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Figure: STRING Protein-Protein Interaction Networks



Characterising graphs

« Topological: e.g. average degree, degree
distribution, edge-density, diameter, cycle
frequencies etc.

« Spectral or algebraic: use eigenvalues of
adjacency matrix or Laplacian, or equivalently
the co-efficients of characteristic polynomial.

« Complexity: use information theoretic measures
of structure (e.g. Shannon entropy).



Complex systems

« Spatial and topological indices: node degree
stats; edge density;

« Communicability: communities, measures of
centrality, separation, etc. (Baribasi, Watts and
Strogatz, Estrada).

« Processes on graphs: Markov process, Ising
models, random walks, searchability (Kleinberg).



Information theory

« Entropic measures of complexity:
Shannon , Erdos-Renyi, Von-Neumann.

« Description length: fitting of models to
data, entropy (model cost) tensioned
against log-likelihood (goodness of fit).

« Kernels: Use entropy to computedJensen-
Shannon divergence



Von Neumann Entropy

= Measured by the von Neumann entropy associated with
the Laplacian eigenspectrum of graphs (Passerini,
Severini, 2008)
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= Comes from quantum mechanics and is entropy
associated with density matrix.




Approximation

= Approximate Shannon entropy by quadratic
entropy
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Homogeneity index

Based on degree
statistics
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Homogeneity meaning

Limit of large degree
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Largest when commute time differs from 2
due to large number of alternative
connecting paths.



