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Introduction

Gaussian distributions

are often used as first approximation of random variables on
vectors that cluster around a single mean
form basic building block for Gaussian mixture models
Gaussian mixtures + maximum likelihood method smoothly
approximate arbitrarily shaped densities on vectors

Problem:

Data is often represented by structures rather than by vectors
Gaussian distributions are undefined on structures
How can we approximate distributions on structures

that cluster around a single structure?
are of arbitrarily shaped form?
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Introduction

Aim in this talk:
Adapt Gaussian distribution to attributed graphs such that parameters
can be fitted by the maximum likelihood method in a feasible way.

Ansatz:

Orbifold framework

orbifold ∼ quotient of manifold by a finite group action
⇒ orbifolds are locally like a manifold almost everywhere
⇒ provides access to techniques from differential geometry
⇒ induces probability space that regards graphs as events
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Orbifolds

Regard graph X as equivalence class
[X] of all matrices X ∈ X that re-
present graph X

Orbifold XG is set of all equivalence
classes of matrices X ∈ X

⇒ graph X is point in orbifold XG
⇒ orbifold is locally homeomorphic
to Euclidean space almost everywhere

Note:

idea can be generalized to graphs

of arbitrary but bounded size
with arbitrary attributes
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Orbifolds - Metric Structures

Motivation:

⇒ Gaussian is based on
Euclidean metric

⇒ construct metric on graphs
related to Euclidean metric

Intrinsic metric:

d(X , Y ) = min
x∈X,y∈Y

‖x− y‖

Optimal alignment:
a pair (x, y) ∈ X × Y with

‖x− y‖ = d(X , Y )

Note:

intrinsic metric is

widely used metric
NP hard
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Orbifolds - Fundamental Domains

Dirichlet fundamental domain of x ∈ X :

Dx = {y ∈ X : ‖x− y‖ = d([x], [y])} .

Fundamental observation:
Studying distributions f on graphs that
cluster around center X can be reduced to
studying lifts f̃ of f on a fundamental
domain Dx of an arbitrary vector
representation x ∈ X .
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Quotient Gaussians

Quotient Gaussian distribution on XG

f (X ) =
1

a(C , σ)
· exp

„
−d(X ,C)2

2σ2

«
,

where

C is the center graph

σ is the width

a(C , σ) is the height that scales f to a density

a(C , σ) =

Z
XG

φ(X |C , σ)λG(dX ).
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Quotient Gaussian

quotient Gaussian f with center C can be
lifted to Euclidean space X with centers c.

⇒ pointwise maximum of a set NC,a,σ of
Gaussians on X with identical σ, but
distinct centers c ∈ C .

choose arbitrary Gaussian on X from
NC,a,σ with center c ∈ C

⇒ quotient Gaussian f can be viewed as
truncated Gaussian f̃ t on Dc.

⇒ height a(c, σ) can be viewed as
probability of being in Dc.

quotient Gaussian f in graph domain

liftet quotient Gaussian f̃ in Euclidean space

truncated Gaussian f̃ t in Euclidean space
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Quotient Gaussian

Central moments E[x] and V[x]:

E[x] = c + δE(c, σ)

V[x] = σ
2 + δV(c, σ)

⇒ center c is not the expectation E[x]

⇒ sq. width σ2 is not the variance V[x]

Goal:
make inferences on c and σ rather than
E[x] and V[x]
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Maximum Likelihood

Given: Sample
S = {X1, . . . ,XN} ⊆ XG

of iid graphs drawn from some quotient Gaussian fC∗,σ2
∗

Goal: Estimate true but unknown parameters Θ∗ =
`
C∗, σ

2
∗
´

Approach: Apply maximum likelihood method as follows:

1 choose arbitrary c ∈ C
2 optimally align xi ∈ Xi against c (graph matching)
3 maximize log-likelihood of truncated Gaussian f̃ t

c,σ2 on Dc

˜̀(c, σ2) =
N∑

i=1

ln f̃ t
c,σ2 (xi ) .
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Maximizing the Log-Likelihood

Setting the gradients of the log-likelihood to zero and solving yields

c =
1

N

NX
i=1

xi − δE(c, σ) (1)

σ2 =
1

N

NX
i=1

‖xi − c‖2− δV(c, σ). (2)

⇒ ML estimate of c, σ2 is estimate of E [x], V [x] plus adjustment

Adjustments δE(c, σ) and δV(c, σ):

can be approximated using Monte Carlo integration
here: ignore adjustments for computational reasons
⇒ estimate center by algorithm for sample mean of graphs
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Experiments

Aim: Assess performance of ML method for quotient Gaussians in
conjunction with Bayes classifier

Data: Benchmark data of the IAM graph database repository

data set graphs classes avg(nodes) max(nodes)

letter 2250 15 4.7 8
grec 1100 22 11.5 24
fingerprint 2800 4 8.3 26
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Classification Results

Letter GREC Fingerprint

kNN 82.0 96.8 80.0

SK+SVM 92.9 92.4 83.1
LE+SVM 92.5 96.8 82.8

LGQ 81.7 86.9 79.9
LGQ2.1 86.3 92.6 81.6

RS-LGQ 87.3 97.4 84.1

ml+bayes 81.2 89.9 79.2
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Conclusion

Extension of Gaussian distribution to orbifolds

Extension of ML method for (mixtures of) quotient Gaussians

simulations indicate that approximation works

orbifold framework turns out to be a versatile alternative for bridging the
gap between statistical and structural methods

Future work: Extend ML method for other distributions
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