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Goal

« Development of a novel graph transduction method
built upon a game-theoretic perspective

— Graph transduction is formulated in terms of a non-
cooperative multi-player game

— Any equilibrium of the proposed game corresponds to a
consistent labeling of the data.

« The proposed game-theoretic formulation imposes
no constraint whatsoever on the structure of the
pairwise similarity matrix
— It naturally deals with symmetric, asymmetric and negative

similarities alike.



Motivational problem: Transductive learning
on unweighted undirected graphs

« The input graph G is an unweighted undirected graph
— An edge denotes the perfect similarity between points

— The adjacency matrix of G is a 0/1 matrix

The cluster assumption: Each node in a connected component
of the graph should have the same class label.




Motivational problem: Transductive learning
on unweighted undirected graphs

« This toy problem can be formulated as a (binary)
constraint satisfaction problem (CSP) as follows:

— The set of variables: V={v,...,v,}
— Domains: D = {y;} foralll=i=</
| Y foralll+l=<i<n

— Binary constraints: Vij:if a;=1, thenv,=v,
e.g. for a 2-class problem R, =

]

Each assignment of values to the variables satisfying
all the constraints is a solution of the CSP, providing

a consistent labeling for the unlabeled points
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Relaxation labeling, Non-cooperative
games and Nash Equilibria

Classical CSPs assume crisp constraints.

Relaxation labeling is proposed to deal with soft constraints
In which each constraint is assigned a weight representing a

level of confidence.
(Hummel and Zucker, 1983)

The notion of consistency in relaxation labeling is in fact
related to the Nash equilibrium concept in non-cooperative
game theory.

(Miller and Zucker, 1991)

In this study, we used this connection to generalize the CSP
formulated for the toy problem into a more general setting.



Basics of nhon-cooperative
game theory

« Assume
— a game between players n players 7
— complete knowledge

— a set of (pure) strategies S, = {1, ..., m;} available to each
player I

« Each player receives a payoff based on his own strategy
and those of the other players.

« A mixed strateqy of player i is a probability distribution
over its strategies

A; = {xz c R™ inh =1, and z;;, > 0 for all h}
h=1



Nash Equilibria

- Let u;(z;,y_;) be the payoff obtained by player i
nlaying x; while the other players play according to
DrOﬁle Y—i — (y17 v Yi—15Yit1, - - 7yn)

- Definition. A mixed strategyz™ = (z7,...,x, ) is
a Nash equilibrium if w;(xf, 2 ) > u;(x;, z* ;) for all
players i and x; # z;.

« Any non-cooperative game with finite set of
strategies has at least one mixed Nash equilibrium

(Nash, 1951).



Graph Transduction Game (GTG)

Assume
— the players participating the game correspond to the data points

— the set of strategies available to each player denote the possible
hypotheses about its class membership

labeled players Zp = {Zyj1;- - - Zojc )y
unlabeled players 7,

Labeled players choose their strategies at the outset.
— each player i € 7;);, always play its k" pure strategy.

The transduction game is, in fact, played among the

unlabeled players to choose their memberships.

— The label of an unlabeled player i is given by vy, = ar% max I;p
<c



Defining payoff functions (1)

« Suppose that only pairwise interactions are allowed
In the proposed game

— an instance of a special subclass of multi-player games,
referred to as polymatrix games (Janovskaya, 1968).

Polymatrix games
« Each player participates in a 2-player game with its neighbors

« The payoff of each player is given by the sum of partial payoffs
from each game played with each of its neighbor

n
71=1




Defining payoff functions (2)

« If the fixed choices of labeled players are considered,

the payoff function is:

wie) =Y xl Agay+ Y Y af (A

1€y k=1 jEID|k

« But how to specify partial payoff matrices?
- If A= (Az-j) represent partial payoff matrices in block form,

wedefine A=1. QW

e.g. for a 3 class problem, A;; =

We come up with a generalization of the binary CSP

for the toy transduction problem!

wij

0

0

0
wz-j

0

0
0

wij
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Computing Nash equilibria

« To compute Nash equlibria, we used multi-population
version of the replicator dynamics.

h

N R | — (1) i(E)
Tin = Tin (wi(ed, v—;) — wi(x)) Tin(t+ 1) = zip(t)

ui(z(t))

continuous time (*) discrete-time (**)

Theorem. A point x € O is the limit of a trajectory of (*) starting
from the interior of © if and only if = is a Nash equilibrium. Further,
if pointx € © is a strict Nash equilibrium then it is asymptotically

stable, additionally implying that the trajectories starting from all
nearby states converge tox.



Connection to graph-based
approaches

- Existing graph-based approaches cast transductive
learning as an energy minimization problem.

— The focus is on how to compute the optima of objective
functions.

« The game-theoretic perspective shifts the focus
from optima of objective functions to equilibria of
games

— There is no energy to minimize or maximize.

« We will analyze their connection for a special case
iIn which the pairwise similarities are assumed to be
symmetric.




A property of polymatrix games
(with symmetric partial payoffs)

- Consider a polymatrix game with A=(A;) being the block
matrix representation of partial payoff matrlces between
players.

« The average payoff for the whole population can be
defined as:

— f:x;r zn:AijI‘j — .I‘TA.I (*)
1=1 71=1

Proposition. Suppose A is symmetric, that is A.=A . for
all players i,j. Then any local maximum x* € © oié (*5 IS

a Nash equilibrium point of the polymatrix game.
(Miller and Zucker, 1991) |




Graph transduction game with
symmetric similarities

« A Nash equilibrium of a transduction game with symmetric

similarities (w;;=w_. for all i,j) can be computed by solving
i = Wi J

the constrained quadratic optimization problem:
maximize E(X)=tr{XTWX}
subject to x; € A; Vi € Iy

T, =ef Vic Ip|k

1

(**)
where X =[x, ... x, ]! is the matrix of mixed strategies.

« For this special subclass, we can now relate our approach
with existing graph-based approaches.



Connection to Gaussian fields
and harmonic functions method

« In the proposed approach, the partial payoff matrices
are definedas A=1. W.

- Suppose instead that they were specified as A = [. ® —L
where L = D — W is the unnormalized graph Laplacian.

Then the resulting optimization problem (valid for only
the symmetric case) becomes:

minimize FE_r(X)=tr{XTLX}
subject to x; € A; Vi e Ly
Ty — 6’-€ A - ID|k

(

This problem is equivalent to that of the Gaussian fields
and harmonic functions method (Zhu et al., 2003) .



Experiments

« grouped into three based on the type of
similarity relations:
— symmetric similarities
— asymmetric similarities
— negative similarities



Symmetric similarities:
Experimental Setting

4 data sets: USPS YaleB Scene 20-news

— USPS, YaleB, Scene, 20-news # objects 3874 1755 2688 3970
# dimensions 256 1200 512 8014
# classes 4 3 8 4

Methods compared:

— Gaussian fields and harmonic functions (GFHF) (Zhu et al., 2003)
— Spectral Graph Transducer (SGT) (Joachims, 2003)

— Local and global consistency (LGC) (Zhou et al., 2004)

— Laplacian Reqgularized Least Squares (LapRLS) (Belkin et al., 2006)

Gaussian kernel
dz’st(di, dj)2

W;; = exp (— 52 ) for USPS, YaleB, Scene: dist(d;,d;) = ||d; — d,]|

for 20-news:

9 different 20-NN graphs

o € linspace(0.1r,r,5) U linspace(r, 10r,5)),

. <d’i7dj>
dist(d;,d;) =1 —
! 1dilllld;]]

r: the average distance from
each example to its 20" NN




Symmetric similarities:

classification error rate

classification error rate

Results
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Asymmetric similarities:
Experimental Setting (1)

« Data sets:

— SCOP (Structural Classification of Proteins)
— Cora, Citeseer, WebKB (Cornell, Texas, Washington, Wisconsin)

SCOP Cora Citeseer Cornell Texas Washington Wisconsin

# objects 451 2708 3312 827 814 1166 1210
# classes 5 7 6 2 2 2 2
« For SCOP

— Dissimilarity scores are given by the E-values of the PSI-BLAST
search (Weston et al., 2004)

— Gaussian kernel, 10 different candidate input graphs
(full similarities)
o € linspace(0.5,2.5,5) U linspace(5,20,4) U {40}

« For Cora, Citeseer and WebKB
— Only the citation/link structure is considered (Zhou et al., 2005)



Asymmetric similarities:
Experimental Setting (2)

« (Classical approaches are subject to symmetric similarities!

« Method compared:

— Baseline: GTG on symmetrized similarities (GTGsym)
W =0.5x (W+WT) for SCOP

——~—

W =min(W + W7 1) for others

— Learning from labeled and unlabeled data on a directed graph
(LLUD), (Zhou et al., 2005)

« equivalent to LGC in the case of symmetric similarities

« assumes the input similarity graph to be strongly connected, thus
considers teleporting random walk (trw) transition matrix

P" =nP 4 (1 —n)P"* where P =D 1W/
P"- uniform transition matrix
« LLUD suggests a second variant for our framework
(GTGtrw) where payoffs are defined in terms of P".



Asymmetric similarities:
‘Results
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Figure: Performance comparisons on classification problems with
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Asymmetric similarities:
Results

classification error rate
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Figure: Performance comparisons on classification problems with
asymmetric similarities (cont’d.).

22



Negative similarities:
Experimental Setting

2 data sets from UCI repository

lonosphere  Diabetes

— lonosphere, Diabetes # objects 351 768
# dimensions 34 8
Methods compared: # classes 2 >

— Mixed label propagation method (MLP) (Tong and Jin, 2007)

— Manifold regularization with dissimilarity method (MRWD) (Goldberg
et al., 2007)

The data sets do not originally contain negative similarities but
oracle dissimilarity relations are artificially introduced by
randomly sampling pairs of examples having different labels
(Goldberg et al., 2007)

- £ =250

— # of dissimilarity edges were varied between 3 and 12800

Gaussian kernel, 19 different candidate input graphs
— 0 €{0.01} Ulinspace(0.05,0.25,5) U linspace(0.25,2.5,10) U {5, 10, 20,25}



classification error rate

Negative similarities:
Results
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Conclusions

« We addressed graph transduction from a game-
theoretic view, formulating the problem as
a polymatrix game.

« The proposed game-theoretic framework can cope
with both negative and asymmetric similarities.

« Qur results show that our approach is not only
more general but also competitive with standard
approaches.




Future directions

« Is there a faster way to compute Nash equilibria than
using replicator dynamics?
— See (Porter et al., 2008), (Rota Bulo and Bomze,2010)

« (Can we use this framework to solve even more
general SSL problems?

— Transductive learning in hypergraphs (Agarwal et al.,
2006), (Zhou et al., 2007)

« Do we need to consider other classes of games than
the class of polymatrix games?
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Thanks for your attention..
Any gquestions?



Additional Slides



Computational Complexity

« The complexity of finding a Nash equilibrium of a graph
transduction game using (**) can be given as (’)(kch)

— k, the number of iterations needed to converge
— ¢, the number of classes (pure strategies)
— n, the number of data points (players)

« Experimentally, we observed that k typically grows linearly in
the number of data points:

O(ken®) = O(n?) for c < n

— same as the complexity of popular graph transduction methods

The problem of finding a Nash equilibrium in a polymatrix game
is PPAD-complete (a subclass of NP) (Daskalakis, 2011).

PPAD: Polynomial parity argument for directed graphs



Connection to Normalized Cuts

Ilgnoring the labeling constraints, (**) resembles the multi-
way normalized cut criterion (Yu and Shi, 2003)

The multi-way normalized cut criterion:
maximize Enc(Z) = ttr{Z'WZ}
subject to Z'DZ =1,

where Z = X(XTDX) ™7 is the scaled version of
partition matrix X € {0,1}""¢, X1.=1,

Hard labeling constraints cannot be embedded into the
Normalized Cuts framework in an explicit way!

The difference in the feasible region provides robustness

against noise and outliers (Pavan and Pelillo, 2007).
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