
More than a simple Tutorial about SeSAm

June 13, 2003

Contents

1 What this Tutorial is about? 3
1.1 SeSAm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Further Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 First Steps 3
2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The First Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Agent Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Agent Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Agent Reasoning Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Running a First Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 World Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Simulation Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Simulation Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Two simple improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Temperature and Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Mouse-like images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Interactions 28
3.1 Between Environment and Agents: Weather-Dependent Activity . . . . . . . 28

3.1.1 Global World Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Relation between global and local temperature . . . . . . . . . . . . . 29
3.1.3 High Level Observation using Analysis . . . . . . . . . . . . . . . . . . 35
3.1.4 Editing Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Between Agents and Resources: Cheese Eating and its Effects . . . . . . . . . 40
3.2.1 CheeseClass Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 World-managed Resources . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Mice and Cheese: Interactions between Resources and Agents . . . . . 44
3.2.4 Producing new agents – and other ”Emergencies” . . . . . . . . . . . . 47
3.2.5 Evolving the decision to use energy for cooling down... . . . . . . . . . 47

3.3 From Mouse and Cheese to Foodweb: Adding Cats . . . . . . . . . . . . . . . 47
3.3.1 The energy feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Complex behavior: The simulated human mouse-protector . . . . . . . . . . . 47
3.4.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



3.4.2 Composed Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 From Testing to Systematic Experimentation 47
4.1 Preparing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Defining Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Debugging and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Remote Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Variable Type List 48

This is a tutorial for SeSAm. You will learn how to implement a multi-agent simulation from
the very beginning to sophisticated high end models. SeSAm was and is further developed at
the Universität Würzburg and can be freely distributed. It is academic software, that means
for us not, that it some preliminary non-working prototype, but we won’t spend month of
our time writing manuals (that are always requested, but never read). On the other side, we
want you to use SeSAm, as it is worth using, therefore we see the need for some introductory
material. Thus is is more than a tutorial: it contains an index that leads to the location where
the explanation can be found. In addition you will find more general explanations in smaller
text size between two lines. Thus this tutorial is almost a complete documentation – at least
when it is finished.

We wish you successful modelling and simulation and a lot of fun using SeSAm

The SeSAm-Team
Franziska Klügl
Christoph Oechslein
Rainer Herrler
Steffen Glückselig
Clemens Mühlberger

2



1 What this Tutorial is about?

1.1 SeSAm

This is a tutorial about using SeSAm. Before going on, we should make clear what SeSAm
is, and what it is not:

SeSAm stands for Shell for Simulated Agent Systems. Its provides a generic environ-
ment for modelling and experimenting with agent-based simulation. We specially focused on
providing a tool for the easy construction of complex models. Agents consist of a body that
contains a set of state variables and a behavior that is implemented in form of UML-like ac-
tivity diagrams. Activities are seen as simple scripts that are initiated and terminated based
on rules. The actions and conditions can be composed of a extensive number of primitive
building blocks, a user is able to design visually a simulation without programming in a tra-
ditional language. User functions, features (set of variables and functions) and user defined
data types provide a possibility to construct higher level building blocks. A component for
evolutionary adaptation of parameters is also integrated. All is implemented visually in form
of quasi declarative descriptions. These are executable in the same environment. Dynamics
of this simulation may be observed in form of animation or user configured, autonomously
updating curves. As there are freely configurable instruments for gathering data and scripting
options for constructing simulation experiments, SeSAm is a highly valuable tool for MAS
simulations especially for complex models with flexible agent behavior and interactions.

1.2 Further Material

Further material on SeSAm can be acquired on the SeSAm-Webpage: www.simsesam.de.
You can find news about courses we offer or download several example models. There you
can always get the most recent version of SeSAm. However they won’t change any more
with this frequency like before (less bugs :-).

There is also a mailing list for SeSAm-related problems. We are all listening and will
answer all questions in reasonable time.

For earlier SeSAm-versions (the Lisp) there is a quite extensive documentation, however
useless! A recommendable introduction to multi-agent simulation in general (and into that
old SeSAm-version) is the book ”Multi-Agent Simulation” by Franziska Klügl, however in
German.

2 First Steps

Download and installation of SeSAm is quite simple and explained in all necessary detail
on the web-pages www.simsesam.de, where you can also access the most recent SeSAm-
versions. If you are not sure about already having the correct Java Virtual Machine Version
- also download it. With an installation there comes also this tutorial and the model we will
implement in all phases.

2.1 Getting Started

After opening SeSAm (double click on the link runSeSAm) you will see, what is shown in
figure 1

3



Figure 1: SeSAm directly after starting.

4



Except the Look&Feel , which is exclusively for switching between different ways windows
and dialog items are presented, all menus in the menubar will be described when necessary.
On the left you find the so-called DeclarationTreePanel where one can also navigate through
all model contents (this may replace the third to seventh menu in the menubar).

DeclarationTreePanel

allows to access all edit-actions of the model. Just click with the right mouse button onto an item and
you will find Menu-items like New, Properties, Remove, etc... It is located normally at the left side of the
screen. You can close it by clicking with the right mouse button onto the upper frame of it, or track it to
any position you want. However for restoring the fixed position on the left you have to restart SeSAm.

2.2 The First Agents

We want to start with the first agent class in our food web model. You have three possibilities
for doing this: Either open the selection box for agent classes (double-click on the Menu Agents
or select Model→Agents from the menubar) and select the button New, of click with the right
mouse button onto the Agents in the DeclarationTree on the left and also choose New. After
you did that you find a situation as depicted in figure 2 or figure 3. It shows that a new agent
class with the name ”untitled” was generated.

Figure 2: Newly generated Agent Class in the Agent Class Selection Box

Figure 3: Newly generated Agent Class in the DeclarationTree.

5



2.2.1 Agent Class

This new agent class can be edited by double-clicking on the name - either in the selection
box or in the DeclarationTree. This is, what we are going to do next and we see an editor as
presented in figure 4

Figure 4: Editor for Agent Classes – here opened with a newly generated agent class.

In this window you see different dialog items: At the top you see on the left the Name
field, here we exchange the text ”UntitledAgentClass” by ”MouseClass”. At the top right
you see a button where you can edit documentary strings . For complicated models this is
highly recommended! The rest of this window is filled by four tap views: Reasoning Engine,
Variables, Features and Update Function. In this section we will only tackle the first two.
Features are explained in section ??, Update Functions play an important role for debugging,
thus they are explained in section ??.

SeSAm Agent Concept

The most important parts of an agent are its reasoning engine and its variables. The first is used
to specify the agents behavior the second is used specifying the agents state based on a set of state
variables. There are different reasoning engine imaginable, yet until now there is just implemented:
the Activity Reasoning Engine is based on UML-like activity diagrams. The Agent is always in one
activity - which’s actions the agent performs. Activities are terminated and selection by rules.

6



Our MouseAgent will behave like the following: It just runs around. The velocity and
the agile-ness is depending on the inside temperature (in the next section, we will of course
extend this model with cheese and cats). During that time, the mouse will age.

2.2.2 Agent Body

For implementing this very simple agent model we will proceed by clicking on the Variable-
Tap and generating the variables of temperature and age. Therefore we click on the New in
the left button of this view. After this in the left box there occurs a text ”UntitledVariable”
and the complete right box of the window becomes active.

Variable Form

Editing Variables is always the same in SeSAm. The view for this contains:

• a Name-field, where you can specify the name of the variable (name doubles are allowed, but
can be confusing). A newly generated variable has the name ”UntitledVariable”.

• A documentation button invites you to input explanatory texts, that e.g describe the ideas that
you had for introducing this variable.

• a Type-field, where you have to determine the type of the values that the variable will contain
(down by the pop-up menu directly below the type field. A complete list of currently available
variable types is given in annex A Types that need further information are marked using < T >.
The default type is number.

• The checkbox for External specifies whether the content of this variable will be accessible by
other agents. At the beginning this checkbox is not marked

• The checkbox for Writeable determines whether the variable is manipulable or constant (default
is unselected)

• In the bottom of this part of the window is filled by two taps and a function selection list.
There the start (default) value for this variable is determined. For an absolute value double
click on that start value and specify a value in the new dialog or select a function in the right
list. For specifying a variable with automatic dynamics select the Next Value-Tap and select
the ”Next value” checkbox and give the functions that is called for computing the new value in
every round.

To implement the internal temperature of our mouse we fill these fields in the following way:

• Enter ”Temperature” in the Name-field

• Select the writable-checkbox

• Double-Click on the ”0”-Entry in the Start Value-Tab and change the ”0” in the up-
popping number entry dialog into ”36”. Click on Ok to insert this value.

The default values of the Variable Type (number) and the External -checkbox are ok for our
Temperature variable. After these actions the Edit Agent Dialog looks like depicted in figure
5.

Now we will give the attribute age to our mouse agents. This will be a dynamic variable,
that means a variable which’s value is changing independently from any actions. For this
purpose we generate a new variable (by selecting the New in the lower left corner of the
current Edit Agent dialog. After entering the name ”Age” (The variable type number is

7



Figure 5: Editor for Agent Classes – after entering the Temperature-variable.

correct here, too) and selecting both, the External – the age of our mouse will be observable
for other agents – and Writable – the age changes –, we select the Next Value-Tap. Here we
also select the Next Value checkbox to confirm that this will be a dynamic variable. What
you see below the Next Value checkbox is an area for editing functions. Like the variable edit
forms, these areas are repeated in many places in SeSAm, it is the only way to specify a
function.

Function Edit Area

The area to edit a function consists of three fields that are always ordered from left to right in the
same way:

1. The field most on the left contains the current value of the function specification. This field is
also called the function tree as the function specification and the arguments belonging to it are
organized as a tree or hierarchy. Every argument can be a tree-like function specification again.

2. The field in the middle contains a list of possible atomic arguments. If you double click on a
type name, like number a new dialog occurs where an absolute value can be specified.

3. On the most right a list of appropriate functions is offered. This list is adapted to what is
expected for the argument or function that is selected in the current value field on the left.
That means, if you don’t find a function in that list then you might have not selected the right
thing in the function tree on the left. Positioning the mouse pointer on one functions opens a
tool tip that describes what this function will do.

The procedure for specifying a function is always the same. Select on the left field the entry that
you want to change, then the argument and function lists will change to contain the possible entries.
Double Click on a function on the left (sometimes additional type information may be requested, e.g.
when selecting GetVariable then the type of the variable will be asked for). After that in the left field
a new sub-tree occurs where you can specify the leafs in the same way. If you want to edit an atomic
value, double click on the appropriate entries in the arguments list. Copy and Paste are possible, as
well as moving entries, if the types of the sources and destinations are the same.

The Age of the mouse agents should be increased by one degree in every time step. In
the function specification for the next value we have to specify a function call that returns a
new number that is set as the new value of the variable Age. Therefore we double click on
the + (Number) entry in the function list on the right. On the left current specification area

8



a small hierarchy occurs that shows on the upper level a ”+” with two arguments with the
atomic value 0. We continue with the first of these two arguments, selecting it and choosing
in the right function list the entry GetVariable (Var <Number>). This is a function that
supplies the value of a variable of the agent that calls it . The first argument of the + is now
a sub-tree with the GetVariable and the argument value ”null”. As here a variable name
is required the Arguments and Functions lists are adapted. If you select the variable entry
”null” and double click on the entry Variable<Number> in the Arguments list then a dialog
will be opened where you can select one of the numeric variables of the mouse agent. Now
you have to select Age and close the dialog by clicking on the OK-Button. Double clicking
on the second argument of the + – the second ”0” – a dialog opens where you can change the
0 to a 1. Now we have finished the specification of the next value of the attribute Age. The
next value is determined by adding the number 1 to the current value of the variable Age. In
figure 6 this procedure is illustrated.

Figure 6: Specification of the new values for the variable Age

With this variables we have finished the specification of the agent body. Now we can
continue with the specification of the mouse behavior.

2.2.3 Agent Reasoning Engine

In the agent reasoning engine the behavior of an agent is implemented. Currently one type of
reasoning engine, namely the Activity Reasoning Engine is available. When opening an Edit
Agent dialog or selecting the Reasoning Engine tap in an already opened Edit Agent dialog
a panel for editing the reasoning engine becomes visible. At the beginning a default behavior
as depicted in 4 is provided. One can see four types of nodes:

• Start Activity is represented by a filled black circle. At the beginning a rule that always
fires (condition is equal to ”true”) connects this activity to the next normal one.

• State Activity is the box with the rounded edges. At the beginning the name of this

9



activity is Idle. The stop watch shows that this activity consumes at least one time
step. During the interpretation of the activity diagram an activity with a stop watch
can only be changed until the next update round. The shape of the activity node
denotes that this is a state – that means the agent is in a more quiet conditions and
stays passive.

• End Activity is small filled black circle with the second frame. If a rule ends at this
activity, the reasoning engine is terminated and the agent is erased from the world - it
dies.

• Emergency Activity is the box with the flash. Rules that start in this activity are tested
in every time step (see also section ??).

The running around behavior of our mouse agent will contain tree activity nodes. At
the beginning we specify an Init, where we set the velocity of our mouse according to its
temperature and a second activity where the actual (random) Movement happens, during that
the mouse becomes warmer. A third activity is responsible for Sleeping - some relaxing and
cooling down activity.

For preparation we have a look onto two menus: The operator selection menu on the
top of the reasoning engine panel. Figure 7 explains the different operators. For executing
the associated action, select the operator and click either on the panel or the node that this
operator should be applied to.

Figure 7: Operators on the activity reasoning engine editor

Based on this operators a lot of activity nodes with different shapes can be inserted into
the activity graph definition. These shapes are explained in section ??. The shape itself
makes no difference, it is just different for transparency reasons.

Now we can start editing the mouse behavior. For specifying the Init we re-use the
default Idle. We make a double click onto that box. An dialog Edit Activity opens. This
dialog is depicted in figure 8

Activity Form

The editor for specifying an activity contains the following fields

• Name-field contains the name of the activity. Like variables names need not to be unique,
however it might be confusing.

• instantly-checkbox specifies whether the activity is instantly or not. An instant activity may be
terminated and a new one selected during one time step, non instant activities at least consume
one time step. In the activity graph they are depicted by a small stop watch that is crossed

10



Figure 8: Operators on the activity reasoning engine editor

11



out (instant) or not . Instant activities always require an termination rule, as they are executed
again and again until a rule may fire (or the interpreter detects an endless loop, then an error
message is produced and the simulation is terminated).

• Shape-Pull-down-menu. The default Idle is ”state-like”, all other newly added activities are
either ”activity-like” or according to the selected panel operator.

• Action-subview contains three taps with the same types of fields. All have a sequence of actions
and New and Remove-Buttons. The title of the taps shows whether in the list there are

– Actions – that are the actions of the activity that are in every activity update executed
(once of non-instant activities per time step, potentially more than once for instant activ-
ities)

– Entry Actions – this sequence of actions is executed when the activity is newly selected to
be the current activity of the agent.

– Exit Actions – this sequence of actions is executed when the activity is terminated as
another activity is selected.

The number in brackets behind the tap title denotes how many actions are already specified in
this sequence.

• Selected Action Specification fields is a function edit area like we learnt at the new value of a
dynamic variable specification. After selecting an action to change in the sequences above, you
can proceed like described on page 8. The only difference to the next value specification is that
in the Functions List there is a list of actions instead of a list of Functions that return numbers.

For editing our Init-Activity we proceed – after giving it the correct name – by clicking on
the New to generate a new action (in the Actions- tap view). In the action sequence a new
action Noop occurs. Noop means ”Do nothing”, Selecting this action the lower part of the
function edit area becomes active with the Noop-Action in the left part. We select the action
ChangeSpeedTo(Number) in the right list by double clicking on it. This action requires one
argument, namely a value for the new speed of our agent. This value should be depending
on the temperature of the agent. We choose the following formula for computing the speed:
GetV ariable(Temperature)

36 × 100. This means, if the mouse has the temperature 36 then it moves
with a speed of 100. If the temperature is higher, then the movement is faster and vice versa.
For this aim we first select the function *(Number...). As the first argument in this sub-
tree we select the function /(Number, Number). Here the first argument will be the function
GetVariable with Temperature as the selected variable (for a more detailed description in
a different context see page 9). The second argument of the / is the absolute number 36.
The second argument of the * is the absolute number 100. After these inputs the window for
editing the Init looks like depicted in figure 9.

The activity form has to be closed using the OK -Button for confirming the changes made
in this editor (Apply confirms the changes without closing the window and Cancel closes the
window discarding the changes made in it.

The activities Movement and Sleeping are specified in an analogous way. First select
the Add Atomic Activity operator then click on some place in the panel, a new activity
node occurs with the name Untitled... (full name: Untitled Atomic Activity). We
replace this name by Movement and generate three new actions. The first of these actions is
ChangeDirectionBy (Number) with the degree (max. 360) of change in the movement direc-
tion GetV ariable(Temperature)

9 . As we do not want them always to turn left we input as the num-
ber the following construct: If (RandomBoolean(0.5)) Then GetV ariable(Temperature)

9 Else

12



Figure 9: Edit Activity form for the Init-Activity.

13



−GetV ariable(Temperature)
9 . In the function tree the resulting specification looks like depicted

in figure 10.

Figure 10: Function specification for a temperature-dependent random change in movement
direction

The second action in the Movement is a simple Move action without any arguments. This
action lets the agent move with the stored speed into the given direction. In the third action
we have to specify the effects of the movement unto the temperature of the mouse agent.
Therefore we have to change the value of the Temperature. We make a double click on the
action SetVariable and select the type Number in the proceeding dialog where one has to
enter the data type of the variable that one wants to change. The first argument in the
SetVariable tree is the variable, where we select Temperature after making a double click
on to the default value ”null”. The new value is determined by computing the current value of
the variable Temperature plus 1. Alternatively one could also use the action IncrementVar
with the variable Temperature as first and 1 as second argument. After these inputs the
upper part of the activity form will look like depicted in figure 11.

Figure 11: Actions in the Movement activity.

Next we implement the Sleeping activity. Again we generate a new ”Untitled Atomic
Activity”, open the Edit Activity Form and change the name. While sleeping the agent is
not very busy, the mouse just cools down. That means we need one action that decreases the
value of the variable Temperature by 2 degrees (cooling down is faster than warming up).

14



This is done in analogy to the increasing temperature of the Movement. The resulting window
of the Sleeping specification looks like in figure 12

Figure 12: Specification of the Sleeping activity.

Now we have specified the activities of our mouse class. However, if we would try to run
a simulation now, the mouse would stay in its activity and recompute its speed and nothing
else. There are just unconnected activities as depicted in figure 13.

That means, what is now left to do is to connect the activities using rules. We want
to specify the following transitions: If the temperature is higher than a certain threshold
then stop movement and start sleeping. On the other side, if the temperature is lower than
a certain threshold then stop sleeping and start moving. During the movement the speed
should be adjusted in every time step to the current temperature. To add a rule, we are
selecting the Add new rule operator in the operator panel, move the mouse to the starting
activity until a green frame around this activity occurs, click and drag - while the mouse left
button is pressed - a line to the new activity that should be selected, when the rule fires. To
determine, whether you reached this activity, again a green frame is drawn. If the following
situation (figure 14, left) occurs, you can release the mouse and a new rule with the condition
true is generated. This rules always fires. Figure 14 shows this process.

The rule that provides the transition between Init and Movement is correct with this
boolean condition of always true, as it should happen in every time step. The next step
is to connect Movement and Sleeping, for specifying the transition, when the temperature
threshold for sleeping is exceeded. We again drag a rule from Movement and Sleeping and
make a double click on the arrow in order to change the condition. A new editor is opened:
Edit Activity Form. This dialog for a new rule is depicted in figure 15.

15



Figure 13: Activity graph without rules.

Figure 14: How to generate a new rule.

16



Figure 15: Form for specifying rules.

Editing Rules

After making a double click on a rule arrow in the activity graph a window is opened in which the
properties of a rule can be edited. This form contains several fields containing different information:

• Name-field contains normally a verbalization of the rule condition. This name is also written at
the arrow in the activity graph. Therefore one might want to give a more readable name to the
rule. To change the name, one has to mark the checkbox directly to the right of it. After that
the Name-field becomes edit-able.

• Documentation button invites you to input documentary texts to the rule

• Two not writable fields show the origin and destination of the rule. One may interpret them
also as an additional condition (The agent has to be currently in the From: activity) and the
actual action of the rule (When the condition is true then select the To: activity as the next
activity of the agent).

• stochastic rule checkbox enables the Stochastic tap. There an additional probability with which
the rule may fire can be specified. To use this possibility is unnecessary, as the function
RandomBoolean allows to formulate stochasticity in a more elegant and transparent way di-
rectly in the standard precondition. Therefore, this way of adding stochasticity will be obsolet
in future versions of SeSAm (later than 1.0.2)

• Precondition area that covers the lower parts of the dialog is again a function specification area,
like described previously. Here a boolean value has to be computed. If this expression becomes
true the rule may fire.

For specifying the transition between the activities Movement and Sleeping we want to
use the following condition: If GetVariable(Temperature)>50 Then Sleeping with 30%
probability. For implementing this we can adapt the condition to (GetVariable(Tempera-
ture)>50) AND (RandomBoolean(0.3). This can be edited directly by making a double click

17



on And (Boolean ...). The first argument is > (Number,Number),... At the end the func-
tion specification tree will look like depicted in figure 16, where we also changed the name of
the rule to some more readable text.

Figure 16: Specification of the rule that controls the transition from Movement to Sleeping

Next we enter a rule that ends Sleeping and selects again the Movement activity. We
generate a new rule and change its precondition to (GetVariable(Temperature)<20) AND
(RandomBoolean(0.3). The name of the rule can be something like ”too cold for sleeping”.
Opening the newly generated rule may be a little bit tricky as the two rules between the two
activity are at the beginning drawn at the same places. You can change this by selecting an
arrow and dragging it a little bit to the side until a sufficient space is between the two arrows.
Then you may make a double click without any ambiguity.

At this point we have completely specified the mouse class. At latest you should save your
model now. The save command can be found in the menu File in the menubar. This tutorial
comes with some example xml-files. The file with the name ”mouseClass.xml” contains the
model we have implemented so far.

2.3 Running a First Simulation

Before being able to test our definition of mouse agents we have to define some aspects of
their environment and the world they live in.

2.3.1 World Class

A world provides the basic environment the agents are ”living” in. A world can also have
variables and behavior, defined in form of activity graphs. The role of a world is to determine
the outside influences, like abstract weather or processes that generate orders, etc... Until

18



now, our mouse agents do not interact with something from outside. However, for generating
a simulation run, we have to define some form of ”world”, some situation and simulation
definition. This is done by making a right mouse click on the item Worlds in the Declaration
Tree Panel on the left (or by choosing Worlds ... from the Model -Menu in the menubar.).
Selecting New generates a new, empty world class named Untitled World Class. Making a
double click on this entry, an Edit Agent dialog is opened, where we can substitute the name
”Untitled World Class” by an appropriate other name, like ”MouseWorldClass”. This is all
we want to do now with the environment of the mouse agents, just ensuring that there is one.
Thus the Declaration Tree Panel will look the following way (figure 17

Figure 17: Declaration Tree Panel after the generation of a world class ”MouseWorldClass”

World Agents

It should not be strange that the title of the dialog for editing a world is Edit Agent. A world is able
to store variables and to have activity-based behavior. Thus in SeSAm the world classes are also
agent classes. However, this is an implementation detail, from the conceptual point of view a world is
something different from an agent of the agent system. It is quite useful to define global behavioral
parameters, e.g. the threshold for freezing as a world variable. Another very useful thing is a world
that generates a start distribution of agents and resources. During the simulation, the world cannot
only monitor the agents, but generate new resources, new agents or kill them. Sometimes it is also
quite useful to shift some aspects of behavior to the world for synchronization purposes. We will see
later that there is no update order for the agents, but there is a defined sequence that first the world
is updated and then the agents.

Actually we did not need to define a world class for the purpose of simply testing our mouse
agents. If we generate a situation then a world class would be needed and automatically
generated by SeSAm. However, as we want to formulate a more sophisticated environment
we took some care for the environment.

2.3.2 Simulation Elements

Before starting a simulation run, one has to define some ”simulation elements”. In the
menubar they can be found in the simulation menu.

19



Simulation Elements

The model elements consist of the description of resources, agents and worlds – both a set of variables
as body and a behavior declaration based on activities and rules. For finally running a simulation one
has to define some more aspects:

• Situations are configurations of a world with given variable settings and some agents that are
positioned and configured in a way that a simulation run can be started. One can see it as a
starting situation.

• Analysis List is the definition of possible instrumentation of the model. One Analysis contains
data about what selections of data (e.g. number of agents ...) has to be exported to what
medium (file, table, graph) and under what conditions (every time step, in given intervals, in
certain situations).

• Simulations are combinations of a situation, a set of analysis items and a definition of a situ-
ation, when the simulation run should be terminated. That means a simulation is a complete
declaration of a single simulation run.

• Experiments are necessary when simulation runs should be automated. Here you may describe
combinations of single runs. Based on actions like change parameter of situation in a simula-
tion and run it n times one can generate a form of experimental scripts useful for systematic
experimentation.

Finally, only when a simulation run is generated, all descriptions are instantiated and optimized using
concepts from compiler theory. When generating a run, you may choose whether what simulation
element to use. However, if you want to change something in the definitions, you have to generate a
new run for using the changed declarations.

2.3.3 Situation

For testing our mouse agent definition we first have to generate a new situation. This is again
done by a right mouse click on the Situations and the selection of New in the pop-up-menu
(if you don’t see the new ”Untitled Situation”, click on the cross mark in front of Situation
to open the sup-tree below it). A double click on ”Untitled Situation” opens a dialog Edit
Situation like presented in figure 18.

Edit Situation Dialog

In this dialog a situation can be manipulated. The dialog has four main parts after opening it.

• Name-field, where you can give a specific name to the concrete situation. To the right of it a
documentation buttons allows to enter additional information about this simulation element.

• Map-tap view contains the definition of the spatial configuration of the world (only available,
when the world class possesses the SpatialMap feature).

• Top right to the map there is a list called Selected Objects in Map. This list is directly connected
to the small positioning square on the map. All objects – resources and agents that are positioned
inside this square are listed here.

• Below this list there is an object editor panel called Selected Object in List where the object
selected in the list above can be manipulated.

Besides the Map tap view there are two additional taps: World, where you can manipulate the variable
settings of this instance of the world class (you even may change the world class) and the Objects tap,
where you have a list of all objects on the left and a Selected Object in List editor panel on the right
to change the selected object.

20



Figure 18: Window for editing a new situation

Manipulating the Map

Extend and Configuration of can be changed in a way similar to the activity graph editor. There are a
set of operators and settings, that can be selected and via a click on the map executed. The meaning
of the map manipulation options is explained in figure 19.

Figure 19: Options for manipulating a map.

These options for manipulating a map are we using now to configure our situation. First
we change the name of situation to ”Wuerzburg”. Then we enlarge the map by increasing

21



the number of rows as well as the number of columns to 20 (One click on the icon for the
size adjustments changes the zoom in a way that we can overview the complete map without
scrolling). We also select the Torus checkbox. After that we select the Add Agent option –
the small man icon. Then the Agent Class Selector becomes active. We just have defined
one agent class, namely MouseClass, thus we don’t have any options to change the class of
the agents that we will position on the map. Now we can generate agents by making double
clicks on some positions on the map. This is what we will do now five times for generating five
agents at different positions. After that our situation will look the following way, as depicted
in figure 20.

Figure 20: The situation ”Wuerzburg” after generating five mouse agents. Notice that the
small positioning device is located at one agent. This instance is listed in the object list and
may be manipulated in the object editor.

One after the other we select our agents and give them individual starting temperatures
between 20 and 50 degrees. This is done by selecting first the agent icon using the position-
ing square on the map, then selecting the agent in the list and then selecting the variable
Temperature in the variable list of the object editor panel. The Default Value 36 is set,
however we select the checkbox Uses Own Default Value and the function edit area below
this checkbox becomes active. By making a double click on the number 0 and opening the
number input dialog we can give the new individual start value for Temperature as we like
(We choose 10, 20, 30, 40, 50). If you have problems to meet the agents on the map, change
the tap view to the Objects tap and select the agents directly in the object list that contains
all agents. After that we have finished the definition of a test situation. Now we want to run
it.

22



However, you might miss some explanations about the spatial concepts in SeSAm.

Space in SeSAm

After defining a map and positioning agents on that map, one might wonder how this discrete world
is related to the speed and direction values we have used before. The grid of a map in a situation
is just a tool for visualization. The grid has no meaning in the interpretation and simulation of the
model. The entries of Rows and Columns refer to cells, however a single cell in the grid always
contains 100 × 100 points where an agent can be positioned. Thus the maps are discrete, but much
finer than the grid configuration seems to. A world of 20 × 20 cells has actually 2000 × 2000 pos-
sible positions. Speed may take every positive number, not just numbers that are divisible by 100.

Torus

Another interesting feature of maps in SeSAm is the possibility to make them to a torus by selecting
just one checkbox. A torus means that the world has no edges, but continues on the other side. An
agent that moves upwards beyond the upper edge will occur on the bottom of the map. Perception,
Movement, etc. is changed automatically due to that configuration.

2.3.4 Simulation Run

Now we want to see how our mouse agents behave in a simulation run. Therefore we generate
one by making a double click on the entry Simulation Runs in the Declaration Tree Panel
and selecting the button New (or select New from the right mouse menu...). As there is only
one possibility for generating a simulation run, no selection dialog will be opened, but directly
a run generated. This run is called ”Sim[Wuerzburg]”. The small icon in front of the name
shows that this simulation run is currently not running. Making a double click on it the Show
Simulation dialog is opened for this simulation run. It is presented in figure 21.

The options and taps are the same as in the Edit Situation dialog, however information
is readable, yet not manipulate-able. In the upper part of that dialog there is information
about the current time step, the current status of the simulation and the current number of
objects (agents and resources) is given. There are four buttons for controlling the simulation
run. Play starts a simulation run as long as an end situation is occurring or the user stops
the simulation by clicking on Pause. Reset resets all values and objects to the situation after
initializing it. The simulation run can be restarted by hand. An important control is the Step
with configurable Step Size. On the right side of the dialog there is a button Analysis, with
which you may access analysis graphs, if you define some. There might be a problem when
there is a too small number of agents, then the simulation process may ignore events from
the user or the animation. The simulation seems to freeze, however in the background the
simulation is continuing. Its best just to wait a little time and you will see that the simulation
is now simulating some hundreds of time steps later. If you want to test a simple model like
the mouse agent, its better using step. Selecting an agent and looking at the information
given in the Selected Object area, you can understand how the agents change their activity
and their temperature develops.

This model is saved under the name ”MouseClassSimulation.xml”.

23



Figure 21: The Show Simulation for the ”Wuerzburg” situation.

24



2.4 Two simple improvements

Before going on in extending the model with different forms of interactions we will integrate
two small extensions that improve the performance and looks of our mouse agents.

2.4.1 Temperature and Speed

You might notice that a mouse agent never adapts its speed to its internal temperature.
This is due to the fact that there is no rule that selects the activity Init from the activity
Movement. It is quite simple to change this. We simple add an otherwise rule to connect these
two activities (from Movement to Init). .

Otherwise Rule

Sometimes one may want to formulate something like: if < condition > then < activity1 > Else <

activity2 > . Basically these are two rules. One rule if < condition > then < activity1 > and a
second rule ifNOT < condition > then < activity2 >. There there are more than two rules poten-
tially terminating < activity1 > then the formulation of a rule for the else-case of all rules is quite
sophisticated and expensive. The Otherwise Rule is a short way for formulating this overall-else-case.
If no condition of the other rules is true then the otherwise rule is fired.

In our case, this means, if it is not too warm, so that the mouse starts relaxing, then adapt
speed to the current temperature. Thus the name of the activity Init is not really apt any
more. If you click with right mouse button pressed on the activity node, a pop-up-menu
occurs where you can select the item Rename and give a new name ”AdaptSpeed” to the
activity. Now we have another problem. A mouse agent behavior consumes one timestep
for one movement and another one for the adaptation of behavior. This is as long ok, as
long there are only mice in our world. However, we are now changing the AdaptSpeed to an
instant activity – this can be done again via the right mouse button menu. The activity stop
watch of AdaptSpeed is now crossed out. After these changes the complete behavior graph
now looks like depicted in figure 22.

2.4.2 Mouse-like images

Until now the mouse agents on the map look like small men as they use the default icon. This
is the next thing we want to improve. First you have to draw a new icon, or you can use the
abstract mouse icon we prepared. These images are always saved in separate files in the .jpg
or .gif format. There are two possibilities, to assign the mouse icon to the agents.

The first is that you set for every agent instance in the Edit Situation a specific image
file. This is done in the Selected Object edit area. If you select the tap Features – instead of
Variables you can change all aspects of spatial information, namely Position, Direction, Speed
and the Image. For manipulating the latter you have to open a file-select dialog by clicking
on the button Browse... and e.g. selecting the image file mouse.jpg. The result can be seen in
figure 23. This you may repeat with every single agent. You also may like to give individual
images to the individual mouse agents.

The second possibility consists of integrating the assignment of the image into the mouse
behavior. Every mouse agent could execute at the beginning an action that changes its icon.
Therefore we introduce a new – this time true – Init activity and insert it between the Start

25



Figure 22: The activity graph of a mouse agent after changes related to the speed adaptation.

Activity and the AdaptSpeed activity. Therefore we have either to delete the rule between
the Start Activity and the AdaptSpeed or to re-direct the rule (right mouse pop-up menu
and select in the menus From or To the new correct source or destination). Don’t forget to
insert also new rule leading from the new Init activity to the AdaptSpeed activity. After
generating the new activity, a double click opens the Edit Activity. We adjust the name of the
new activity and generate one new action. For specifying this action in the intended sense,
select the action ChangeImage (Image) in the Functions list. The required argument for this
function is a image file. By making a double click onto the entry ”null” or the item ”Image”
in the Arguments list, an image selection dialog is opened, like depicted in figure 24.

By clicking on the button in the middle of the dialog – here marked with ”No Image” – a
file select dialog is opened, where you may select the appropriate image file. Then the image
is presented as content of the button. If you click again on it, the file select dialog is again
opened and you may change your selection. Changing images during the execution of the
activities is the appropriate mean for adapting the looks of an agent during the simulation to
its internal state. If you want to have a special image for an agent depending on its activity,
you have to execute the action ChangeImage in the start actions of every activity.

Situation and Behavior Settings

If you choose both options – setting an individual icon in the situation and changing it in the activities,
you should not be surprised, if during the simulation the individual picture is replaced by the other.
The values specified in the situation are just start values which are overwritten by the changes in the
behavior. This is also true for every configured property.

The model with this two extensions is saved under the name mouseClassExtension.xml. You
may test the adapted behavior of the mouse-like agents in the same way as described above.

26



Figure 23: Specification of individual images for the agents in the Edit Situation

Figure 24: Image select dialog

27



3 Interactions

Multi-agent models are especially interesting when there are some feedback loops like in
predator- prey models or some relations between two of more levels of aggregation like effects
of global to local properties. We are now adding some of these features to our mouse agent
model. This will show you how interactions may be formulated. At the end of this section
there will be given some remarks on interfaces and interactions. We will also sketch some
ideas for further extensions.

3.1 Between Environment and Agents: Weather-Dependent Activity

We will start with local effects of global properties. The temperature of a mouse is until now
just depending on the Movement of the mouse agents. We now want to add that the inside
temperature is also depending on the outside temperature.

3.1.1 Global World Variable

On page 18 we already generated a new world class and called it ”MouseWorldClass”. We
did not change anything beside the name of this world class. A double click on the entry in
the Declaration Tree panel on the left opens the Edit Agent for the world class. In analogy
to the MouseClass variable Temperature (see page 8) we now generate a new variable and
name it GlobalTemperature. This global temperature will be accessible for the mouse agents
therefore we mark the checkbox External. It will also be dynamic, therefore also mark the
checkbox Writable. Insert a starting value of about 20 degrees. You can - like with the
Age of the mouse agents, specify the dynamics of this GlobalTemperature in the Next Value
function. However we here try something different, we integrate it into the world behavior.

Therefore we select the Reasoning Engine tap and make a double click onto the default
Idle to open the Edit Activity dialog as before. We change the name to ”WeatherUpdate”
and generate a new action in the Actions list. Our global temperature will randomly fluctuate.
The value will change with a random number in random intervals. This can be formulated
in the following way: With a probability of 20% add to the variable GlobalTemperature a
random number between -3 and 3. The completely specified action that executes this can be
seen in figure 25.

Figure 25: Random Fluctuation of the GlobalTemperature

This means: With the probability of 0.2 the condition of the if-then-else functions becomes
true (RandomBoolean) and the IncrementVar function is executed. IncrementVar has two

28



arguments: the variable to change – here GlobalTemperature – and the number that should
be added to the current value of the variable. This delta-value is computed by generating
a uniformly distributed integer random number between 0 and 7 (the latter is excluded)
(RandomBoolean). This random number is shifted by decreasing it with 3, so that the random
number actually is between -3 and 3. As an action in the only activity of the MouseWorldClass
this action is executed in every time step and the change in the GlobalTemperature happens
in the mean in every fifth time step.

This changes can be tested by simulating it and observing the development of the variable
in the World tap of the Show Simulation dialog.

3.1.2 Relation between global and local temperature

We now want to formulate that the inside temperature of the agents is influenced by the global
outside temperature. We want to use the following formula for this influence: Temperature←
Temperature+ GlobalTemperature−20

10 The formula is chosen in this way so that every degree in
global temperature has an effect of a tenth fraction onto to inside temperature. The effect
might be positive or negative compared to the normal temperature of 20.

There are several possible ways to implement this interaction between global and local
properties. The first thing one has to decide, is, whether the agents should execute the
changes or the world should manipulate the agents. If the adaptation of temperature is done
by the agents then this can be integrated into one activity or into a dynamic function of
the temperature variable. Here we want to implement a two step process that mixes these
options: We introduce a new variable PerceivedTemperature at the Mouse agents which is
set by the MouseWorld. Then we define a Next Value function for the inside Temperature
that implements the formula given above using the PerceivedTemperature. This way of
implementing costs the generation of an additional variable, yet makes the interface between
the global and local temperature transparent. It is a little bit expensive, but clear. There
is the possibility to directly access either the global temperature of the inside temperature,
these can be seen as sometimes more efficient, however rather low level interactions.

1. New Variable PerceivedTemperature at the MouseClass You already know, how
to generate a new variable for the agent class MouseClass. The PerceivedTemperature has
the type number and must be both, external and writeable. As a start value you may set
the normal global temperature of 20. Thus the definition of the variables of the MouseClass
looks now as depicted in figure 26

2. External Setting of PerceivedTemperature We now change to the MouseWorldClass.
In the Reasoning Engine tap we add a new atomic activity. We open the the Edit Activity for
this new ”Untitled Atomic Activity” and and rename it ”InformMice”. We mark the instantly
so that the activity won’t consume a time step and the intervals for the changes of the global
temperature are unaffected by this new activity. In a new action in the Actions list we for-
mulate the following: For every object in <All Objects of the class <mouseClass>>
do: set the value of PerceivedTemperature to the value of GlobalTemperature.
First you have to search for the action ForElements (Fun<(T) Void>, Set<T>). If you don’t
find it in the Functions list then select the Expert checkbox below the list, then additional en-
tries in the Functions list can be accessed. After making a double click onto this ForElements
... you have to specify what type the elements of the set have. We select here the entry

29



Figure 26: List of Variables of the MouseClass after introducing the PerceivedTemperature

Body (In SeSAm-versions later than 1.0.2 select SimObject). After that you have to further
specify two arguments in the Function Tree below the entry ForElements. The first one is
the function that should be executed with the elements of the set and the second one is the
specification of the set itself. You may start with the second one and by selecting it, in the
Functions list a number of appropriate functions becomes accessible. You select the function
GetAllObjectsOfType (Object Class). This function needs the specification of the type of
agents that is should collect. Double clicking on either ”null” or the ”Object Class” entry in
the Arguments list opens a dialog with which you may select the class MouseClass. At this
point it is also possible to use GetAllObjects, as all agents in our world are mice, however
this we will change later and may lead to problems when the instances of the other object
classes do not possess this variable. Then we continue with specifying the first argument of
the ForElements. A double click on this argument opens a function specification dialog, like
illustrated in figure 27.

Unnamed Functions

These are functions that are used for example in actions like ForElements or Select to represent the
action that is executed on the elements of a set or the condition that shows which elements have to
be selected. These function definitions have no additional name and their definition is not accessible
outside of their calling construct. There are specified using the Create Function dialog which is always
a modal dialog. This dialog contains two parts. The upper part contains the description of the argu-
ments of this function. Besides the names for the arguments nothing can be changed here (it is highly
recommended to give expressive names to the arguments). The lower part contains the description
of the function call in the same way as we know from for example the Next Value call for a dynamic
variable or the specification area of actions in activities. A unnamed function is automatically defined
in the appropriate way with the correct number and types of input arguments and the correct output
type. For example the function executed in ForElements has one input argument with the type of the
elements of the set that is run through. The output argument is in this case void that denotes an action.

30



Figure 27: Create Function dialog for the function that should be executed on every element
of a set of Bodys.

31



Here we specify the action that the MouseWorld sets a variable at the MouseClass agents.
We know that the elements of the set – thus the argument of our unnamed function – is
a mouse, therefore we can change the name of the single input argument. First you have
to select the ”Untitled[Body]” and then in the area titled Selected Type replace this string
by ”AMouse” or something related and confirm this change of text by pressing the enter
key. Now we continue with the Function Call area. We replace ”Noop” by the action
SetVariableOf(Var<T>,T,Body). After double clicking on this action, a dialog pops up,
where you have to select the data type of the variable that should be set. Here Number is
required. SetVariableOf needs three arguments (from top to buttom)

1. First argument is the variable which’s value should be manipulated. A double click
opens a Select Variable dialog which contains a tree of all classes and variables that
are marked as external ones. We open the sup-tree below MouseClass and select
PerceivedTemperature. When you don’t see the variable you actually want to se-
lect, then either the type of the variable to be set is wrong or you did forget to mark
the variable as external.

2. The second argument is the new value for the variable. Here we select GetVariable
and specify the variable argument with GlobalTemperature.

3. Third argument is the object that possesses the variable that should be changed. Here
it is the input argument, as we want to set that variable of all MouseClass agents.
Therefore we choose AMouse(Input Argument) from the Arguments list. Sometimes two
or more input arguments with the same typ are given, then both are named ”Untitled”.
Therefore, its better to change the name of the input arguments.

Thus the definition of the unnamed function looks after the specifications done like in figure
28.

Closing this function definition with Ok the definition of InformMice is finished. Con-
firming this Edit Activity dialog you may return to the definition of the MouseWorldClass
behavior. We now have to integrate this new activity into the graph. We choose the sim-
plest way and generate two rules with conditions that are always ”true”. One of them
makes the transition from WeatherUpdate to InformMice, the other makes the return tran-
sition. This is not very efficient as in every time step the MouseClass agents receive a new
PerceivedTemperature value, even when nothing has changed. The resulting Reasoning
Engine is illustrated in figure 29

3. Reaction onto the PerceivedTemperature For specifying the reaction of the MouseClass
agents onto the changing perceived temperature we return to the Edit Agent dialog for this
agent class. We select the tap Variables as the adaptation of the inside temperature should
be automatic and not depending on same activity. Therefore we define it as a Next Value
function of the variable Temperature. We select the Next Value tap and mark the Next Value
checkbox for this variable. You remember the formula? The new value is determined by
GetV ariable(Temperature)+ GetV ariable(PerceivedTemperature)−20

10 . This can be directly formu-
lated using the Funktions list in this Function Specification Area. Thus the complete dialog
with the Variables tap looks like depicted in figure 30.

This definition ends the specification of the interaction between global and local properties.
Our inputs now have to be tested. This can be done again be generating a simulation run

32



Figure 28: Create Function dialog after finishing specification of PerceivedTemperature
setting.

33



Figure 29: The activity graph of the MouseWorldClass after inserting the activity InformMice

Figure 30: The Variables tap with Temperature as selected variable showing the definition
of the interactive next value function.

34



based on the old situation ”Wuerzburg”. New variables are added automatically with their
default values. However observing all the temperature changes becomes more and more
sophisticated. Therefore we now start using the Analysis feature.

3.1.3 High Level Observation using Analysis

We already learnt about Analysis List and Analysis on page 20. Now we try to generate
a new one by selecting the entry New in the right mouse button pop up of the simulation
element Analysis List. A new Analysis named ”Untitled Analysis” is generated (if you don’t
see it at once, open the sub-tree). Double clicking opens the Edit Analysis dialog, which is
depicted in figure 31.

Figure 31: The Edit Analysis for a newly generated analysis.

Edit Analysis Dialog

This dialog for editing instrumentation of a simulation – namely data gathering – contains four parts.
The uppermost part is a well-known Name-field, where the name of this analysis can be specified. A
documentation button invites for explanatory texts. The other three parts are the following

• Delay Settings refer to the interval in which the data is collected. The standard configuration is
that data is treated in every time step without an additional condition. The Ticks line refers to
absolute intervals with an absolute starting time step. If you want that the analysis updates in
every 50th time step starting in time step 3, you have to specify it as depicted in figure 32. The
second line in the Delay Settings refers to a user defined situation. Every time the condition
specified here using the well-known function specification area becomes true, data is collected
and the Analysis is updated.

• The area in the middle of the dialog is entitled Type& Specific Setting. This refers to the way
the Analysis is treating the data. First you have to select between ”To File”, ”Block Chart”,

35



Figure 32: Example for definition of analysis update scheme

”Series Chart” and ”Table”. When the option ”To File” is selected you have to give a file name,
as the data is written into a file in a semicolon separated form. The first line of the data file are
the names of the single analysis items. The first column always is the time step in which the
data was collected. The file name may integrate several forms of information form the situation
and simulation. This is explained in detail in the ? button. The other important form of data
presentation is ”Series Chart”. These are curves, that are observable during a simulation run.
Here you have additionally to specify the window size of the data that is concurrently visible.
”Block Chart” and ”Table” just present current values of the analysis items, and thus are rarely
used.

• The lowest part of the dialog is the definition of the Analysis Items. A can be a column in the
file or a single curve of the series chart. This part consists of two sub parts. On the left there
is a list of all already defined analysis items, on the right you can edit a selected one. The right
part consists of a Name-field that forms the title of the item and a Value Function Call that
is a Function Specification Area for specifying a function that returns a value that should be
collected under the given name. In the configuration of ”Series Chart” or ”Block Chart” you
may also select a color for the curve or the block.

For actually activating an analysis it has to be assigned to a simulation.

Something like ”Series Chart” analysis is what we want to use now for an high-level ob-
servation of the temperatures of the world and our agents. This analysis we want to call
”TemperatureCharts”. The configuration of updating the analysis in every time step is ok
here. We select ”Series Chart” in the Type & Specific Settings area and set the window size to
100. Then the next task is to define the single curves. One item is surely the ”GlobalTemper-
ature”. The appropriate Value Call Function is GetVariableFrom with GlobalTemperature
as first argument and GetWorldBody as second. GetVariableFrom is the primitive to read
a value from an external variable of another object, here the world. A color is automat-
ically assigned, if you don’t like it, click on the color and choose a better one. The next
analysis items should be the maximum, average and minimum temperature of our agents.
Therefore we have to access the variable Temperature that is now not yet possible as it
is not marked as external, therefore we have to shortly return to the Edit Agent and the
Variables tap for the MouseClass, select the variable Temperature and mark it as exter-
nal. After that we can continue in defining new analysis items. Lets go on with the maxi-
mum temperature of all Mouse agents. Generating a new item and giving it an appropriate
name like ”Max.Temperature” need not to be explained more. First we select the function
Maximize(Fun<Number,Number>Boolean,Iterator<Number>). This function requires two
arguments: the first is a function that compares two numbers and returns a boolean. This
function denotes the direction of the maximization. We select ”¿”. The second argument
must be a list of numbers. We want to read the temperature value from every mouse agent,
therefore we select the primitive Map(Fun<(T) Number>,Iterator<T>). We are asked for
specifying the input set of our mapping in a type selection dialog. We choose Body (in later

36



version of SeSAm, select SimObject). The first argument of the map call is a unnamed func-
tion (see page 30) that receives a Body (type of the elements of the source set) and returns
a number (type of the elements of the destination set). We specify the unnamed function by
GetVariableFrom with the arguments Temperature and the input argument for the object
which’s variable is read. The second argument of the Map sub-tree is the set that contains
the elements that have to be reduced to numbers. Here we input GetAllObjectsOfTypes
with MouseClass as argument. The specification for this analysis item looks like illustrated
in figure 33

Figure 33: Specification of analysis item value call that returns the maximum value of the
temperatures of all mouse agents.

The other mentioned analysis item – minimum temperature and mean temperature can be
specified in analogy (for the mean temperature use the primitive Mean instead of Maximize).

3.1.4 Editing Simulation

In order to use this analysis we have to generate a simulation and assign it to it. Therefore
we select the entry New in the right mouse button pop-up-menu on Simulations and open
the Edit Simulation dialog. This window is depicted in figure 34.

Edit Simulation Dialog

The dialog for editing Simulations gives the possibility to configure a single simulation run description.
You may give the run a certain name – like in the Edit Rule (Page 17) – after you select the checkbox
right to the Name-field. There is a name automatically generated using ”Sim[” ... ”]” and the name
of the situation. You are invited to give documentary texts for this simulation run. In the middle of
the dialog there is a pull-down-menu that contains all situations previously defined. You may select
one or open the Edit Situation dialog for the selected situation. About half of the dialog is used by
two tab views. One for editing the terminating condition, the so called End Functions. Here you may
specify a set of conditions (combined using OR). If one of these conditions becomes true, then this
simulation run is terminated. . Another way of terminating a simulation run is a rule of in the world
class that ends at the end activity. The specification of the selected conditions is again done be a
Function Specification Area. . You may give documentation for any of these end functions.

The second tap view is entitled with Analysis. Here you have the possibility to select a set of single
analysis like defined on page 35. On the left of this tap view there is a list of all previously defined

37



Figure 34: Dialog for combining a situation, termination conditions (”End Functions”) and
analysis to the description of a single simulation run. When opening it, the tap End Functions
is selected. This is the dialog as it looks like after selecting the tap Analysis.

analysis, on the right there is the set of selected ones (entitled with Added Analysis’ ). As depicted
in figure 34, there are three buttons between these lists. With the upper two you can copy selected
Analysis from all to added list, with the other one you may delete selected ones from the added list.
The button in the bottom clears all added analysis. You may mix all kinds of analysis, ”to file”, ”series
charts”, etc...

Until now we just have defined one analysis, namely TemperatureCharts for observing
the development of the temperatures during a running simulation. This is what we select
now. With the >>-Button you copy it to the simulation description. If we start now this
simulation run, the analysis will automatically start with it.

Now we have defined every thing for a simulation run with aggregated temperature in-
formation. This we may now generate a new simulation run, like we did for our first tests.
After selecting the New button or menu entry, a selection dialog opens, as we now have more
than one options for running simulations. We may directly run the situation or the defined
simulation – that means the situation with defined analysis. The latter is selected per default.
This selection dialog is depicted in figure 35.

We select ”Sim[Wuerzburg] ” and open the Show Simulation window for this simulation
run. Before starting the run by clicking on Play we select the button Analysis. After that a
empty chart with the title ”TemperatureCharts” – the name of our analysis – is opened. In
figure 36 this empty chart is shown.

Try what is happening now, when you start the simulation run (if the Show Simulation
is in the foreground and you cannot see the analysis window, use the Window menu in the
menubar to select the analysis window again) . In this window you will see, how the mean
temperature the mouse develops, etc. You may also see, if you have made any mistakes in
the implementation. The curve should look after 100 time steps similar to the one depicted
in figure 37 – not too similar according to the completely random global temperature.

38



Figure 35: Dialog for selection for preparing a running simulation.

Figure 36: Analysis (Series Chart) opened before starting the simulation (no data available).

39



Figure 37: Analysis (Series Chart) after 100 time steps in the model with global and local
temperature.

Remember that after any change in any part of the model, including analysis, you have
to generate a new simulation run. This model is saved with the name mouseAndGlobalTem-
perature.xml. However, it might be more interesting to track the temperature of individual
mouse agents. The changes necessary for it, are left to you on your own. You would need to
define a new variable like Name and use this name to select the right mouse from the set of
all mice for fetching its personal temperature. It might also be interesting to play with the
thresholds for moving or sleeping.

3.2 Between Agents and Resources: Cheese Eating and its Effects

Another form of interaction may happen between two local objects. In the following we start
by adding Cheese resources to our world. Mouse agents that encounter a cheese eat it and
fill up their energy level. If two Mouse agents meet and both have enough energy they will
produce a new mouse agent.

3.2.1 CheeseClass Resources

We start by adding cheese to our world. For this aim we generate a new resource and name it
CheeseClass. A new resource class can be made in the same way like generating new agent
classes. After opening the Edit Resource dialog for editing the class, we change the name of
”Untitled Resource Class” to ”CleeseClass”.

Resources

The Edit Resource can be – like the Edit Agent – opened by making a double click unto the class

40



entry in the Declaration Tree Panel. It is pretty much the same like the other dialogs where you may
manipulate agent classes or world classes. The main difference is that resources do not possess active
behavior, that means they do not have a reasoning engine nor update date functions. Their only form
of dynamics are next-value computations in variables.

Our CheeseClass will have two state variables: fat and age. The value of fat will be set
to a random value at its generation. The Age is increased in the same way, also the age
of the Mouse agents increases. Cheese cannot be eaten, if its too old, and will vanish, if
its still older. That means we have two additional parameters that are also implemented as
variables that represent these thresholds. Of course we also can use absolute values directly
in the action definition, like we did e.g. with the threshold for the Movement → Sleeping
transition. However defining in this way the parameter is made explicit (see also section 4.1).
This is what we are going to implement next:

• Fat is a variable that has a constant value, but must be externally readable, as our mice
will consume this fat. The interesting part is the Start value that is set to RandomInt
with the two numeric arguments 0 and 100 for the thresholds between them a uniformly
distributed random number will be selected.

• Age is defined in analogy to the Age of the mice. It has a Next Value call that computes
a new value that is 1+ the old value (remember you must mark the Next Value checkbox
before being allowed to specify a next value function.

• Threshold for eating is a constant number that is externally readable (our mice may
notice whether the cheese is spoilt.

• Threshold for existence is also a constant number that must be external, as the
would is responsible to erase cheese items that are older than this threshold.

After defining these four variables the dialog for editing the resource Cheese looks like de-
picting if figure 38.

We have now two possibilities to bring Cheese objects into our simulation. Either we
again distribute them by hand, like we did to test the mouse behavior, or we let the world
generate them. As the world also has to erase too old cheese, it is quite obvious to also let it
distribute them. This is what we want to do next.

3.2.2 World-managed Resources

As described above we want our world to generate new Cheese objects and erase too old ones.
Therefore we have to extend the behavior declaration of the world.

Figure 29 illustrates the current configuration of the world activities. Here we have to
insert another new activity into the reasoning engine. Of course, you may add the following
actions to an action list in an existing activity. However it is a lot more transparent to
create new activities for actions that deal with other aspects of behavior than to hide them
in existing activities. Thus you may proceed according in the following plan:

1. Generate new activity node using the New Atomic Activity option in the behavior
graph of the world.

41



Figure 38: Edit Resource dialog for Cheese resources.

2. Set activity to ”instantly” (e.g. via the right mouse button menu). The stop watch
in the node is now crossed out.

3. Open Edit Activity dialog for this new ”Untitled Atomic Activity” and change the
name to something like ”TackleCheese”.

4. Generate a new action for randomly generating and distributing new cheese
objects. This can be done using the following primitives: If ... then ... else with
RandomBoolean as the condition. You may give a rather low probability, however the proba-
bility must be adapted to the size of the world map! We choose 0.1 for our small test map.
The then-part of the if construct consists of a CreateObjectAndRemember call. with two
arguments, namely the class that an instance should be created of and an action that should
be executed with that new instance. Double clicking on the class argument the following
dialog is opened where class and variable settings of the new object may be manipulated.
This dialog is shown in figure 39.

This default selection is wrong here. Therefore we change the class selection to CheeseClass
using the button Change Class .... As we do not need to influence the starting values for
the new instance, we simple close the dialog after that. The second argument – the action
– is responsible for setting the object to a random position. If we would not do this, then
all new objects would be positioned on the position < 0, 0 >. We make a double click on
the argument and have to edit an unnamed function as in figure 27. The context dependent
input argument of this function is the new instance. The world should now re-position the
new cheese object. This can be done with the action BeamBodyTo that sets another object
to a new position – without any movements ”by feet”. BeamBodyTo requires two arguments:
the first is the object that should be re-positioned, the second is the new position. For the

42



Figure 39: Edit the class and variable settings during for the generation of a new simulation
object.

first we choose the input argument that we have renamed to ”NewCheese”. For the second
we have to compute a random position. Therefore the primitive CreatePos(Number,Number)
exists that creates a position from two numbers that will play the role of the x-coordinate and
the y-coordinate, respectively. For these numbers we generate random numbers that range
between 0 and the maximum extension of our situation - for the latter we use the primitive
GetMapDimensions. We have to take either the x-coordinate (PosGetX) or the y-coordinate
(PosGetY). Figure 40 shows how the function tree of this action looks like.

5. Define an action that erases the Cheese objects that are too old For this
aim we have to look at every single cheese resource, test wether it is too old and if this
condition is true, ”kill” it – that means erase it from the current situation. We already
know the primitive ForElements... from page 29. (Do you remember that ForElements
is hidden in the Expert -List?). The first argument of ForElements is the function that
is executed with every entry of the list. Make a double click onto this entry and a dialog
for a new untitled function is opened like in figure 27. The first change we make in this
dialog is to rename the fixed input argument of the type body (or SimObject in versions
later than 2002). Here we rename it to ”Cheese” as all objects that we want to deal with in
this function are cheese resources. Now we input an if primitive with the condition of >=
GetVariableFrom(Age,Cheese), GetVariableFrom(ThresholdForExisting,Cheese), for
testing whether this piece of cheese is elder than its threshold. If this condition is true,
then one action has to be executed: kill with the argument set to the input argument
Cheese. The second argument of the ForElements call is set to GetAllObjectsOfType with

43



Figure 40: Action for random positioning of cheese

the argument ChesseClass. The implementation of this action is done in the same way like
all action specifications before, the result should be clear.

Killing and Erasing

There are two possibilities to remove an agent or an object from the simulated situation. Either the
world executes the primitive action kill on the item that should be removed, or a rule fires in the
activity graph that selects the end activity of that agent (”suicide”). However in both of these ways
the agent or object is actually deleted at the end of the update cycle! That means, a resource object
that is already killed can still be perceived by other agents. You should take this into account. Here,
it is not necessary as our cheese resources possess a lower threshold for being attractive for hungry
mice than for being deleted by the world.

6. Connect new activity node to the original activity graph The last step is to
integrate the new activity node TackleCheese into the behavior graph of the world. For this
reason we erase the arrow that goes from WheatherUpdate to InformMice and draw two new
rule-lines: one from WheatherUpdate to TackleCheese and another one from TackleCheese
to InformMice. All these activities have to be executed in every update cycle therefore it is
good to leave the default condition ”true”. The resulting activity graph is depicted in figure
41.

3.2.3 Mice and Cheese: Interactions between Resources and Agents

Why did we introduce Cheese resources? We want our mice to eat them for acquiring new
energy. What they can do with that energy will become clear in the next steps. We now will
modify the Mouse behavior so that a mouse that perceives a cheese piece moves towards it
and eats it, if it is young enough to be still eatable. For this reason we generate two new
activity nodes in the same way as we’ve already done before. One is called ”RunToCheese”
and the other ”EatCheese”. Before we add new connecting rules, we also generate a new
variable for our MouseClass: ”PerceptionRadius”. This is a constant (not writable), not

44



Figure 41: World activities with node for the treatment of cheese pieces

external variable with the type numeric and the start value of 200. After that we may add
the following connections between our new activities and nodes of the old activity graph:

• Rule between Movement and RunToCheese: The random movement should terminate
when a mouse perceives a cheese object in a distance less than its PerceptionRadius.
After double Clicking on the new arrow between these two nodes, formulate the fol-
lowing conditions (using the primitives in brackets): the rule should fire, if the list
of CheeseClass objects - selected (Select) from all – within the PerceptionRadius
– perceivable objects (ObserveObjectsOnPosition) is not empty (Not and IsEmpty).
You should start with ”Not(IsEmtpy....)”.

• Rule between RunToCheese and EatCheese: A mouse is able to eat only if it is on the
same position as the cheese object. This is the rule that should go from RunToCheese
to EatCheese. We have several possibilities: Either we use something analogous above –
There is a CheeseClass-Object within a very small distance (using ObserveObjectsOnPosition)
or we implement something like a focus on a certain Cheese object and test whether this
is on the position like the mouse. I prefer the second possibility. It is more efficient, as
the spatial perception primitive is quite expensive. A more important reason is that –
if there are more than one cheese objects or if the cheese could move, the cheese would
not get out of sight or the cheese object that the mouse is running to, changes. An
advantage of the first way of formulating would be that the movement towards a cheese
object stops when any is on the same position and not a special one (this would be
important if the cheese could move...). As our cheese is not able to move (and we can
focus on the cheese object that is the nearest to our mouse), we use the second way.
Therefore we have to define a variable CheeseFocus that is writable and of the type
Body (SimObject). After that one can use this variable in the condition of the intended

45



rule testing if my position (GetMyPosition) is equal (Equal <Position>) to the posi-
tion of the object in CheeseFocus (GetPosition ( GetSpatialInfo ( GetVariable
CheeseFocus))). The function specification tree should look like depicted in figure 42

Figure 42: Rule Condition: Comparing my position to the focussed cheese position

• The last rule connects the RunToCheese with the random movement Movement. This
should be always the case, that means that the condition is the default true.

Spatial Perception

The primitives ObserveObjectsOnPosition and ObserveObjectsInDirection are the two central
function for spatial perception. ObserveObjectsOnPosition provides a list (iterator) of Bodies
(SimObjects after SeSAm-version 1.0.2) that are positioned around the specified position (1. Ar-
gument) in a maximum distance specified by the second number. This number is in points (not in
cells – see page 23 ). The third argument is a boolean flag that informs whether the percieving agent
itself is perceived or not - that means, if the perceiving agent will be returned in the list or not.
ObserveObjectsInDirection is quite analogous. It requires five arguments:

1. Position specifies the start ”null” position of the perception.

2. Direction specifies the direction of the perception.

3. Angle refers to the opening angle in degrees. An angle of 360 refers to an all-around sight.

4. Radius is the maximum distance of the perception

5. Including Me again denotes whether the perceiving agent should be able to perceive itself.

After naming and connecting the activities for cheese eating, we have to specify what is
actually means to run to a cheese object or to eat one. We start with RunToCheese: As
this activity is only selected when there is cheese observable, we can start with focussing
the cheese object that is the nearest to our mouse agent. We set the action of setting the
focus variable on that resource object as the start action list. We use the Maximize construct
for determining the nearest cheese object of all perceivable ones. The Maximize primitive
returns the entity of the given list (second argument) that maximizes the specified function
(first argument).

46



3.2.4 Producing new agents – and other ”Emergencies”

3.2.5 Evolving the decision to use energy for cooling down...

3.3 From Mouse and Cheese to Foodweb: Adding Cats

3.3.1 The energy feature

3.4 Complex behavior: The simulated human mouse-protector

3.4.1 Data types

3.4.2 Composed Activities

4 From Testing to Systematic Experimentation

4.1 Preparing the model

4.2 Defining Experiments

4.3 Debugging and Calibration

4.4 Remote Control

47



A Variable Type List

The following list contains all data types available in SeSAm.

• Activity: an activity object as specified in the reasoning engines

• Body – 1.1.2003 replaced by SimObject: an simulation entity, can be an agent, a resource
or a world object.

• Boolean

• Composed <T>: a user defined composed data type. It must be specified, which one.

• Enum <T>: a user defined symbolic enumeration data type.

• Hashtable <T,T>: Traditional hashtable data type. The types of the keys and the
values that are stored in the table have to be specified.

• Image: a picture that is used for showing an entity in the animation. Variables of this
type contain a file name of a picture in .gif or .jpg format.

• List <T> (formerly set): a list of entries of the same type - that has to be specified.

• Number

• Position: Position on a world map

• String

48



Index

SeSAm Agent Concept, 6

Activity Form, 10
Activity Reasoning Engine, 6, 9
Activity Stop Watch, 10, 12
Adding Rules, 15
Agent Reasoning Engine, 6, 9
Analysis, 35
Analysis Item, 36
Analysis Items, 20, 35

BeamBodyTo, 43
Block Chart, 36

Create Function Dialog, 30
CreateObjectAndRemember, 42
CreatePos, 43

Data File, 36
Data Table, 36
DeclarationTreePanel, 5
Documentation, 6
Dynamic Variable, 7

Edit Agent Class, 6
Edit Analysis, 35
Edit Analysis Dialog, 35
Edit Simulation, 37
Edit Simulation Dialog, 37
Edit Situation Dialog, 20
Editing Agent State Definition, 7
Editing Rules, 17
Editing Variables, 7
Efficiency, 45
Emergency Activity, 10
End Activity, 10
End Functions, 37
Experiment, 20
Expert Selection, 29

ForElements, 29, 43
Function Edit Area, 8
Function Selection List, 7
Function Specification, 8
Function Specification Area, 37
Function Tree, 8

GetMapDimensions, 43
GetVariable, 9
GetVariableFrom, 36, 37
Grid, 23

Image, 25, 26
Image Select Dialog, 26
Initial Position, 42
Instant Activity, 10, 25

Kill, 44
Killing and Erasing, 44

Look&Feel, 5

Manipulating the Map, 21
Map, 20, 23, 37
Maximize, 46
Model Elements, 20

New Agent Classes, 5
Next Value Function, 41

ObserveObjectsInDirection, 46
ObserveObjectsOnPosition, 45, 46
Otherwise Rule, 25

Reasoning Engine, 41
Reasoning Engine Editor, 10
Remove, 44
Resources, 40, 41

Series Chart, 36
SetVariableOf, 32
Simulation, 20, 37
Simulation Elements, 19, 20
Simulation Run, 20
Situation, 20
Situation and Behavior Settings, 26
Space, 23
Space in SeSAm, 23, 46
Spatial Perception, 46
Start Action, 46
Start Activity, 9
State Activity, 9
Synchronization, 19

49



Termination of Simulation Runs, 37
Torus, 23

Unnamed Functions, 30

Variable Form, 7
Void, 30

Window Menu, 38
World Agents, 19
World as Agent, 19
World Class, 28
World Classes, 18

50


