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“.‘;A deluge of many different kinds of data

Different organization

Images
Videos
Meshes

Social, complex, biological
Networks

And databases of them

Different nature

@ High dimensions,
Non-linear,

Heterogeneous,

Noisy, redundant, incomplete
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:-"‘From image and data to graphs

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data (organized or not). J
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:-T‘From image and data to graphs

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data (organized or not).

Images, Region adjacency graphs
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:-"‘From image and data to graphs

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data (organized or not).

Points clouds, meshes
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:-"‘From image and data to graphs

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data (organized or not). J

Image databases
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;nr‘Typical problems in image and data processing

Given some input Data Xp, we want to conceive a processing operator T that
outputs the processed data X;.

Typical processing operators

@ Restoration, denoising,
interpolation

@ Smoothing, simplification
@ Segmentation, classification

@ Dimensionality reduction

@ Visualization, exploration
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;ur‘Typical problems in image and data processing

Given some input Data Xp, we want to conceive a processing operator T that
outputs the processed data X;.

Typical processing operators Two problems arise

@ Restoration, denoising, @ How to model and represent
interpolation the input and output data
sources ?

@ Smoothing, simplification
@ How to model and formalize

@ Segmentation, classification {
the processing operator 7

@ Dimensionality reduction

@ Visualization, exploration
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;F‘Typical problems in image and data processing

Given some input Data Xp, we want to conceive a processing operator T that
outputs the processed data X;.

Typical processing operators Two problems arise

@ Restoration, denoising, @ How to model and represent
interpolation the input and output data
sources ?

@ Smoothing, simplification
@ How to model and formalize

@ Segmentation, classification {
the processing operator 7

@ Dimensionality reduction

@ Visualization, exploration

Different methods to do this

@ Graph theory, spectral analysis (Mainly for data processing)

@ Continuous variational methods (Mainly for image processing)
@ A lot of new works aim at extending signal processing for data processing (e.g, diffusion wavelets)
(]

Partial difference Equations on graphs (a unified framework for image and data processing)
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b

Benefits

@ Provide a formal framework for the resolution of problems in image
processing, computer vision, etc.

Continuous variational methods

@ Solutions are obtained by the minimization of appropriate energy functions

@ The minimization is usually performed with Partial Differential Equations
(PDEs)

@ PDEs are discretized to obtain a numerical solution

Limitations

@ PDE-based methods are difficult to adapt for data that live on non Euclidean
domains

| \

@ Indeed, their discretization is difficult for high dimensional data

o Not easy to extend them to advanced representations of data, i.e., graphs

@ |t is essential to be able to transcript PDEs on graphs

A\,
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;F‘Partial difference Equations on graphs

Motivations

@ Problems involving PDEs can be reduced to ones of a very much simpler structure
by replacing the differentials by difference equations on graphs.
R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of
mathematical physics, Math. Ann. 100 (1928) 32-74.

@ Our goal is to provide methods that mimic on graphs well-known PDE variational
formulations under a functional analysis point of view.

@ To do this we use Partial difference Equations (PdE) over graphs.

@ PdEs mimic PDEs in domains having a graph structure.

Interest of our proposals

@ To dispose of discrete analogues of differential geometry operators (integral, derivation, gradient,
divergence, p-Laplacian, etc.)

To use the framework of PdEs to transcribe PDEs on graphs,
Provides a natural extension of variational methods on graphs,

Provides a unification of local and nonlocal processing on images.

Using weighted graphs provides Adaptive PDEs according to data geometry

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 8 /58



“."vvhat we will talk about

b

o a nonlocal discrete regularization on graphs as a
framework for data simplification and interpolation,

o a formulation of mathematical morphology that
considers a discrete version of PDEs-based approaches
over weighted graphs,

o an adaptation of the Eikonal equation for data
clustering and image segmentation.

PdE on graphs for image and data processing May 18, 2011 9/
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© Graphs and difference operators
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"-‘-‘Weighted graphs Basics

b

@ A weighted graph § = (V, €, w) consists in a finite
set V= {vi,...,vn} of N vertices
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"-r Weighted graphs Basics

b

@ A weighted graph § = (V, €, w) consists in a finite
set V= {vi,...,vn} of N vertices

@ and a finite set € ={e1,...,en } CV XV of N
weighted edges.

@ We assume G to be simple, undirected, with no
self-loops and no multiple edges.
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0.

‘Weighted graphs Basics

A weighted graph G = (V, €, w) consists in a finite
set V= {vi,...,vn} of N vertices

and a finite set &€ = {e1,...,en} CV XV of N
weighted edges.

We assume G to be simple, undirected, with no
self-loops and no multiple edges.

ej = (vi, vj) is the edge of € that connects vertices v;
and vj of V. Its weight, denoted by w;; = w(vi,v;),
represents the similarity between its vertices.

Similarities are usually computed by using a positive
symmetric function w : V x V — R" satisfying
W(Vfa VJ) =0if (Via VJ) ¢ €.
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O. Lézoray (University of Caen)

"nr‘Weighted graphs Basics

A weighted graph G = (V, €, w) consists in a finite
set V= {vi,...,vn} of N vertices

and a finite set &€ = {e1,...,en} CV XV of N
weighted edges.

We assume G to be simple, undirected, with no
self-loops and no multiple edges.

ej = (vi, vj) is the edge of € that connects vertices v;
and vj of V. Its weight, denoted by w;; = w(vi,v;),
represents the similarity between its vertices.

Similarities are usually computed by using a positive
symmetric function w : V x V — R" satisfying
W(Vfa VJ) =0if (Via VJ) ¢ €.

The notation v; ~ v; is used to denote two adjacent
vertices.

PdE on graphs for image and data processing

May 18, 2011
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"F‘Space of functions on Graphs

b

@ Let 7(V) be the Hilbert space of real-valued functions defined on the vertices
of a graph.

@ A function f : V — R of H(V) assigns a real value x; = f(v;) to each vertex
vi eV.

@ By analogy with functional analysis on continuous spaces, the integral of a
function f € H(V), over the set of vertices V, is defined as [, f =3\ f.

@ The space H(V) is endowed with the usual inner product
(fyMavy =2 ,ev F(vi)h(vi), where f, h:V — R.

o Similarly, let H (&) be the space of real-valued functions defined on the edges
of G.

@ It is endowed with the inner product
(F, H)aue) 2ovev 2oymy, F(vis vi)H(vi, v;), where FLH : € — R are two
functions of H(&).

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 12 / 58



;F‘Difference operators on weighted graphs

2 Discretization of classical continuous differential geometry.
The difference operator of f, d,, : H(V) — H(E), is defined on an edge
ej = (V,'7 VJ) € € by:

(duf)(e) = (dwf)(vi, vj) = wlvi, v)2(F () — F(v)) - (1)

The adjoint of the difference operator, noted d; : H(E) — H(V), is a linear
operator defined by (dwf, H)y ey = (f, dyH)3(v) for all f € H(V) and all
He H(E).

The adjoint operator d, of a function H € H(&), can by expressed at a
vertex v; € V by the following expression:

(diH)(vi) = —divi, (H)(vi) = Y w(vi, ) *(H(vj, vi) = H(vio ) - (2)

virvi

Each function H € H(&) has a null divergence over the entire set of vertices:

Zv,-e\?(d:/"'/)(Vi) =0.

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 13 / 58



;F‘Difference operators on weighted graphs

The directional derivative (or edge derivative) of f, at a vertex v; € V, along an
edge ejj = (vj, vj), is defined as i%; = 0y f(vi) = (dwf)(vi, vj).
This definition is consistent with the continuous definition of the derivative of a
function: 0, f(v;) = —0,,f(v;), 0y,f(vi) =0, and if f(v;) = f(v;) then
avj f(V,') =0.
We also introduce morphological difference operators:
(diy F)(vi, v)=w(vi, v;) /2 (max((vi), F(v})) ~f(w)) and
(dyy F)(vis vi)=w(vi, )2 (F (vi)— min(F(vi), £(v5)))
with the following properties
(d;f F)(vi, v)=max (0, (dwf)(vi,v;)) (always positive)
(d,, f)(vi,v)=—min(0, (dwf)(vi,v;)) (always negative)
The corresponding external and internal partial derivatives are
0",‘;f(v,) (dfF)(vi,v;) and O, f(v,) (dy, F)(vi, v)).

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for
Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17, n7, pp. 1047-1060, 2008. J
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;:‘Welghted gradient operator
The weighted gradient operator of a function f € H(V), at a vertex v; € V, is
the vector operator defined by

(Vuf)(vi) = [0,,f(v;) : v ~vi]T = [0, f(vi),.... 00 F(vi)]T, ¥(vi,v)) € E. (4)

The £, norm of this vector represents the local variation of the function f at a
vertex of the graph (It is a semi-norm for p > 1):

2 1/P
1w @)l = | 3 w2 () —F(w)|?] (5)
Similarly, we have with M* = max and M~ = min

(V“j,:f)(") (8jE (v ))(v v)ee

TENON = [ w2 0= (0, () )] ™

virvi

(6)
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;ur‘lsotropic p-Laplacian

The weighted p-Laplace isotropic operator of a function f € H(V), noted
Al H(V) = H(V), is defined by:

(A),,)(v) = 35 (1(Vuf) (W) 152(dw ) (vi, v)) - ()

The isotropic p-Laplace operator of f € H(V), at a vertex v; € V, can be
computed by:

(84, =3 D (o NV ) (F(v) = F(v)) (8)
with
i -2 -2
(o P i) = wi (I(TuB) ) IE 2+ (VWD E) - (9)
The p-Laplace isotropic operator is nonlinear, except for p = 2 (corresponds to

the combinatorial Laplacian). For p = 1, it corresponds to the weighted curvature
of the function f on the graph.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for
Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17, n7, pp. 1047-1060, 2008. J
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;-r‘Anisotropic p-Laplacian

The weighted p-Laplace anisotropic operator of a function f € H(V), noted
A;, L, H(V) — H(V), is defined by:
(835,51 (vi) = 35 (1(duF)(vis ) IP~2(du ) (i, 7)) - (10)

The anisotropic p-Laplace operator of f € H(V), at a vertex v; € V, can be
computed by:

(A% = > (v v)(F(v) = £(v) - (11)

v~

with )
(V2 F) (Vi) = w2 F(vi) — F () P72 (12)

O. Lezoray, V.T. Ta, A. EImoataz, Partial differences as tools for filtering data on graphs, Pattern Recognition
Letters, Vol. 31, n14, pp. 2201-2213, 2010. J
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© Construction of graphs - non locality
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::r‘Constructing_graphs

Any discrete domain can be modeled by a weighted graph where each data point
is represented by a vertex v; € V.

An unorganized set of points V C R” Typical cases of organized data are

can be seen as a function f°:V — R™. signals, gray-scale or color images (in 2D
The set of edges is defined by in or 3D).

modeling the neighborhood of each The set of edge is defined by spatial
vertex based on similarity relationships relationships.

between feature vectors. Such data can be seen as functions
Typical graphs: k-nearest neighbors fO.vcz"—R™.

graphs and 7-neighborhood graphs. Typical graphs: pixel or region graphs.

(@) (b) k=3 (0) k=15

19 / 58
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;F‘Weighting_graphs

For an initial function f°:V — R™, similarity relationship between data can be
incorporated within edges weights according to a measure of similarity

g: € —[0,1] with w(e;) = g(ej), Ve € €.

Each vertex v; is associated with a feature vector Ff 1V — R™X9 where g
corresponds to this vector size:

F (v) = (fo(vj) “vj € No(vi)U {v,-})T (13)

with Vo (vi) = {v; € V\ {vi} : p(vi, vj) < 7}

. 0
For an edge ejj and a distance measure p : R™*9xR™*9 — R associated to Fﬁ_,
we can have:

gi(ej) =1 (unweighted case) ,
g (ejj) :exp(fp(Ff:(v,-), Ff(vj))2/02) with o >0 , (14)
gs(es) =1/ (1+ p(F7 (), Fr (1)

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011



"nr‘LocaI to Non Local to Graphs

b

In Image Processing, we can divide methods according to three different models:

@ Local Processing: usual model where local interactions around one pixel are
taken into account (Vector Median Filter, Anisotropic Filtering, Wavelets,
Total Variation minimization with PDE, etc.),
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b

In Image Processing, we can divide methods according to three different models:
@ Local Processing: usual model where local interactions around one pixel are
taken into account (Vector Median Filter, Anisotropic Filtering, Wavelets,
Total Variation minimization with PDE, etc.),

@ Semi Local Processing: one takes into account larger neighborhood
interactions favored by the image geometry (Yaroslavsky and Bilateral filters),
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"F‘Local to Non Local to Graphs

b

In Image Processing, we can divide methods according to three different models:

@ Local Processing: usual model where local interactions around one pixel are
taken into account (Vector Median Filter, Anisotropic Filtering, Wavelets,
Total Variation minimization with PDE, etc.),

@ Semi Local Processing: one takes into account larger neighborhood
interactions favored by the image geometry (Yaroslavsky and Bilateral filters),

@ Non Local Processing: model recently proposed by Buades and Morel
which replaces spatial constraints by pixel blocks (i.e. patchs) constraints in
a large neighborhood.
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:-"‘Graph topology

Digital Image




-" Graph topology

a

| g

Digital Image

Local: a value is associ-
ated to vertices




;;T‘Graph topology

Digital Image

Nonlocal: a patch (vector
of values in a given neigh-

borhood) is associated to
vertices.

May 18, 2011
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"-r. Graph topology

Digital Image

Nonlocal: a patch (vector
of values in a given neigh-

borhood) is associated to
vertices.

Nonlocal behavior is directly expressed by the graph topology.
Patches are used to measure similarity between vertices.

May 18, 2011
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"-‘-‘Eraph topology

Digital Image

Nonlocal: a patch (vector
of values in a given neigh-

borhood) is associated to
vertices.

Consequences
@ Nonlocal processing of images becomes local processing on similarity graphs.

@ Our difference operators on graphs naturally enable local and nonlocal
configurations (with the weight function and the graph topology)

May 18, 2011

PdE on graphs for image and data processing
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e p-Laplacian nonlocal regularization on graphs
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;ur‘p—Laplacian nonlocal regularization on graphs

Let f9:V — R be a given (noisy) function defined on the vertices of a weighted
graph G = (V, &, w).

fO represents an observation of a clean function g : V — R corrupted by a given
noise n such that f® = g + n.

Recovering the uncorrupted function g is an inverse problem: a commonly used
method is to seek for a function f : V — R which is regular enough on G, and also
close enough to f°.

We consider the following variational problem:

g~ min {E, (f,f%2) = R, ,(f) + 3]If = I3}, (15)

where the regularization functional Ry, ,: H(V) — R can correspond to an
isotropic R.’,'vyp or an anisotropic Ry, , functionnal.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for
Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17, n7, pp. 1047-1060, 2008. J
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h ‘Isotropic an anisotropic regularization terms

The isotropic regularization functionnal R;'V,p is defined by the £, norm of the
gradient and is the discrete p-Dirichlet form of the function f € H(V):

DIV W5 = 5(F. AL )

v,eV

Ri p(f) =

T =

5 (16)

Do D wilf(v) — F(w))?

ViEV | vi~vy;

T =

The anisotropic regularization functionnal Ry, , is defined by the £, norm of the
gradient:

Rip(F) =5 D (VWD) W)IIZ = 5 (F. A% o))

v,eV

=15 S wEPf(y) - Fw)P

v,eV Vi~ Vi

(17)

When p > 1, the energy E, , is a convex functional of functions of H(V).

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 25
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;ur‘lsotropic diffusion process

To get the solution of the minimizer, we consider the following system of

equations:
i 0
OE,, ,(f, 7, 7)

OF (V) =0,Vv; €V (18)
which is rewritten as:
OR! (f)
9F(vi) + A(F(v) (vi))=0, Vv e (19)
Moreover, we can prove that
ORI, (f) .
w,p — i .
8f(V,') 2(Aw,pf)(vl) . (20)
The system of equations is then rewritten as
2(A, (Vi) + A(F(vi) — F2(vi)) =0, Vv eV, (21)

which is equivalent to the following system of equations:

A Y (e Vi) | F() = D (o H) (Vi ) () = AFP(w).(22)

Vi~V Vi~V

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011



;:"Isotropic diffusion process

We use the linearized Gauss-Jacobi iterative method to solve the previous system.
Let n be an iteration step, and let £(") be the solution at the step n. Then, the
method is given by the following algorithm:

O = £0
MOV + 3, o (Vo F ) (v, vy) F (v 23
f(n+1)(V,') _ ( ) Ev/ v,(,y .,P )( J) ( J), Vv € V. ( )
At 2y O o F ) (Vi)
with
i _2 )
()i i) = wi (VW)@ B + (VW)W ?) - (24)

It describes a family of discrete diffusion processes, which is parameterized by the

structure of the graph (topology and weight function), the parameter p, and the
parameter \.

[ X ] w [ Graph [ p=1 [ p=2 [ p€lo,1] ]
0 exp() semi-local Our Bilateral Our
0 exp() nonlocal Our NLMeans Our
# 0 | constant local TV Digital L, Digital Our
#0 any nonlocal Our Our Our

Table: Works related to our framework in image processing.

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011



:_f Examples: Image denoising

riginal image Noisy image (Gaussian noise with o = 15)
fO: VRS PSNR=29.38dB

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011



:_f Examples: Image denoising

. 0 . . 0
) Isotropic Gz, Ff rAISOtrOpIC 7, FY

Isotropic Gy, FS] = f0

el

gt

p=2

|1

PSNR=31.25dB PSNR= 3474dB

O. Lézoray (University of Caen) PdE on graphs for image and data processing
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ge Database denoising

‘Examples: Ima
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;F‘Examples: Image Database denoising

A=1 A=0.01

Isotropic

PSNR=13. 54dB

Anlsotroplc

O. Lézoray (University of Caen) PdE on graphs for image and data processing

May 18, 2011
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;-r‘lnterpolation of missing data on graphs

Let f9: Vo — R be a function with Vo C V be the subset of vertices from the
whole graph with known values.

/

\.‘,F ‘
‘_-._p ~ ofell cRely

The interpolation consists in recovering values of f for the vertices of V \ Vo given
values for vertices of Vg formulated by:

min_ Ry, (F) + M) () — F() 3 - (25)

Since f%(v;) is known only for vertices of Vg, the Lagrange parameter is defined as

AV - R
o A if Vi € Vo
Alvi) = { 0 otherwise. (26)
This comes to consider A}, [f(v;) =0 on V\ Vo.
Our isotropic and anisotropic diffusion processes can be directly used to perform
the interpolation.

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 32
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"-r‘ExampIes: Image segmentation

| 3

Original Image  User label input ~ Segmentation result

=

Go, Fi =% w=g, p=2,A=1

e

Go U4-NNGs, FE, w =g, p=2,A=1

O. Lézoray (University of Caen) PdE on graphs for image and data processing

May 18, 2011
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"-"‘Examples: Image segmentation

| g

L4 [,

(2

(a) 27512 pixels (b) Original+Labels ((,) t =50 (11 seconds)
I ‘
(d) 639 zones (98% of reduc- () Original+Labels (f) t =5 (< 1 second)
tion)
v 7

(2) 639 zones (98% of reduc-  (h) Original4Labels (i) t =2 (< 1 second)

O. Lézoray (University of Caen) PdE on graphs for image and data processing
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"nr‘ExampIes: Image colorization

| 3

Gray level image Color scribbles

Compute Weights from the gray-level image, interpolation is performed in a

s s s T
chrominance color space from the seeds: f¢(v;) = ';1,5:;, ';2,5:;, %,E:”

O. Lezoray, A. Elmoataz, V.T. Ta, Nonlocal graph regularization for image colorization, International J

Conference on Pattern Recognition (ICPR), 2008.
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;I‘Examples: Image colorization

p=1,G, F =0

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 37 /58
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h' ‘Examples: image inpainting

Original image Damaged image to inpaint

Gy, F = 0 S1si FL
Using our nonlocal interpolation regularization-based functional unifies geometric
and texture based techniques: geometric aspect is expressed by graph topology
and texture by graph weights.
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© Adaptive mathematical morphology on graphs
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:or‘l\/lathematical Morphology: Algebraic formulation

Nonlinear scale-space approaches based on Mathematical Morphology (MM)
operators are one of the most important tools in image processing.

The two fundamental operators in Mathematical Morphology are dilation and
erosion.

Dilation & of a function f°: Q C R? — R consists in replacing the function value
by the maximum value within a structuring element B such that:

55 (f(x,y)) = max{f°(x + x",y + y)(x',y') € B}
Erosion € is computed by:

eB(fO(x,y)) = min{fo(x +x',y+y)(X,y') € B}
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:ur‘l\/lathematical Morphology: Continuous formulation

For convex structuring elements, an alternative formulation in terms of Partial
Differential Equations (PDE) has also been proposed.
Given an initial function f°: Q C R? - R, a disc B={z € R?: ||z, < 1}, one
considers the following evolution equation

of

o =0 = +|vAl,

Solution of f(x,y,t) at time t > 0 provides dilation (with the plus sign) or erosion
(with the minus sign) within a structuring element of size nAt:

= O,f = +||Vf||p and €(f) =0 f = *va”p

with a size of 100At, At =0.25and p=1, p=2, and p = 0.
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:F‘Adaptive mathematical morphology on graphs

Our proposal

@ Transcription of PDE MM on arbitrary graphs
@ Introduction of nonlocal schemes for images

@ Extend MM to the processing of arbitrary data (point clouds, databases, etc.)

o

V.T. Ta, A. Elmoataz, O. Lézoray, Nonlocal PDEs-based Morphology on Weighted Graphs for Image and Data
Processing, IEEE transactions on Image Processing, 2011. to appear

V.T. Ta, A. Elmoataz, O. Lézoray, Nonlocal Graph Morphology, International Symposium on Mathematical
Morphology - Abstract Book, pp. 5-9, 2009.

V.T. Ta, A. Elmoataz, O. Lézoray, Partial difference equations on graphs for mathematical morphology
operators over images and manifolds, International Conference on Image Processing (IEEE), pp. 801-804,
2008. Winner of the IBM Student-Paper Award.

V.T. Ta, A. Elmoataz, O. Lézoray, Partial Difference Equations over Graphs: Morphological Processing of
Arbitrary Discrete Data, European Conference on Computer Vision, Vol. LNCS 5304, pp. 668-680, 2008.
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:-‘-&\/IM: Transcription on graphs

Transcription on graphs

Given G = (V,&,w), fO:V =R, f(.,0) = f, Yv; € V, we define:
61 0cf(viy t) = +[[(VE) (vis t) I, €: 0cf(viy t) = —[[(VS F)(vis t) [
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:-‘-&\/IM: Transcription on graphs

Transcription on graphs

Given G = (V,&,w), fO:V =R, f(.,0) = f, Vv; € V, we define:
010 (viy t) = +[(VER)(vis )], €:0cf(viyt) = —=[[(V ) (vis t) |,

AcCV
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:-‘-‘MM: Transcription on graphs

Transcription on graphs

Given G = (V,&,w), fO:V =R, f(.,0) = f, Vv; € V, we define:
d: 0cf(vi, t) = +[(VED Vi, )lp €1 0:f (vi, t) = —[(V ) (vi, ) I,

ACV
0t A ={vi¢A: Jv,eA with gjel}
0~ A ={vieA:3vj¢A with g;el}
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"-r‘MM: Transcription on graphs

b

Transcription on graphs

Given G = (V,&,w), fO:V =R, f(.,0) =f, Vv; € V, we define:
d: 0cf(vi, t) = +[(VED Vi, )lp €1 0:f (vi, t) = —[(V ) (vi, ) I,

ACV

0t A ={vi¢A: Jv,eA with gjel}
0~ A ={vieA:3vj¢A with g;el}
Dilation: adding vertices from 87 A to A
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;-r‘MM: Transcription on graphs

Transcription on graphs

Given G = (V,&,w), fO:V =R, f(.,0) =f, Vv; € V, we define:
d: 0cf(vi, t) = +[(VED Vi, )lp €1 0:f (vi, t) = —[(V ) (vi, ) I,

ACV

0t A ={vi¢A: JvjeA with e}

0~ A ={vieA:Ivj¢A with g;el}
Dilation: adding vertices from 97 A to A
Erosion: removing vertices from 9~ A to A
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;-r‘l\/ll\/l: Transcription on graphs

Transcription on graphs

Given § = (V, &, w), 0.V SR, f(.,0) = f, Vv; € V, we define:
61 0:f (viy t) = +[(VEE) (vis 1) ], €:0cf(vi, t) = —[[(V ) (vis t)[»

ACV

0t A ={vi¢A: Jv,eA with gjel}

0~ A ={vieA:3vj¢A with g;el}
Dilation: adding vertices from 07 A to A
Erosion: removing vertices from 9~ A to A

Dilation: maximizing a surface gain proportionally to [(VEf)(vi)|,
Erosion: minimizing a surface gain proportionally to [[(V, f)(vi)|l,
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;:r‘l\/ll\/l: Transcription on graphs

PDE MM: ¢ : 0,f(x, t) = +||VF(x, t)|, €: 0 (x, t) = —||VF(x,t) ||,

Transcription on graphs

Given = (V,&,w), fO:V =R, f(.,0)=f, Vv; € V, we define:
0:0ef(virt) = +HI(VERD i ), e: 0f(vi, t) = = [ (V) (vis t) ]
Since we can prove that for any level f/ of f, we have:

(V&) Wil if vi € O A,

(V) (i)l if vi € 9 A (27)

II(wa')(Vi)Hp:{

L, norm:
ICTEN@p = [ 5wl )2 (0. 7(5) ()] .0 < p < o

/17

Lo norm:
H(Vv:‘i,:f)(W)”oo = ‘I;}'Ij‘)é(w(vi7 \/J.)1/2|M:t (07 f(VJ)—f(V,)) |>

with MT = max and M~ = min
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h ‘Numerical resolution

Iterative algorithms with discretization in time: fO:V — R, f("(v,)=f(v;, nAt)

FOED () =F ) (v) £ AL (VEF) (wi)
fO(vi)=F(v)

L, norm:
1/
f("+1)(v,-):f(n)(v,-)j:At[ > w(vi, v)P2 M= (0, f(vj)ff(v,-))|”} g
Lo norm: o
F+D) (v)=F D) (v) £ At max_(w(v,-, V)2 | M (0, £(v;) —F(v;)) |)

For p =2 and w = 1 on a grid, we recover the PDE numerical scheme of Osher &
Sethian.

For p =00, At =1, and w = 1, we recover the algebraic formulation with the
structuring element expressed by the graph topology.
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:-‘-‘Why Adaptive mathematical morphology ?

Varying w and graph topology, we obtain adaptivity.

Adaptivity with graph weights: example of a closing ¢(f) = €(4(f)))

Unweighted Weighted Non local
with patchs
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h-‘Examples: closing ¢(f) = ¢(6(f))

Initial Weighted Non local / patchs
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;F‘Examples: image databases

Initial k-NNG

Erosion Opening

OO00C0L00C
2000 ;

oray (University of Caen) PdE on graphs for image and data processing May 18, 2011 48 / 58



@ Eikonal equation on graphs
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"F‘Eikonal equation

b

Our proposal

@ Transcription of the Eikonal equation on graphs
@ Introduction of nonlocal schemes for images
@ Applications to any data and graphs

V.T. Ta, A. Elmoataz, O. Lézoray, Adaptation of Eikonal Equation over Weighted Graphs, International
Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM), Vol. LNCS 5567,
pp. 187-199, 2009.

X. Desquesnes, A. Elmoataz, O. Lézoray, V.T. Ta, Efficient Algorithms for Image and High Dimensional Data
Processing using Eikonal Equation on Graphs, International Symposium on Visual Computing, Vol. LNCS
6454, pp. 647-658, 2010.
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::r‘Adaptation of the Eikonal equation on graphs

We consider the time marching approach of the Eikonal equation:
Oif(x,t) = P(x) — ||VE(x,t)|l2 x € Q\T
f(x,t) = ¢(x) xel
f(,0) = ¢o(.) xeQ

At t — oo, the solution satisfies the Eikonal equation.

Transcription on arbitrary graphs

Given a graph § = (V, &, w) and source vertices Vg,
Oef (vi, 1) = P(vi) = [(V ) (wi)ll,  vi € V\Vo
(Vlv ) (Vl) Vi € VO
f(vi,0) = ¢o(vi) v, €V
solved by (™) (v,)=F()(v;) — A (|(T5 ) wi)llp — P()).
o With p =2, 4-grid, and w = 1: Osher-Sethian upwind first order
Hamiltonian discretization scheme
o With At =1 and L. shortest path on a graph.

@ With other p and w values: a difference equation with adaptive coefficients.
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X,

-‘Examples: distances computation on images

¥,

Non local
Local We1ghted patchs
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I‘Examples: distances computation on databases

-
b




I-I‘Examples: segmentation of images

¥,

Non local
Local patchs




"I‘Examples: segmentation of RAG

¥,

Partitions RAG RAG + NNG

FW’BW‘%f .ﬁl'g'\i
" *ﬂ@ﬁﬁgf"

o

O. Lézoray (University of Caen) PdE on graphs for image and data processing May 18, 2011 55 / 58



@ Conclusions & Actual Works
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"F‘Conclusions - & Actual Works

PdE provide a framework for the transcription of PDE on graphs

o

@ Recovers many approaches in literature

@ Extends them to the processing of arbitrary data on graphs
o

Naturally enables local and nonlocal processing

Next Works

Study the limit as p tend to oo of minimizers of p harmonic functions on graphs.
Discrete nonlocal co-Laplacian equation for interpolation:

Bu,oof (1) = [(Vy H(W)lloo = (V) (@)oo =0
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b
The End. Thanks.

Publications available at :
http://www.info.unicaen.fr/~lezoray
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