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What do we understand by Graph Embedding?

Motivational problem

Given a set of graphs to be categorized, how do we process them?
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What do we understand by Graph Embedding?

A possible and intuitive solution:
Consider a similarity measure between the input graphs and apply kNN.

−→ There is not really any other option in the graph domain.

Adapt Neural Networks and, more generally Graphical Models, to graph input
patterns

−→ A General Framework for Adaptive Processing of Data Structures
Paolo Frasconi, Marco Gori, Alessandro Sperduti (Neural Networks 1998).

The solution we are here interested in:
Assign a feature vector to every graph.
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What do we understand by Graph Embedding?

Formally, a graph embedding is a mapping from the set of graphs to a vectorial space

φ : G −→ Rn

g 7−→ φ(g) = (f1, f2, . . . , fn)
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Possible misunderstandings

We do not want to draw a graph in the 2D plane.

Graph kernels are an implicit way of defining a graph embedding
(more on that tomorrow).
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Crucial Issue

Which features do we extract from graphs?

Simple features

Number of nodes, number of edges

Number of nodes with label A, or
label B,...

Number of edges between label A and
label C ,...

Average degree of the nodes

Number of cycles of a certain length

...

−→ Are these features discriminative enough? Is there another way to get more
features?

Let us review the literature.
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Literature Review

Substructure finding methods

1 An Apriori-based algorithm for mining frequent substructures from graph data
(Inokuchi et al., PKDD 2000)

2 A Vectorial Representation for the Indexation of Structural Informations
(Sidère et al., SSPR 2008)

Spectral methods

1 Spectral Embedding of Graphs
(Luo, Wilson and Hancock, Pattern Recognition 2003)

2 Pattern Vectors from Algebraic Graph Theory
(Wilson, Hancock and Luo, TPAMI 2005)

3 Graph Characterization via Ihara Coefficients
(Ren, Wilson and Hancock, Neural Networks 2011)

Dissimilarity Representation

1 MDS on the dissimilarity matrix of a set of graphs

2 Graph Embedding using Constant Shift Embedding
(Jouili and Tabbone, ICPR 2010)

3 Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)
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Spectral Embedding of Graphs

(Luo, Wilson and Hancock, Pattern Recognition 2003)
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Basic notation

Set of graphs G1, . . . ,GN , where Gk = (Vk ,Ek )

Adjacency matrix of Gk is defined by

Ak (i , j) =

{
W(i , j), if (i , j) ∈ Ek

0, otherwise.

The eigenvalues λk of Ak are the solutions of |Ak − λk I | = 0

The eigenvectors φw
k are the solutions of Akφ

w
k = λw

k φ
w
k , where w is the

eigenmode index.

The modal matrix is defined by φk = (φ1
k |φ

2
k | . . . |φ

|Vk |
k )

The spectral decomposition of the adjacency matrix is

Ak =

|Vk |∑
i=1

λw
k φ

w
k (φw

k )T

The truncated modal matrix is defined by

φk = (φ1
k |φ

2
k | . . . |φ

n
k )
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Spectral Embedding of Graphs
(Luo, Wilson and Hancock, Pattern Recognition 2003)

The work presented in this paper is mainly concerned on extracting features from the
eigen-modes of the truncated modal matrix. In particular,

Unary features:

−→ One feature for each eigen-mode.

Binary features:

−→ One feature for each pair of eigen-modes.
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Spectral Embedding of Graphs
(Luo, Wilson and Hancock, Pattern Recognition 2003)

Unary features (among others)

Leading eigenvalues

Consider all eigenvalues as features for the vectorial representation of Gk :

Bk = (λ1
k , λ

2
k , . . . , λ

n
k )T

Eigen-mode volume

Let Dk (i) be the degree of the node i in the graph Gk . The volume of the eigenmode w
is defined as

Volk (w) =
∑
i∈Vk

φk (i,w)Dk (i).

As a feature vector for Gk , we define

Bk = (Volk (1),Volk (2), . . . ,Volk (n))T
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Spectral Embedding of Graphs
(Luo, Wilson and Hancock, Pattern Recognition 2003)

Binary features

Inter-mode adjacency matrix

Project the adjacency matrix onto the basis of eigenvectors

Uk = φ
T
k Akφk

The vectorial representation of the graph Gk is defined by
Bk = (Uk (1, 1),Uk (1, 2), . . . ,Uk (n, n)), where

Uk (u, v) =
∑
i∈Vk

∑
j∈Vk

φk (i, u)φk (j, v)Ak (i, j).

Inter-mode distance

The leading node (most important) in the eigenmode u is defined by

iku = argmax
i∈Vk

φk (i, u)

The vectorial representation of the graph Gk is defined by Bk = (d1,1, d1,2, . . . , dn,n),
where

du,v = argmin
p

(Ak )p(iku , i
k
v ).
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Spectral Embedding of Graphs
(Luo, Wilson and Hancock, Pattern Recognition 2003)

The proposed feature vectors are further reduced by PCA, ICA, MDS in order to
perform graph visualization and clustering:
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Spectral methods - Other approaches

Pattern Vectors from Algebraic Graph Theory (Wilson et al., TPAMI 2005)

Spectral study of the Laplacian matrix

Node permutation invariant features

Sample elementary symmetric polynomials on the eigen-modes

Graph Characterization via Ihara Coefficients (Ren et al., Neural Networks 2011)

Extract Ihara Coefficients from the Oriented line graph

Important topological information
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Spectral methods - Summary

Good points

Solid theoretical insight into the meaning of the extracted features

Rich and discriminative features (really good clustering examples)

Drawbacks

Spectral analysis is sensitive to structural errors

Restriction on the nature of the graphs
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Graph Classification based on Vector Space Embedding

(Riesen and Bunke, IJPRAI 2009)

Dissimilarity based embedding
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Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

The extracted features are based on distances to a set of prototype graphs:

Given a graph G and set of prototypes P = {p1, p2, . . . , pn}, the dissimilarity based
embedding is defined by

ϕP (G) = (d(G , p1), d(G , p2), . . . , d(G , pn))
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Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Issues to take care of:

Distance between graphs

−→ Graph Edit Distance

Selection of prototypes

−→ Random
−→ Spanning prototypes
−→ k-Centres
−→ And many others...

Number of prototypes

−→ Cross-validated

−→ The work is concerned with the classification of graphs using the dissimilarity
features.

May 18th, 2011 GbR’2011 Mini-tutorial on Graph Embeddings 19/23



Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Issues to take care of:

Distance between graphs

−→ Graph Edit Distance

Selection of prototypes

−→ Random
−→ Spanning prototypes
−→ k-Centres
−→ And many others...

Number of prototypes

−→ Cross-validated

−→ The work is concerned with the classification of graphs using the dissimilarity
features.

May 18th, 2011 GbR’2011 Mini-tutorial on Graph Embeddings 19/23



Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Issues to take care of:

Distance between graphs

−→ Graph Edit Distance

Selection of prototypes

−→ Random
−→ Spanning prototypes
−→ k-Centres
−→ And many others...

Number of prototypes

−→ Cross-validated

−→ The work is concerned with the classification of graphs using the dissimilarity
features.

May 18th, 2011 GbR’2011 Mini-tutorial on Graph Embeddings 19/23



Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Issues to take care of:

Distance between graphs

−→ Graph Edit Distance

Selection of prototypes

−→ Random
−→ Spanning prototypes
−→ k-Centres
−→ And many others...

Number of prototypes

−→ Cross-validated

−→ The work is concerned with the classification of graphs using the dissimilarity
features.

May 18th, 2011 GbR’2011 Mini-tutorial on Graph Embeddings 19/23



Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Issues to take care of:

Distance between graphs

−→ Graph Edit Distance

Selection of prototypes

−→ Random
−→ Spanning prototypes
−→ k-Centres
−→ And many others...

Number of prototypes

−→ Cross-validated

−→ The work is concerned with the classification of graphs using the dissimilarity
features.

May 18th, 2011 GbR’2011 Mini-tutorial on Graph Embeddings 19/23



Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Good behaviour of the vectors in the embedding space:

‖ ϕP(G1)− ϕP(G2) ‖2 = 〈ϕP(G1), ϕP(G1)〉+ 〈ϕP(G2), ϕP(G2)〉 − 2〈ϕP(G1), ϕP(G2)〉

=
n∑

i=1

d(G1, pi )
2 +

n∑
i=1

d(G2, pi )
2 − 2

n∑
i=1

d(G1, pi )d(G2, pi )

=
n∑

i=1

(d(G1, pi )− d(G2, pi ))2

≤ n · d(G1,G2)2

−→ The Euclidean distance between feature vectors of graphs is equal to the sum of
the squared differences between the edit distances of the graphs to the prototypes.

−→ The Euclidean distance between feature vectors of graphs is upper-bounded by
the edit distance of the graphs
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Graph Classification based on Vector Space Embedding
(Riesen and Bunke, IJPRAI 2009)

Good points

Any kind of graphs can be plugged into this methodology (because of GED)

Good behaviour of vectors in the embedding space, which leads to good
classification rates

Drawbacks

The distance measure (edit distance) is computationally challenging

Validation of parameters has to be performed
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Applications - Conclusions

Assign a feature vector to every graph by
Spectral methods
Dissimilarity representation
And others...

By providing a vector to every graph we are capable to visualize graphs and to
apply statistical learning machines to graph-based input patterns (SVMs, Neural
Networks,...)

ICPR’2010 Graph Embedding Contest for a general framework

−→ We bridge the gap between the structural and the statistical pattern recognition
fields.
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Thanks for the attention!

Time for discussions?

In the next talk, we will present another graph embedding methodology.
Do not miss it!
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