Publications
- ‘Sheared peridotite and megacryst formation beneath the Kaapvaal craton: a snapshot of tectonomagmatic processes across the lithosphere–asthenosphere transition.’ Journal of Petrology egab046. doi: 10.1093/petrology/egab046. .
- . . ‘MAGLAB: A computing platform connecting geophysical signatures to melting processes in Earth's mantle.’ Physics of the Earth and Planetary Interiors 314: 106638. doi: 10.1016/j.pepi.2020.106638.
- . . ‘A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites.’ Geochimica et Cosmochimica Acta 282: 297–323. doi: 10.1016/j.gca.2020.04.008.
- . . ‘Rifting of the Kaapvaal Craton during the early Paleoproterozoic: Evidence from magmatism in the western Transvaal subbasin (South Africa).’ Precambrian Research 342: 105687. doi: 10.1016/j.precamres.2020.105687.
- . . ‘Unravelling partial melt distribution in the oceanic low velocity zone.’ Earth and Planetary Science Letters 540: 116242. doi: 10.1016/j.epsl.2020.116242.
- . . ‘Ultramafic Carbonated Melt- and Auto-Metasomatism in Mantle Eclogites: Compositional Effects and Geophysical Consequences.’ Geochemistry, Geophysics, Geosystems 21, No. 5: e2019GC008774. doi: 10.1029/2019GC008774.
- . . ‘The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations.’ Earth-Science Reviews 203: 103115. doi: 10.1016/j.earscirev.2020.103115.
- . . ‘The Link between the Physical and Chemical Properties of Carbon-Bearing Melts and Their Application for Geophysical Imaging of Earth's Mantle.’ In Deep Carbon: Past to Present, edited by , 163–187. Cambridge University Press. doi: 10.1017/9781108677950.007.
- . . ‘Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles.’ Earth and Planetary Science Letters 484: 1–14. doi: 10.1016/j.epsl.2017.12.013.
- . . ‘Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models.’ Lithos 268-271: 364–382. doi: 10.1016/j.lithos.2016.11.004.
- . . ‘CO2 solubility in kimberlite melts.’ Chemical Geology 418: 198–205. doi: 10.1016/j.chemgeo.2014.11.017.
- . . ‘A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint.’ Chemical Geology 418: 206–216. doi: 10.1016/j.chemgeo.2015.07.025.