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Graph Indexing

I Graph Indexing Implies: (i) Specify local-to-global indexes, (ii)
Build a suitable representation, and (iii) Define a dissimilarity
measure.

I Indexes rely on topological statistics: (e.g. subgraphs – gIndex
– [Yan et al., SIGMOD’04], summarization graphs – bags of
indexed subgraphs – [Zhou et al., DASFAA’08], local-to-gobal –
spectral indexation of trees – [Shokoufandeh et al, PAMI’05]).

I Representations Topological statistics imply a distributional
approach. Such approaches are currently linked to embedding: (e.g.
embed vertex-labeled graphs into normed spaces and match pairs of
weighted distributions using EMD–[Demirci et al., IJCV’06], or
embed graph nodes in manifolds and deform them for
matching–[Escolano, Hancoch & Lozano, CVPR’11].

I Dissimilarities Compare statistics vs use Information-theoretic
measures.
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Partial Node Coverages

I Node Histories. Emerge for the natural generalization of the
nesting approach for trees and from recent approaches in
quantifying graph complexity [Escolano et al., SSPR’10].

I Partial Node Coverages. A graph is the overlap of several
subgraphs, one per each vertex. What is the optimal extent of
each coverage? Close to the graphlet whose spectrum has
been recently described [Kondor et al., ICML’09].

I Spectral Features of Subgraphs. Recent experiments show the
most discriminative spectral features [Bonev et al.,SSPR’10]:
Commute Times, Perron-Frobenius, Fiedler vector and node
centrality vector.
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Partial Node Coverages

Figure: Several histories and node coverages in a regular grid
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Why Information Geometry in Graphs

I Tensors. For each subgraph/partial coverage we can compute a
covariance matrix from the features measured along the
formation of the coverage. Such matrices live in a Riemannian
manifold [Tuzel et al., PAMI’08], [Porikli, S+SSPR’10].

I Tensor Distributions. Given two graphs to compare, each graph
is given by a population of covariance matrices (one per
node). Although geodesics are defined in the manifold it is
hard to define distributional dissimilarities there.

I Tangent Space. We define the tangent space associated to
the Karcher mean of the union of both population, deproject
tensors and compute distributional dissimilarities in the tangent
space.
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Information Geometry
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Spectral Descriptors

Vectorization

Consider Φ(i) = (f1(i), . . . , fd(i))T a vector of spectral descriptors
of the partial node coverage H = ek(i) ⊆ G

I For CTs we consider both the Laplacian and the normalized
Laplacian of H: the elements of the upper off-diagonal
elements of the CT kernel are downsampled to select m = |VH |
elements and they are normalized by m2.

I Fiedler and Perron-Frobenius vectors have m elements by
definition.

I Node centrality is more selective than degree. This measure is
also normalized by m2.
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Tensors in the Manifold

Tensors

For each partial coverage H we can compute the statistics of d
spectral descriptors taking m samples. Such statistics can be easily
encoded in a d × d covariance matrix

~Xi = 1
n−1

∑m
i=1(Φ(i)− ~µ)(Φ(i)− ~µ)T .

lying in a Riemannian manifold M.

Existence of Tangent Space

As a Riemannian manifold is differentiable, the derivatives at each ~X
always exist, and such derivatives lie in the so called tangent space
T~X , which is a vector space in Rd×d .
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Tangent Space

Elements of the Tangent Space

I The tangent space at ~T~X is endowed with an inner product
< ., . >~X

being

< ~u, ~v >~X
= trace(~X−

1
2~u~X−1~v ~X−

1
2 ).

I The tangent space is also endowed with an exponential map
exp~X : T~X →M which maps a tangent vector ~u to a point

~U = exp~X (~u) ∈M
that is, it maps ~u to the point reached by the unique geodesic
from ~X to ~U: g(~X , ~U).
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Information Geometry
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Tangent Space (2)

Elements of the Tangent Space

The inverse mapping log~X :M→ T~X is uniquely defined in a small

neighborhood of ~X . Therefore, we have the following mappings for
going to the manifold and back (to the tangent space) respectively:

exp~X (~u) = ~X
1
2 exp(~X−

1
2~u~X−

1
2 )~X

1
2 .

log~X (~U) = ~X
1
2 log(~X−

1
2 ~U ~X−

1
2 )~X

1
2 . (1)

and
g2(~X , ~U) =< log~X (~U), log~X (~U) >~X

= trace
(

log2(~X−
1
2 ~U ~X−

1
2 )
)
.

11/23



Tangent Space (3)

Vectorization

The tangent space allows us to vectorize de result of the inverse
mapping in order to work in a vector space with Euclidean
distances which are approximations of the geodesics:

vec~X (u) = vec~I (u)(~X−
1
2 u~X−

1
2 ) .

vec~I (u) = (u11
√

2u12 . . . u22
√

2u23 . . . udd)T . (2)

Once we have a vector we can use distributional dissimilarity
measures for comparing both graphs! However we must find in
advance the less biased location for placing the tangent space.
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Tangent Space (4)

Karcher Mean

Let us denote by ~Zk with k = 1, . . . ,N (where N = nX + nY ) each
covariance matrix coming from graphs X or from Y with nX = |VX |
and nY = |VY |.

I A fair selection of the tangent space origin is the Karcher
mean defined as

µ = arg min~Z∈M g2(~Zk , ~Z ).

I The Karcher mean can be obtained after few iterations of
µt+1 = expµt (~̄X

t) where ~̄X t = 1
N

∑N
k=1 logµt (~Zk).

I Then we deproject and compute the vectorization before
comparing distributions representing both X and Y .
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Henze-Penrose Divergence

Definition [Henze & Penrose., Annals of Stat.’99]

DHP(f ||g) =

∫
p2f 2(z) + q2g2(z)

pf (z) + qg(z)
dz , (3)

where p ∈ [0, 1] and q = 1− p. This divergence is the limit of the
Friedman-Rafsky run length statistic, that in turn is a generalization
based on MST of the Wald-Wolfowitz test for d > 1:

1. Build the MST over the samples from both X and O.

2. Remove the edges that do not connect a sample from X with a
sample from O.

3. The proportion of non-removed edges converges to 1 minus the
Henze Penrose divergence between fX and gO .
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Henze-Penrose Divergence (2)

Figure: Two examples of Friedman-Rafsky estimation of the Henze and
Penrose divergence applied to samples drawn from two Gaussian densities.
Left: the two densities have the same mean and covariance
(DHP(f ||g) = 0.5427). Right: different means (DHP(f ||g) = 0.8191).
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Total Variation k-dP Divergence

Definition [Escolano et al., SPR’10]

Let f (x) and g(x), from which we draw a set X of nx samples and a
set O of no samples, respectively. If we apply the partition scheme
of the k-d partition algorithm [Stowell and Plumbey., IEEE-SP’09] to
the set of samples X

⋃
O, the result is a partition A of X

⋃
O,

being A = {Aj |j = 1, . . . , p}. For f (x) and g(x) we have

f (Aj) =
nx,j
nx

= fj , g(Aj) =
no,j
no

= gj .

The k-dP total variation divergence is then given by

DkdP(f ||g) = 1
2

p∑
j=1

|fj − gj |
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Total Variation k-dP Divergence (2)

Figure: Two examples of divergence estimation applied to samples drawn
from two Gaussian densities. Left: both densities have the same mean and
covariance matrix (D(f ||g) = 0.24). Right: different means. Almost all the
cells contain samples obtained from only one distribution (D(f ||g) = 0.92).
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GatorBait100 Database

http://www.cise.ufl.edu/anand/publications.html

I 100 shapes with fishes from 30 different classes (genus)
quantized to form Delaunay graphs.

I High intraclass variability in many cases and many similar
species from different genus and few homogeneous classes.

I There are 10 classes with one species (not included in the
analysis and curves), 11 with 1− 3 individuals, 5 with 4− 6
ones and only 4 classes with more than 6 species.

I Hence, it is hard to devise a mesure which produces an average
recall curve far above the diagonal. HP improves KDP.

I d = 5, where the 5D setting is selected experimentally since
intrinsic dimensions are overestimated in this case.
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Performance Analysis

Figure: Left: Gator Samples. Right: Average recall curves
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Performance Analysis (2)

Figure: Left: [Escolano, Hancoch & Lozano, CVPR’11] . Right: Average
recall curves
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Selecting Optimal Scale

Scale Space for Graphs

I The history of a node is the basis of a scale space as we
increase the degree of the coverage.

I Not all nodes of the graph need a maximum degree of coverage.

I What is the optimal degree k∗i for each node i ∈ V ?

Node Saliency on Graphs

I As we have covariance matrices we can compute
det(k ~X k

i )− µ(trace(k ~X k
i )2.

I If we detect a maximum in the scale space between k and k + 1
then k∗ = k . Otherwise k∗ = 1.

21/23



Selecting the Optimal Scale

Figure: Left: Scale Space Analysis for a Grid graph with 8−neighborhood
topology. Right: Histidine-kinase PPI.
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Discussion and Future Work

Discussion
I We have defined an information geometric approach for graph

indexing.

I The more competitive IT measure is the Henze-Penrose
divergence improving entropic manifold alignment for Gator.

Ideas for the Future
I Introduced optimal scale selection on structure. Only practical

for small graphs or for analyzing specific nodes in PPIs.

I The purpose of analyzing these specific nodes is to track the
evolution of functional specialization.
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