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, Motivation
=¥,

b

Structural Pattern Recognition

V' Rich description of objects

~ Poor properties of graph’s space does not allow to readily
generalize/combine sets of graphs

Statistical Pattern Recognition

oo
~

Global description of objects

<

Numerical spaces with many mathematical properties (metric,
vector space, ... ).

Motivation

Analyse large famillies of structural and numerical objects using a unified
framework based on pairwise similarity.
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‘f Outline

b

@ Basics about Kernels

© Graph Kernels
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;.f Definition

o A kernel k is a symmetric similarity measure on a set x

V(z,y) € X*, k(z,y) = k(y, =)
@ k is said to be definite positive (d.p.) iff k is symmetric and iff:
V(Q?l, v ,xn
V(ct, ...y Cn) € R" ZZC%CJ zi,2j) 2 0
i=1 j=1
o K = (k(xs,75))3ij)eq1,....ny is the Gramm matrix of k. k is d.p. iff:

Ve e R" — {0}, ¢!Ke >0
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qf Examples

If x =R", classical kernels include:

o Linear kernel:
K(z,y) = a'y

e Polynomial kernel
K(z,y) = (z'y)* +¢c,ce R, deN

o Cosinus kernel:

zty
K(z,y) = 0
(EANEA]
o Rational kernel:
|z =yl
Kx,y=1-——"-—>beR-{0
) =1 R T 0}
o Gaussian Kernel
o2
K(z,) = exp (”””%y”> o eR— {0}
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qf Kernels and scalar products
e

g

Aronszajn 1950 :
A kernel k is d.p. on a space x
if and only if
it exists

e one Hilbert space H and
o a function p : x — H
such that:

k(z,y) =< o(x), p(y) >
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A basic example
1 ‘
o Let x = R? and k(z,y) = (zty)? +1

e For any © = (21, 22) and y = (y1,y2) we have:

k(z,y)

(191 + z2y2)? + 1
14 23y} + 23y3 + 2x1225112

e The function ¢ from R? to R* defined by:

1

2

x

e@=| 3

\/ixlx2
o Satisfies
k(z,y) =< p(x), 0(y) >

e Remark: An hyperplane in H = R* corresponds to a quadric of R?.

<p@),n>=K=mn + ngx% + ngxg +muV2xm9 = K
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¥ The Kernel Trick
)

p |

¥

o Linear classifier become non-linear using kernels

too simple

Problem: ¢ is usually unknown.
e Many methods only need scalar product between data ( not explicit
coordinates) = replace scalar product by kernel.

e E.g. k-NN:
A (w1, m2) = [le(z1) — @(x2)]?
= < (r1) = @(r2), p(x1) — ©(x2) >
= <p(@1),p(x1) >+ < p(22), p(22) > =2 < (1), P(T2) >
dK([El,l‘Q) = k(l‘l,l‘l) + k‘(fg,l‘g) — Qk(l‘l, .1?2)

e Kernel trick
o Algorithm defined in H = (linear methods,non linear separation),
e Data stored in x.

Interesting but so what. . .
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q-f Outline

b

Kernel and strutured data

The kernel trick provides an implicit embedding whose metric is defined from
our similarity criterion (the kernel).

© Graph Kernels
e Graph Edit Distance
e Kernels based on infinite Bags
@ Kernels based on finite Bags
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q.f Graph Edit distance

b

o Edit Path h=e;...,¢e, € P(G,G)

G—..—-G

€1 €n

e;: removal /insertion /relabelling operation.

o Cost of an edit path:

o Graph Edit distance

d(G, G,) = minh_el eneP(G,G’)C(h)
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qf Kernels and Graph edit Distance
)

h A work intensively explored by Neuhauss & Bunke ( see
citations on last slide)
Graph prototypes Let {Gy,...,G,}
G — vect(G) = (d(G,Gy))i=q1,...ny = K(G,G') =< Vect(G), Vect
Diffusion Kernels
o Let B® be a similarity matrix over S={G1,...,G,}. E.g.:

d(G;,G,)?
B%(G,,G;) = emp(—Tj)
@ “Force” definite positiveness:
o AF S\k
5 _ Sy _
K> =exp(A\B”) = Zﬁ(B )
k=1

with an appropriate choice of ) is definite positive.
s
k%(Gs,Gj) = K
is thus a valid kernel defined on {G1,...,G,}.
e Drawback: Any incoming data G defines a new problem on
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f Walk kernels
b

o Walks: Let G = (V, E) W = (v,...,v,) is a walk iff
(vi,vi41) € EVie {1,...,n—1}.
——

V oeo-0000is g walk
o———

o Kernel between walks

0 if |h| # [R/| and
K(h,h) = N K (e e o i
Ky (vy,v7) 152 Ke(eq, €5) Ky (vig1,vi,,) otherwize

@ ®
KVI K. KVI K
YYY e o
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;-f Walks kernels
o Walk kernels :
G17G2 Z Z K(h h )/\G1 (h)AGz (h/)

heW(G1) heW(G2)

e Covers different Graph kernels[Vert 2007, Vishwanathan et al. 2010]:

1iff |hl=n Kis a nth order walk kernel
IfXg(h) =< Pg(h)(Markov RW) Kis a random walk/marginalized kerr
el Kis a geometric kernel

Pg(h) = ps(h1)ILZ pi(hilhi—1)pg(hn) with |h[ =n
e Connection with diffusion algorithms on product graphs. May be
computed “efficiently” using matrix inversion.

o Walks may induce totering problems: Walks with arbitrary length on the
same set of edges and vertices.

e Framework extended to tree-pattern [ Vert 2006, Bach 2007]
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qf Finite Bag kernels

b

G — B(G)

G — B(@)

} K(G,¢) = K(B(G), B(C)

Three independent step to design a graph kernel.

Graph Kernel

Bags of patterns
construction scheme

Bag of Pattern kernel

Pattern kernel

L. Brun (GREYC)
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ﬂ ¥ Bag of paths kernels

Kernel

Kmean T7T Ka ern tt
(T1, T |T1|\2|ZZ patt

teTy teTs

More complex kernels

(0=

T

, - K@y
K'(z,y) = el

K'(z,z) = |l¢' (@) =1

(Desobry 2005) Normalized kernel

Weighted mean kernel

Kweighted (T17 TZ) = %ﬁ ZtETl Zt’eTz /\Tl( ); )\Tz (tl)Kpattern (t7 t/)y
A, (t) = <p(t),pn >*
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" . Conclusion

b

Bags of Patterns

Direct comparison

@ Vector Description @ Type of Pattern Trpe @f Tt
lks,T! ;

@ Edit Distance (Walks, Trees) (Paths, Trails,

Trees)
@ Regularization of similarity criterion @ Walk attenuation .
@ Bag selection,

@ Markov, ° )
O gremtste, Bag comparison
@ nth order. @ Pattern kernel

e Graph kernels provide an implicit embedding of graphs,
e Many statistical tools may be used using the kernel trick,

o The interpretation of operations performed in the implicit Hilbert space is
controled by the similarity criterion defined by the kernel (e.g. mean).
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Conclusion

i

Thank you for your attention !

Questions 7
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