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r Graph Indexing

» Graph Indexing Implies: (i) Specify local-to-global indexes, (ii)
Build a suitable representation, and (iii) Define a dissimilarity
measure.

» Indexes rely on topological statistics: (e.g. subgraphs — glndex
— [Yan et al., SIGMOD’04], summarization graphs — bags of
indexed subgraphs — [Zhou et al., DASFAA'08], local-to-gobal —
spectral indexation of trees — [Shokoufandeh et al, PAMI'05]).

» Representations Topological statistics imply a distributional
approach. Such approaches are currently linked to embedding: (e.g.
embed vertex-labeled graphs into normed spaces and match pairs of
weighted distributions using EMD—[Demirci et al., 1JCV'06], or
embed graph nodes in manifolds and deform them for
matching—[Escolano, Hancoch & Lozano, CVPR'11].

» Dissimilarities Compare statistics vs use Information-theoretic



r Partial Node Coverages

» Node Histories. Emerge for the natural generalization of the
nesting approach for trees and from recent approaches in
quantifying graph complexity [Escolano et al., SSPR’10].

» Partial Node Coverages. A graph is the overlap of several
subgraphs, one per each vertex. What is the optimal extent of
each coverage? Close to the graphlet whose spectrum has
been recently described [Kondor et al., ICML'09].

» Spectral Features of Subgraphs. Recent experiments show the
most discriminative spectral features [Bonev et al.,SSPR'10]:
Commute Times, Perron-Frobenius, Fiedler vector and node
centrality vector.



r Partial Node Coverages
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Figure: Several histories and node coverages in a regular grid




r Why Information Geometry in Graphs

» Tensors. For each subgraph/partial coverage we can compute a
covariance matrix from the features measured along the
formation of the coverage. Such matrices live in a Riemannian
manifold [Tuzel et al., PAMI'08], [Porikli, S+SSPR’10].

» Tensor Distributions. Given two graphs to compare, each graph
is given by a population of covariance matrices (one per
node). Although geodesics are defined in the manifold it is
hard to define distributional dissimilarities there.

» Tangent Space. We define the tangent space associated to
the Karcher mean of the union of both population, deproject
tensors and compute distributional dissimilarities in the tangent
space.
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F Spectral Descriptors

Vectorization

Consider ®(i) = (A(i), ..., fs(i))T a vector of spectral descriptors
of the partial node coverage H = e*(i) C G

» For CTs we consider both the Laplacian and the normalized
Laplacian of H: the elements of the upper off-diagonal
elements of the CT kernel are downsampled to select m = | V4|
elements and they are normalized by m?.

» Fiedler and Perron-Frobenius vectors have m elements by
definition.

» Node centrality is more selective than degree. This measure is
also normalized by m?.
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F Tensors in the Manifold

Tensors

For each partial coverage H we can compute the statistics of d
spectral descriptors taking m samples. Such statistics can be easily
encoded in a d X d covariance matrix

Xi = 745 S (0(1) — @)(®(7) — )T

lying in a Riemannian manifold M.

Existence of Tangent Space

As a Riemannian manifold is differentiable, the derivatives at each X
always exist, and such derivatives lie in the so called tangent space
Ty, which is a vector space in RIxd
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F Tangent Space

Elements of the Tangent Space
» The tangent space at 7_} is endowed with an inner product
<.,.>g being
I S_l_= g5 1
< 0,V >g= trace(X 20X 1VX"2).
» The tangent space is also endowed with an exponential map
expy : Ty — M which maps a tangent vector i to a point

U = expg (@) € M
that is, it maps U to the point reached by the unique geodesic
from X to U: g(X, U).
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F Tangent Space (2)

Elements of the Tangent Space
The inverse mapping logy : M — Ty is uniquely defined in a small

neighborhood of X. Therefore, we have the following mappings for
going to the manifold and back (to the tangent space) respectively:

expy(il) = XZexp(X 20X 2)X53 .
logz(U) = Xzlog(X 20X 2)Xz . (1)

g2(X,U0) =< Iog;((l_]), Iog)ﬂ((lj) > = trace (Iog (X~ %U)?*%)) :
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F Tangent Space (3)

Vectorization

The tangent space allows us to vectorize de result of the inverse
mapping in order to work in a vector space with Euclidean
distances which are approximations of the geodesics:

vecy(u) = VeCr(U)()?%“)?i%)'
veci(u) = (un1 V2uiy ... up V2ups .. “dd)T' (2)

Once we have a vector we can use distributional dissimilarity
measures for comparing both graphs! However we must find in
advance the less biased location for placing the tangent space.
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F Tangent Space (4)

Karcher Mean

Let us denote by 7y with k = 1,...,N (where N = nx + ny) each
covariance matrix coming from graphs X or from Y with nx = | Vx|
and ny = |Vy]|.
» A fair selection of the tangent space origin is the Karcher
mean defined as
p=argminz_, g2(2k, 2)
» The Karcher mean can be obtained after few iterations of
pttl = exput()?t) where Xt = LSV Iogut(Zk).
» Then we deproject and compute the vectorization before
comparing distributions representing both X and Y.
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r Henze-Penrose Divergence

Definition [Henze & Penrose., Annals of Stat.’99]

202 2,2
pf<(z) + q°g*(2)
Dup(fllg :/
he(flle) pf(z) + qg(2)
where p € [0,1] and g = 1 — p. This divergence is the limit of the

Friedman-Rafsky run length statistic, that in turn is a generalization
based on MST of the Wald-Wolfowitz test for d > 1:

1. Build the MST over the samples from both X and O.

2. Remove the edges that do not connect a sample from X with a
sample from O.

(3)

3. The proportion of non-removed edges converges to 1 minus the
Henze Penrose divergence between fx and go.
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r Henze-Penrose Divergence (2)
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Figure: Two examples of Friedman-Rafsky estimation of the Henze and
Penrose divergence applied to samples drawn from two Gaussian densities.
Left: the two densities have the same mean and covariance

(Dup(f]|lg) = 0.5427). Right: different means (Dyp(f||g) = 0.8191).
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F Total Variation k-dP Divergence

Definition [Escolano et al., SPR'10]

Let f(x) and g(x), from which we draw a set X of ny samples and a
set O of n, samples, respectively. If we apply the partition scheme
of the k-d partition algorithm [Stowell and Plumbey., IEEE-SP'09] to
the set of samples X |J O, the result is a partition A of X O,
being A= {A;|j =1,...,p}. For f(x) and g(x) we have

f(A)=TL=1, gA)=Tl=g.

The k-dP total variation divergence is then given by

p
Drar(fllg) = %Z| — gl




r Total Variation k-dP Divergence (2)
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Figure: Two examples of divergence estimation applied to samples drawn

from two Gaussian densities. Left: both densities have the same mean and
covariance matrix (D(f||g) = 0.24). Right: different means. Almost all the
cells contain samples obtained from only one distribution (D(f||g) = 0.92).
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F GatorBait100 Database

http://www.cise.ufl.edu/anand/publications.html

» 100 shapes with fishes from 30 different classes (genus)
quantized to form Delaunay graphs.

» High intraclass variability in many cases and many similar
species from different genus and few homogeneous classes.

» There are 10 classes with one species (not included in the
analysis and curves), 11 with 1 — 3 individuals, 5 with 4 — 6
ones and only 4 classes with more than 6 species.

» Hence, it is hard to devise a mesure which produces an average
recall curve far above the diagonal. HP improves KDP.

» d =5, where the 5D setting is selected experimentally since
intrinsic dimensions are overestimated in this case.
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Performance Analysis
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Figure: Left: Gator Samples. Right: Average recall curves




Performance Analysis (2)

m
09 ALGORITHMS COMPARISON - T
. 08-
o7 o7 fe
5
0 08 e
05 /

oo
== 14 fu .

AW 04r e
—— - RawPols s
T8 ]
./
o2/
0.17,‘"
[
; i i i ; / . 2 . :
3 4 50 80 90 @ 9 100 A I H H . H H H i
Retrieval 0 10 20 0 40 50 80 70 80 %0 100
Recall

Figure: Left: [Escolano, Hancoch & Lozano, CVPR'11] . Right: Average
recall curves




F Selecting Optimal Scale

Scale Space for Graphs

» The history of a node is the basis of a scale space as we
increase the degree of the coverage.

» Not all nodes of the graph need a maximum degree of coverage.
» What is the optimal degree k* for each node i € V7

Node Saliency on Graphs

» As we have covariance matrices we can compute
det(kX}) — u(trace(kX¥)2.

» If we detect a maximum in the scale space between k and kK + 1
then k* = k. Otherwise k* = 1.
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Selecting the Optimal Scale
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Figure: Left: Scale Space Analysis for a Grid graph with 8—neighborhood
topology. Right: Histidine-kinase PPI.
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F Discussion and Future Work

Discussion

» We have defined an information geometric approach for graph
indexing.

» The more competitive IT measure is the Henze-Penrose
divergence improving entropic manifold alignment for Gator.

Ideas for the Future

» Introduced optimal scale selection on structure. Only practical
for small graphs or for analyzing specific nodes in PPlIs.

» The purpose of analyzing these specific nodes is to track the
evolution of functional specialization.
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