SeSAm-Tutorial
How to program a new Agent-Feature
Rainer Herrler

herrler@ki.informatik.uni-wuerzburg.de
Introduction

Within the SeSAm-IDE you are able to visually model agents, their behaviour and their environment. Behaviour modelling is grounded on basic primitives for sensing, acting and calculating. This language is also called SeSAm-Impl. The language itself is touring-complete but there might be some reasons to extend the given set of behaviour primitives. This might be to speed up model execution or to create interfaces to external tools like databases or FIPA-Agents. This tutorial shows starting with simple examples, how extensions to SeSAm can be realized.

Example One: Programming Mathematical Functions

Suppose we want to add a new primitive “atan2” with arguments x and y, that is defined like this:
	syntax:
	atan2(x, y)

	where:
	x - x coordinate of the point.
x - y coordinate of the point.

	return:
	number - an implementation-dependent approximation to the arc tangent of the quotient, y/x, of the arguments y and x, where the signs of the arguments are used to determine the quadrant of the result.

	description:
	It is intentional and traditional for the two-argument arc tangent function that the argument named y be first and the argument named x be second. The return value is expressed in radians and ranges from -pi to +pi.

First of all we have to define a declaration of the function, this includes the input and output values, a documentation and everything that is needed to specify how functions can be syntactically put together. Afterwards we will create a definition for the actual function that describes as well the semantics of the function.

Creating the function declaration

To define this Function-Declaration we simply create a new Class extending a given abstract class like this:
	public final class FunctionDeclarationATan2 extends AbstractSpecificFunctionArgsDeclaration {

public FunctionDeclarationATan2() {

super(

"atan2",

DoubleType.getInstance(),

CollectionsHelper.createList(

DoubleType.getInstance(),

DoubleType.getInstance()),

false);

setDocumentation(

"This calculates the value atan2(x,y)");

}
}

This still causes a compile error, but we don’t mind at the moment. We have called the super constructor with some arguments that are:
· "atan2" ,the name of the function,
· DoubleType.getInstance(), The type of the return value of the function. SeSAm-Types are usually Singletons. Examples of valid Types are: DoubleType, ImageType, Position2DType, StringType, ActivityType… You will find a complete list in the appendix of this tutorial.
· CollectionsHelper(…), A list of types for the input-parameters of this function declaration.
· false A flag indicating if this function declaration should be marked as Expert-Function.
Additionally we add a documentation string to the primitive. This will be shown in the context-menu in SeSAm. But now… let’s go on. We still have compile-errors because we haven’t implemented the abstract function createFunction:
	 public IFunction createFunction(ICreateFunctionArgs
 createFunctionArgs, IFunctionList functions) {

if (Assert.ASSERTION_ON)

Assert.assertEquals(2, functions.size());

return new FunctionATan2(

(IFunction) functions.get(0),

(IFunction) functions.get(1));

}

Whereas the declaration provides knowledge about correct composition of the functions, the actual functions store the composition of the functions. This actual functions extend the Interface IFunction and are created when createFunction in the function declaration is called. Here we get a list containing the functions for the two input parameters and create the resulting function by instantiating the yet not existing function definition FunctionPower.

Creating the function definition
Now we want to create the already referenced but not yet implemented part behind the declaration of the function. We need two private variables to store the inner functions for the arguments. These functions are given to the constructor. Then we need the method execute, which is called at runtime to calculate the resulting value of the function. Functions can be dependent of their input-parameters and as well from the executeFunctionsArgs that are given with the call. These contain references to the calling agent, the world class..and so on, but we will give examples later.

	public class FunctionATan2 extends AbstractFunction {
 private final IFunction argument1;
 private final IFunction argument2;
 public FunctionATan2(IFunction arg1, IFunction arg2) {

super();

argument1 = arg1;

argument2 = arg2;
 }
 public Object execute(IExecuteFunctionArgs executeFunctionArgs)
 throws SimulationRuntimeException {

int x = ((Double)argument1.execute(executeFunctionArgs)).intValue();

int y = ((Double)argument2.execute(executeFunctionArgs)).intValue();

return new Double(Math.atan2(x,y));
 }
}

Integration to SeSAm

To integrate this new function to SeSAm you can use the plugin-mechanism of SeSAm. Just create a new JAR-File containing the complied classes and a textfile called “plugin.ini”, looking like this:
	<plugin>
 <!—This ini-File has to be placed in the SeSAm/plugins – Direcory and the according

 classes have to be in the classpath->

 <functionSection>
 <function className="sesam.math.FunctionDeclarationATan2"/>
 </functionSection>
 <!—The following sections are not used in the example
 <typeSection>
 </typeSection>
 <featureSection>
 </featureSection>
 <objectViewerSection>
 </objectViewerSection>
 <menuPluginSection>
 </menuPluginSection>
 -->
</plugin>

If you put the resulting JAR-Archive into the SeSAm/plugins directory and restart SeSAm, the new primitive will be available to the modeller. It is also allowed to put ini-Files (instead of JAR-Archives) into the plugins directory. Then you just have to ensure that all referenced classes are in the classpath of your JAVA environment.

As the picture shows the function is now available.
[image: image1.jpg][Edit User Function &

Arguments

Output: Number (Double) SLZENEED
S ame:

npi

Number v | | settings.

Function Call
Gz | Aouments . Functions
¢ Cl-ex Number (Do [(wamber Double), Nuf =
[hgl I (Number (Double), Nur
Do * (umber (Double), .
Do '+ (Number Double), .)
ATan2 (Number (integ
Count (erator<T>)
(GetComposerTypeValu—|
I 1|« Db
2] Expert

o [oy | [oot |

