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Goal!
•  Development of a novel graph transduction method 

built upon a game-theoretic perspective!
–  Graph transduction is formulated in terms of a non-

cooperative multi-player game!
–  Any equilibrium of the proposed game corresponds to a 

consistent labeling of the data.!

•  The proposed game-theoretic formulation imposes 
no constraint whatsoever on the structure of the 
pairwise similarity matrix!
–  It naturally deals with symmetric, asymmetric and negative 

similarities alike.!
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Motivational problem: Transductive learning 
on unweighted undirected graphs!
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•  The input graph G is an unweighted undirected graph!
–  An edge denotes the perfect similarity between points!
–  The adjacency matrix of G is a 0/1 matrix!

The cluster assumption: Each node in a connected component 
of the graph should have the same class label.!



•  This toy problem can be formulated as a (binary) 
constraint satisfaction problem (CSP) as follows:!

–  The set of variables: V = {v1, …, vn}	

	

–  Domains: !

–  Binary constraints:   ∀i,j: if aij = 1, then vi = vj  
                              e.g. for a 2-class problem !

!Each assignment of values to the variables satisfying  
!all the constraints is a solution of the CSP, providing  
!a consistent labeling for the unlabeled points!

Motivational problem: Transductive learning 
on unweighted undirected graphs!
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Relaxation labeling, Non-cooperative 
games and Nash Equilibria!

•  Classical CSPs assume crisp constraints.!
•  Relaxation labeling is proposed to deal with soft constraints 

in which each constraint is assigned a weight representing a 
level of confidence.  
                                              (Hummel and Zucker, 1983)!

•  The notion of consistency in relaxation labeling is in fact 
related to the Nash equilibrium concept in non-cooperative 
game theory.  
                                                 (Miller and Zucker, 1991)!

•  In this study, we used this connection to generalize the CSP 
formulated for the toy problem into a more general setting.!
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Basics of non-cooperative  
game theory!

•  Assume !
–  a game between players n players!
–  complete knowledge!
–  a set of (pure) strategies Si = {1, …, mi} available to each 

player I	


•  Each player receives a payoff based on his own strategy 
and those of the other players.!

•  A mixed strategy of player i is a probability distribution 
over its strategies!
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Nash Equilibria!
•  Let                  be the payoff obtained by player i 

playing xi while the other players play according to 
profile                                             .!

!
•  Definition. A mixed strategy                            is  

a Nash equilibrium if                                     for all 
players i and            .  !

•  Any non-cooperative game with finite set of 
strategies has at least one mixed Nash equilibrium 
(Nash, 1951).!
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x∗ = (x∗1, . . . , x
∗
n)

ui(x∗i , x
∗
−i) ≥ ui(xi, x

∗
−i)

xi �= x∗i

ui(xi, y−i)
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Graph Transduction Game (GTG)!
•  Assume !

–  the players participating the game correspond to the data points !
–  the set of strategies available to each player denote the possible 

hypotheses about its class membership!
!

    !labeled players                               ,  
!unlabeled players!

•  Labeled players choose their strategies at the outset.!
–  each player              always play its kth pure strategy. !

•  The transduction game is, in fact, played among the 
unlabeled players to choose their memberships.!
–  The label of an unlabeled player i is given by!

!
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Iu

I� = {I�|1, . . . , I�|c}

i ∈ Il|k

yi = arg max xih
h ≤ c



Defining payoff functions (1)!
•  Suppose that only pairwise interactions are allowed  

in the proposed game!
–  an instance of a special subclass of multi-player games, 

referred to as polymatrix games (Janovskaya, 1968).!
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ui(x) =
n�

j=1

xT
i Aijxj

Polymatrix games 
•  Each player participates in a 2-player game with its neighbors!
•  The payoff of each player is given by the sum of partial payoffs 

from each game played with each of its neighbor!



Defining payoff functions (2)!
•  If the fixed choices of labeled players are considered,  

the payoff function is:!

•  But how to specify partial payoff matrices?!
–  If                   represent partial payoff matrices in block form,  

we define                      
!

!e.g. for a 3 class problem, !

We come up with a generalization of the binary CSP  
for the toy transduction problem!!
!
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Computing Nash equilibria!

•  To compute Nash equlibria, we used multi-population 
version of the replicator dynamics.!
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ẋih = xih

�
ui(eh

i , x−i)− ui(x)
�

xih(t + 1) = xih(t)
ui(eh

i )
ui(x(t))

continuous time (*)! discrete-time (**)!

Theorem. A point           is the limit of a trajectory of (*) starting 
from the interior of     if and only if    is a Nash equilibrium. Further, 
if point           is a strict Nash equilibrium then it is asymptotically 
stable, additionally implying that the trajectories starting from all 
nearby states converge to   .!
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x
x ∈ Θ

x



Connection to graph-based 
approaches!

•  Existing graph-based approaches cast transductive 
learning as an energy minimization problem.!
–  The focus is on how to compute the optima of objective 

functions.!

•  The game-theoretic perspective shifts the focus 
from optima of objective functions to equilibria of 
games!
–  There is no energy to minimize or maximize.!

•  We will analyze their connection for a special case 
in which the pairwise similarities are assumed to be 
symmetric.!
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A property of polymatrix games 
(with symmetric partial payoffs)!
•  Consider a polymatrix game with A=(Aij) being the block 

matrix representation of partial payoff matrices between 
players.!

•  The average payoff for the whole population can be 
defined as:!

!
!Proposition. Suppose A is symmetric, that is Aij=Aji for  
!all players i,j. Then any local maximum x* ∈ Θ of (*) is  
!a Nash equilibrium point of the polymatrix game.  
!                                          (Miller and Zucker, 1991)!

!
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Graph transduction game with 
symmetric similarities!

•  A Nash equilibrium of a transduction game with symmetric 
similarities (wij = wji for all i,j) can be computed by solving 
the constrained quadratic optimization problem:!

!
!
!
!
!

!where X = [x1 … xn]T is the matrix of mixed !strategies.!
!
•  For this special subclass, we can now relate our approach 

with existing graph-based approaches.!
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maximize E(X) = tr{XT WX}
subject to xi ∈ ∆i ∀i ∈ IU

xi = ek
i ∀i ∈ ID|k

(**)	  



Connection to Gaussian fields 
and harmonic functions method !
•  In the proposed approach, the partial payoff matrices 

are defined as                   .!

•  Suppose instead that they were specified as  
where                    is the unnormalized graph Laplacian.  
Then the resulting optimization problem (valid for only 
the symmetric case) becomes:  
 
 
 
 
 
!

!This problem is equivalent to that of the Gaussian fields 
!and harmonic functions method (Zhu et al., 2003)! 15!

A = Ic ⊗−L
L = D −W

A = Ic ⊗W

maximize E−L(X) = tr{XT LX}
subject to xi ∈ ∆i ∀i ∈ IU

xi = ek
i ∀i ∈ ID|k

minimize



Experiments!
•  grouped into three based on the type of 

similarity relations:!
–  symmetric similarities!
–  asymmetric similarities!
–  negative similarities!
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Symmetric similarities: 
Experimental Setting!

•  4 data sets: !
–  USPS, YaleB, Scene, 20-news!
!

•  Methods compared:!
–  Gaussian fields and harmonic functions (GFHF) (Zhu et al., 2003)!
–  Spectral Graph Transducer (SGT) (Joachims, 2003)!
–  Local and global consistency (LGC) (Zhou et al., 2004)!
–  Laplacian Regularized Least Squares (LapRLS) (Belkin et al., 2006)!

•  Gaussian kernel!
                                      !

•  9 different 20-NN graphs!
!

the digits 1 to 4 from the training and test sets were selected, which gave a total

of 3874 data points.

• YaleB is composed of face images of 10 subjects captured under varying poses

and illumination conditions. As in (Breitenbach and Grudic, 2005), each image

is down-sampled to 30×40 pixels and considered a subset of 1755 images which

corresponds to the individuals 2, 5 and 8.

• Scene is a scene classification data set consisting of 2688 natural scene images

classified into one of 8 classes. Each image is represented with a 512-dimensional

GIST descriptor (Oliva and Torralba, 2001) which combines the outputs of Gabor-

like filters specifically designed to capture the structural properties of a scene.

• 20-news is the text classification data set used in (Zhou et al., 2004), which con-

tains 3970 newsgroup articles selected from the 20-newsgroups data set, all be-

longing to the topic recwhich is composed of the subjects autos, motorcycles,

sport.baseball and sport.hockey. As described in (Zhou et al., 2004),

each article is represented in 8014-dimensional space based on the TFIDF repre-

sentation scheme.

Table 1 shows the summary of the data sets. For USPS and YaleB, each image

pixel is treated as a single feature, thus each example was represented in 256-, and

1200-dimensional space, respectively. The similarity between two examples di and dj

is computed using the Gaussian kernel as wij = exp(−dist(di ,dj)2

2σ2 ) where dist(di, dj)

is the distance between di and dj and σ is the kernel width parameter. Among several

choices for the distance measure dist(·), the Euclidean distance ‖di − dj‖ is evaluated

for USPS, YaleB and Scene, and the cosine distance dist(di, dj) = 1 − 〈di,dj〉
‖di‖‖dj‖

is eval-

uated for 20-news.

USPS YaleB Scene 20-news

# objects 3874 1755 2688 3970

# dimensions 256 1200 512 8014

# classes 4 3 8 4

Table 1: The data sets used in the experiments with symmetric similarities.

16

dist(di, dj) = �di − dj�
dist(di, dj) = 1 − �di, dj�

�di��dj�

for USPS, YaleB, Scene:!
for 20-news:!

σ ∈ linspace(0.1r, r, 5) ∪ linspace(r, 10r, 5)),   r: the	  average	  distance	  from	  	  
	  	  	  	  	  	  	  	  	  each	  example	  to	  its	  20th	  NN	  17!
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Symmetric similarities:  
Results!

4 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r r

at
e

 

 
GTG
LGC
GFHF
SGT
LapRLS

3 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r r

at
e

 

 
GTG
LGC
GFHF
SGT
LapRLS

(a) USPS (b) YaleB

8 10 20 30 40 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r r

at
e

 

 
GTG
LGC
GFHF
SGT
LapRLS

4 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r r

at
e

 

 
GTG
LGC
GFHF
SGT
LapRLS

(c) Scene (d) 20-news

Figure 2: Performance comparisons on classification problems with symmetric similar-

ities.

A crucial factor in the success of graph-based algorithms is the construction of the

input graph as it represents the data manifold. As a result, graph construction for clas-

sification has become a subject of interest in recent years, e.g. (Jebara et al., 2009), but

the problem is still open. To be fair in our evaluation, for all the methods, we used a

fixed set of kernel widths and generated 9 different candidate 20-NN graphs by setting

wij = 0 if xj is not amongst the 20-nearest neighbors of xi. In particular, the kernel

width σ ranges over the set linspace(0.1r, r, 5) ∪ linspace(r, 10r, 5)) with r being the

average distance from each example to its 20th nearest neighbor and linspace(a, b, n)

denoting the set of n linearly spaced numbers between and including a and b.

In Figure 2, we show the test errors of all methods averaged over 100 trials with

different sizes of labeled data9. As it can be seen, LapRLS method gives the best

results for the relatively small data sets, YaleB and Scene. However, for the other two,

its performance is poor. In general, the proposed GTG algorithm is either the best or the

9We randomly select labeled samples so that each set contains at least one sample from each class.
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The average test errors over 100 trials  

with different sizes of labeled data!



Asymmetric similarities: 
Experimental Setting (1)!

•  Data sets: !
–  SCOP (Structural Classification of Proteins)!
–  Cora, Citeseer, WebKB (Cornell, Texas, Washington, Wisconsin)!

•  For SCOP!
–  Dissimilarity scores are given by the E-values of the PSI-BLAST  

search (Weston et al., 2004)!
–  Gaussian kernel, 10 different candidate input graphs  

(full similarities)!

•  For Cora, Citeseer and WebKB!
–  Only the citation/link structure is considered (Zhou et al., 2005)!19!

SCOP Cora Citeseer Cornell Texas Washington Wisconsin

# objects 451 2708 3312 827 814 1166 1210

# classes 5 7 6 2 2 2 2

Table 2: The data sets used in the classification experiments with asymmetric similari-

ties.

• Citeseer consists of 3312 scientific publications, each of which belongs to one of

six classes, and there are a total of 4732 links.

• WebKB contains webpages collected from computer science departments of four

universities (Cornell, Texas, Washington and Wisconsin), and each classified into

seven categories. Following the setup in (Zhou et al., 2005), here we concentrate

on classifying student pages from the others. Each subset respectively contains

827, 814, 1166 and 1210 webpages and 1626, 1480, 2218 and 3200 links.

The data sets are summarized in Table 2. For SCOP, E-values of the PSI-BLAST

search calculated by (Weston et al., 2004)13 were considered as the dissimilarity scores.

These dissimilarity values are not symmetric. Instead of constructing NN graphs, this

time the full similarity matrices were used where the kernel width σ was optimized for

each method with respect to the set linspace(0.5, 2.5, 5) ∪ linspace(5, 20, 4) ∪ 40. For

Cora and Citeseer, as in (Zhou et al., 2005), only the citation structure is considered,

even though one can also assign some weights by utilizing the textual content of the

documents. Specifically, the experiments are performed on the link matrixW = (wij),

where wij = 1 if document i cites document j and wij = 0 otherwise.

Unlike the proposed game-theoretic approach, the standard methods mentioned be-

fore, namely SGT, GFHF, LGC and LapRLS, are subject to symmetric similarities.

Hence, in this context, they can be applied only after rendering the similarities symmet-

ric but this could result in loss of relevant information in some cases. In the evaluation,

only the graph-based methods which can directly deal with asymmetric similarities

were considered. Specifically, the proposed game-theoretic approach was compared

against our implementation of the method in (Zhou et al., 2005), denoted here with

13Available at http://www.kyb.tuebingen.mpg.de/bs/people/weston/rankprot/supplement.

html

19

σ ∈ linspace(0.5, 2.5, 5) ∪ linspace(5, 20, 4) ∪ {40}



Asymmetric similarities: 
Experimental Setting (2)!

•  Classical approaches are subject to symmetric similarities!!
•  Method compared:!

–  Baseline: GTG on symmetrized similarities (GTGsym) 
!

! !                                  !  !for SCOP!
! ! ! ! ! ! ! ! ! !for others!

!

–  Learning from labeled and unlabeled data on a directed graph 
(LLUD), (Zhou et al., 2005)!
•  equivalent to LGC in the case of symmetric similarities!
•  assumes the input similarity graph to be strongly connected, thus 

considers teleporting random walk (trw) transition matrix!

!

•  LLUD suggests a second variant for our framework 
(GTGtrw) where payoffs are defined in terms of      . ! 20!

P η = ηP + (1− η)Pu P = D−1W
Pu

where                  ,  
               - uniform transition matrix!

P η

�W = 0.5× (W + WT )
�W = min(W + WT , 1)



Asymmetric similarities:  
Results!

21!
Figure: Performance comparisons on classification problems with 
asymmetric similarities.!
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Figure 3: Performance comparisons on classification problems with asymmetric simi-

larities.

do not originally contain any negative values but we adopted the procedure in (Goldberg

et al., 2007) and introduced oracle dissimilarity relations (cannot links) by randomly

sampling pairs of examples having different labels. These pairs do not contain any la-

beled samples and to enforce the maximum degree of dissimilarity, the edge weights

were set to the maximum similarity value exist in the data. In the experiments, we

fixed the size of the labeled data as 50 and varied the number of dissimilarity edges

between 3 and 12800. For all data sets, we used full similarity matrices and opti-

mized the kernel width σ with respect to the set {0.01} ∪ linspace(0.05, 0.25, 5) ∪

linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}.

The average test errors over 10 trials with randomly selected labeled examples and
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Figure 3: Performance comparisons on classification problems with asymmetric simi-

larities.

do not originally contain any negative values but we adopted the procedure in (Goldberg

et al., 2007) and introduced oracle dissimilarity relations (cannot links) by randomly

sampling pairs of examples having different labels. These pairs do not contain any la-

beled samples and to enforce the maximum degree of dissimilarity, the edge weights

were set to the maximum similarity value exist in the data. In the experiments, we

fixed the size of the labeled data as 50 and varied the number of dissimilarity edges

between 3 and 12800. For all data sets, we used full similarity matrices and opti-

mized the kernel width σ with respect to the set {0.01} ∪ linspace(0.05, 0.25, 5) ∪

linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}.

The average test errors over 10 trials with randomly selected labeled examples and

20



Asymmetric similarities:  
Results!

22!Figure: Performance comparisons on classification problems with 
asymmetric similarities (cont’d.).!



Negative similarities: 
Experimental Setting!

23!

•  2 data sets from UCI repository!
–  Ionosphere, Diabetes!

•  Methods compared:!
–  Mixed label propagation method (MLP) (Tong and Jin, 2007)!
–  Manifold regularization with dissimilarity method (MRWD) (Goldberg 

et al., 2007)!

•  The data sets do not originally contain negative similarities but 
oracle dissimilarity relations are artificially introduced by 
randomly sampling pairs of examples having different labels 
(Goldberg et al., 2007)!
–   !
–  # of dissimilarity edges were varied between 3 and 12800!

•  Gaussian kernel, 19 different candidate input graphs!
–   !

Ionosphere Diabetes

# objects 351 768

# dimensions 34 8

# classes 2 2

Table 3: The data sets used in the classification experiments with negative similarities.

rived from the data sets do not originally contain any negative values but we adopted

the procedure in (Goldberg et al., 2007) and introduced oracle dissimilarity relations

(cannot links) by randomly sampling pairs of examples having different labels. These

pairs do not contain any labeled samples and to enforce the maximum degree of dis-

similarity, the edge weights were set to the maximum similarity value exist in the data.

In the experiments, the size of the labeled data was fixed is as 50 and the number of

dissimilarity edges were varied between 3 and 12800. For all data sets, full similar-

ity matrices were used and the kernel width σ was optimized with respect to the set

{0.01} ∪ linspace(0.05, 0.25, 5) ∪ linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}.

The average test errors over 10 trials with randomly selected labeled examples and

dissimilarity edges are given in Figure 4. As the methods in consideration explore both

similarity and dissimilarity information, their accuracy did improve as the size of the

dissimilarity edges increases. While there is no considerable difference in the perfor-

mances of the methods on Diabetes, GTG is clearly more successful on Ionosphere.
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Figure 4: Performance comparisons on classification problems with negative similari-

ties
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σ ∈ {0.01} ∪ linspace(0.05, 0.25, 5) ∪ linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}

� = 50



Negative similarities:  
Results!

24!

Figure: The average test errors over 10 trials with randomly selected 
labeled examples and dissimilarity edges!



Conclusions!
•  We addressed graph transduction from a game-

theoretic view, formulating the problem as  
a polymatrix game.!

•  The proposed game-theoretic framework can cope 
with both negative and asymmetric similarities.!

!

•  Our results show that our approach is not only 
more general but also competitive with standard 
approaches. !
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Future directions!
•  Is there a faster way to compute Nash equilibria than 

using replicator dynamics?!
–  See (Porter et al., 2008), (Rota Bulo and Bomze,2010)!

•  Can we use this framework to solve even more 
general SSL problems?!
–  Transductive learning in hypergraphs (Agarwal et al., 

2006), (Zhou et al., 2007)!

•  Do we need to consider other classes of games than 
the class of polymatrix games?!
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Thanks for your attention..  
Any questions?!
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Additional Slides!
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Computational Complexity!
•  The complexity of finding a Nash equilibrium of a graph 

transduction game using (**) can be given as                !
–  k, the number of iterations needed to converge !
–  c, the number of classes (pure strategies)!
–  n, the number of data points (players)!

•  Experimentally, we observed that k typically grows linearly in 
the number of data points:!

–  same as the complexity of popular graph transduction methods!

29!

O(kcn2)

O(kcn2) ≈ O(n3) c� nfor!

The problem of finding a Nash equilibrium in a polymatrix game 
is PPAD-complete (a subclass of NP) (Daskalakis, 2011).!

PPAD: Polynomial parity argument for directed graphs!



Connection to Normalized Cuts!
!

•  Ignoring the labeling constraints, (**) resembles the multi- 
way normalized cut criterion (Yu and Shi, 2003)!

! !The multi-way normalized cut criterion: 

! !where                               is the scaled version of  
! !partition matrix !

!

•  Hard labeling constraints cannot be embedded into the 
Normalized Cuts framework in an explicit way!!

•  The difference in the feasible region provides robustness 
against noise and outliers (Pavan and Pelillo, 2007).!

! 30!

maximize ENC(Z) = 1
k tr{ZT WZ}

subject to ZT DZ = Ik

Z = X(XT DX)−
1
2

X ∈ {0, 1}n×c, X1c = 1n


