

)]

. (15)

Mit Hilfe der oben gemachten Orthogonalitätsaussagen lassen sich die Fourierkomponenten
An und Bn wie folgt bestimmen. Um die An zu bestimmen, multiplizieren wir Gl. (15) mit
sin(2πnt/T ) und mitteln zeitlich. Da alle Sinus-Anteile mit n 6= m und alle Cosinus-Anteile
orthogonal (

”
unkorreliert“) zu diesen Term sind, reduziert sich das resultierende Zeitintegral zu:

lim
T→∞

1

2T

+T
∫

−T

s(t) sin

(

2πnt

T

)

dt = lim
T→∞

1

2T

+T
∫

−T

An sin2

(

2πnt

T

)

dt . (16)

Das zeitliche Mittel von sin2(ωt) ist 1/2, für die An folgt somit

An = lim
T→∞

1

T

+T
∫

−T

s(t) sin

(

2πnt

T

)

dt (17)

für n > 0 und A0 beliebig. Durch eine geeignete Phasenverschiebung t → t+τ kann man An = 0
auch für alle übrigen n erreichen. Das verschobene Signal s(t+ τ) hat dann

”
Cosinus-Lage“ und

die gesamte Entwicklung steckt in den Bn. Mit einer ganz analogen Überlegung ergibt sich für
diese Koeffizienten (n > 0)

Bn = lim
T→∞

1

T

+T
∫

−T

s(t) cos

(

2πnt

T

)

dt . (18)

Für n = 0 gilt

B0 = lim
T→∞

1

2T

+T
∫

−T

s(t) dt , (19)

dieser zeitliche Mittelwert des Signals s(t) wird auch Gleichanteil genannt.

Für das geeignet zeitverschobene Signal s(t + τ) gilt also

An = 0 und

Bn = lim
T→∞

1

T

+T
∫

−T

s(t + τ) cos

(

2πnt

T

)

dt . (20)
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1.6 Lock-In Technik

Eine wichtige Anwendung der Korrelationstechnik ist der Lock-In Verstärker. Ein Lock-In Verstärker
kann sehr kleine periodische Signale verstärken, die man sonst nicht vom Rauschen unterschei-
den kann, d. h. er verbessert das Signal-zu-Rausch Verhältnis. Darüber hinaus kann man mit
einem Lock-In Verstärker empfindlich die Phase von Wechselspannungen detektieren.

In der Praxis wird das zu untersuchende System durch ein periodisches Eingangs-Signal an-
geregt, z. B. Uin(t) = Ûin sin(ωt). Das System wird im linearen Fall mit derselben Frequenz
antworten, aber evtl. mit einer Phasenverschiebung Φ: Usystem(t) = Ûsystem sin(ωt + Φ). Bei ei-
ner nichtlinearen Antwort werden höhere Harmonische auftreten. Ein Lock-In Verstärker führt
eine Korrelation zwischen dem Ausgangssignal Usystem(t) und einem Referenzsignal, z. B. dem
Eingangssignal Uin(t) durch. Kommerzielle Lock-In Verstärker enthalten meistens einen einge-
bauten Frequenzgenerator zur Erzeugung des Referenzsignals.

Die Ausgangsspannung Uout des Lock-In Verstärkers ist dann proportional zur Autokorrelati-
onsfunktion:

Uout ∝ ϕ(Φ) = lim
T→∞

ÛinÛsystem

T

T
∫

0

sin(ωt) sin(ωt + Φ) dt =
ÛinÛsystem

2
cos(Φ) . (21)

Das Ausgangssignal wird also maximal, wenn die Phasenverschiebung Φ = 0 ist. Überprüfen Sie
Gl. (21) durch Ausrechnen des Integrals.

2 Geräte und Zubehör

• Frequenzgenerator (HP 33120A, 15MHz)

• Oszilloskop (HP 54603B, 60 MHz)

• Timer/Counter (Philips PM 6622, 80 MHz)

• Multimeter (Keithley 177 Microvolt DMM bzw. 179 TRMS)

• Eimerkette, Multiplikator, Tiefpassfilter, Integrator, Stromquelle mit Verstärker

3 Aufgaben & Hinweise

3.1 Autokorrelation

• Überprüfen Sie die Zeitverzögerung der Eimerkette experimentell.

• Nehmen Sie Autokorrelationsfunktionen von Sinus- Dreieck- und Rechtecksignalen expe-
rimentell auf. Welche Form wird das Mess-Signal bei einer festen Verzögerung τ haben?

• Berechnen Sie die AKF von s(t) = sin ωt auch analytisch mit Hilfe der Eulerschen Identität

sin(ωt) =
1

2i

(

eiωt − e−iωt
)

, (22)

und vergleichen Sie das Ergebnis grafisch mit den experimentellen Daten.

• Vergewissern Sie sich, dass Sinussignale unterschiedlicher Frequenz unkorreliert, also or-
thogonal sind.
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3.2 Fourieranalyse

Gleichung (20) entspricht formal einem Korrelationsintegral. Benutzen Sie den Aufbau zur Mes-
sung von Korrelationsfunktionen für die Bestimmung der Fourier-Komponenten eines Reck-
tecksignals, das Sie einem zweiten Generator entnehmen. Wie muss die Verzögerung τ gewählt
werden? Erläutern Sie die Analogie zwischen analytischer und experimenteller Bestimmung der
Fourier-Koeffizienten. Tragen Sie 1/Bn gegen n für n > 0 auf und vergleichen Sie das Ergebnis
mit der Theorie, indem Sie Gl. (18) für ein Rechtecksignal lösen. Dazu reicht es, das Integral
statt über die gesamte Zeitachse nur über eine Periode zu erstrecken:

Bn =
2

T

+T/2
∫

−T/2

s(t) cos

(

2πnt

T

)

dt . (23)

Tatsächlich wird meistens Gl. (23) zur Bestimmung der Fourierkomponenten angegegeben, wo
liegen aber die Vorteile von Gl. (18)?

Setzen Sie nun für s(t) ein Rechtecksignal der Periode T ein, mit

s(t) =

{

0 : −π < t/T < −π/2 bzw. π/2 < t/T < π
U0 : −π/2 < t/T < π/2 .

(24)

Wie ist die Übereinstimung mit dem Experiment?

3.3 Korrelationsfunktion und Fouriertransformation

Betrachten Sie erneut die AKF der Rechteckfunktion aus Abschnitt 3.1 und schreiben Sie die
Rechteckfunktion als Fourierreihen auf. Zerstreuen Sie Ihre Bedenken, was die Vertauschbarkeit
von Integral- und Summenbildung angeht, und vergleichen Sie das Ergebnis mit der Fourierent-
wicklung eines Dreicksignals. Vergleichen Sie auch mit den experimentellen Ergebnissen aus 3.1.
Können Sie ähnliche Überlegungen auch für die AKF einer Dreiecksfunktion anstellen?

3.4 Lock-In Technik

Es soll ein kleiner Widerstand Rx < 10Ω vermessen werden. Der Strom, der durch den Wi-
derstand fließt, liegt im Bereich des thermischen Rauschens, so dass sich der Widerstandswert
nicht direkt aus der am Widerstand abfallenden Spannung bestimmen lässt. Wie groß ist die
Spannung, die am Widerstand Rx abfällt? Wie groß ist die verstärkte Ausgangsspannung Uamp

in Abhängigkeit von der Eingangsspannung Uin und den verwendeten Widerständen? Überlegen
Sie sich eine Schaltung mit der man Rx bestimmen kann.

4 Fragen zur Vorbereitung

• Was ist der Unterschied zwischen Energiesignalen und Leistungssignalen?

• Wie sehen die Autokorrelationsfunktionen von Sinus-, Cosinus-, Rechteck- und Dreick-
Funktionen aus?

• Für welche Verzögerungen τ wird die Autokorrelationsfunktion maximal?

• Wie lassen sich die zeitliche Verzögerung, die Multiplikation und die Integration von Si-
gnalen elektronisch realisieren?

• Was versteht man unter Faltung?

• Wie ist ein Lock-In Verstärker aufgebaut und was kann man mit ihm messen?
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• Wie kann man sehr kurze Laserpulse (10−12 s) mittels Autokorrelation messen, selbst wenn
es keine

”
Uhr“ gibt?
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