
J A D E T U TO R I A L
A P P L I C AT I O N - D E F I N E D C O N T E N T

L A N G U A G E S A N D O N T O L O G I E S

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

last update: 30-June-2002. JADE 2.6

Authors: Giovanni Caire (TILAB, formerly CSELT)

Copyright (C) 2000 CSELT S.p.A.
Copyright (C) 2001 TILab S.p.A.
Copyright (C) 2002 TILab S.p.A.

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with the FIPA
specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA interoperability test
in London (Apr. 01).
Copyright (C) 2000 CSELT S.p.A. (C) 2001 TILab S.p.A. (C) 2002 TILab S.p.A.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, version 2.1 of the License.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

TABLE OF CONTENTS

1 RATIONALE 4

2 MAIN ELEMENTS 5

3 THE CONTENT REFERENCE MODEL 6

4 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT. BASIC
FEATURES 7

4.1 The Music Shop example 8

4.2 Defining an Ontology 8

4.3 Developing ontological Java classes 11

4.4 Selecting a content language 13

4.5 Registering content languages and ontologies to an agent 13

4.6 Creating and manipulating content expressions as Java objects 14

5 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT.
ADVANCED FEATURES 15

5.1 Combining ontologies 15
5.1.1 The Vocabulary interface pattern 17

5.2 Working with abstract descriptors 17

5.3 The conversion pipeline 19

5.4 Content language operators 20
5.4.1 Using the SL operators 21

5.5 Creating queries 22

5.6 Adding semantic constraints: Facets 23

5.7 Disabling semantic checks to improve performances 24

5.8 User-defined content languages 24

5.9 Introspectors 25

6 USING PROTÉGÉ TO CREATE JADE ONTOLOGIES 25

7 MIGRATING FROM THE OLD SUPPORT TO THE NEW ONE 25

A P P L I C AT I O N - D E F I N E D C O N T E N T
L A N G U A G E S A N D O N TO L O G I E S

This section describes the new content languages and ontologies support provided by JADE since
version 2.5 and included in the jade.content package. Former versions of JADE already
included an “old” support for content languages and ontologies (scattered around the
jade.onto, jade.lang.sl and jade.core packages) that is still available for backward
compatibility. With respect to the old one, this new support provides a number of advanced
features, such as the possibility of creating queries and using content language operators, that can
be extremely important in complex applications.
As usual in JADE, the approach is “pay as you go”: using the basic features (covered in 4), that are
equivalent to the old support, is as simple as (and very similar to) using the old support. Using the
advanced features (covered in 5) requires the developer to know more about the internal operations
of this new content languages and ontologies support. Finally section 7 describes how to modify an
application written for the old support in order to make it use the new one.

1 RATIONALE

When an agent A communicates with another agent B, a certain amount of information I is
transferred from A to B by means of an ACL message. Inside the ACL message, I is represented as
a content expression consistent with a proper content language (e.g. SL) and encoded in a proper
format (e.g. string). Both A and B have their own (possibly different) way of internally
representing I. Taking into account that the way an agent internally represents a piece information
must allow an easy handling of that piece of information, it is quite clear that the representation
used in an ACL content expression is not suitable for the inside of an agent.
For example the information that there is a person whose name is Giovanni and who is 33 years
old in an ACL content expression could be represented as the string
(Person :name Giovanni :age 33)
Storing this information inside an agent simply as a string variable is not suitable to handle the
information as e.g. getting the age of Giovanni would require each time to parse the string.
Considering software agents written in Java (as JADE agents are), information can conveniently be
represented inside an agent as Java objects. For example representing the above information about
Giovanni as an instance (a Java object) of an application-specific class
class Person {

String name;
int age;

public String getName() {return name; }
public void setName(String n) {name = n; }
public int getAge() {return age; }
public void setAge(int a) {age = a; }
….

}

initialized with
name = “Giovanni”;
age = 33;

would allow to handle it very easily.

It is clear however that, if on the one hand information handling inside an agent is eased, on the
other hand each time agent A sends a piece of information I to agent B,
1) A needs to convert his internal representation of I into the corresponding ACL content

expression representation and B needs to perform the opposite conversion.
2) Moreover B should also perform a number of semantic checks to verify that I is a meaningful1

piece of information, i.e. that it complies with the rules (for instance that the age of Giovanni is
actually an integer value) of the ontology by means of which both A and B ascribe a proper
meaning to I.

The support for content languages and ontologies provided by JADE is designed to automatically
perform all the above conversion and check operations as depicted in Figure 1, thus allowing
developers manipulating information within their agents as Java objects (as described above)
without the need of any extra work.

Content slot of an
ACLMessage

Inside of an agent

Information
 represented as a string or

a sequence of bytes
(easy to transfer)

Information
 represented as Java objects

(easy to manipulate)

JADE support
for content

languages and
ontologies

Figure 1The conversion performed by the JADE support for content languages and

ontologies

2 MAIN ELEMENTS

The conversion and check operations described in 1 are carried out by a content manager object
(i.e. an instance of the ContentManager class included in the jade.content package). Each
JADE agent embeds a content manager accessible through the getContentManager() method of
the Agent class. The ContentManager class provides all the methods to transform Java objects
into strings (or sequences of bytes) and to insert them in the content slot of ACLMessages and vice-
versa.
The content manager provides a convenient interfaces to access the conversion functionality, but
actually just delegates the conversion and check operations to an ontology (i.e. an instance of the
Ontology class included in the jade.content.onto package) and a content language codec
(i.e. an instance of the Codec interface included in the jade.content.lang package). More
specifically the ontology validates the information to be converted from the semantic point of view

1 Not necessarily true. If I say that “the age of Giovanni is 34”, this information is meaningful (a meaningless information would be
for example that “the age of Giovanni is dog”), but can be false as maybe Giovanni is 33.

while the codec performs the translation into strings (or sequences of bytes) according to the
syntactic rules of the related content language. These operations are described in more details in
5.3, but the user does not need to care about them unless he needs to use some advanced features
such as performing queries.

3 THE CONTENT REFERENCE MODEL

In order for JADE to perform the proper semantic checks on a given content expression it is
necessary to classify all possible elements in the domain of discourse (i.e. elements that can appear
within a valid sentence sent by an agent as the content of an ACL message) according to their
generic semantic characteristics. This classification is derived from the ACL language defined in
FIPA that requires the content of each ACLMessage to have a proper semantics according to the
performative of the ACLMessage. More in details at the first level we distinguish between
predicates and terms.
Predicates are expressions that say something about the status of the world and can be true or
false e.g.
(Works-for (Person :name John) (Company :name TILAB))

stating that “the person John works for the company TILAB”.
Predicates can be meaningfully used for instance as the content of an INFORM or QUERY-IF
message, while would make no sense if used as the content of a REQUEST message.
Terms are expressions identifying entities (abstract or concrete) that “exist” in the world and that
agents talk and reason about. They are further classified into:
Concepts i.e. expressions that indicate entities with a complex structure that can be defined in
terms of slots e.g.
(Person :name John :age 33)

Concepts typically make no sense if used directly as the content of an ACL message. I general they
are referenced inside predicates and other concepts such as in
(Book :title “The Lord of the rings” :author (Person :name “J.R.R. Tolkjien”))

Agent actions i.e. special concepts that indicate actions that can be performed by some agents e.g.
(Sell (Book :title “The Lord of the rings”) (Person :name John))

It is useful to treat agent actions separately since, unlike “normal” concepts, they are meaningful
contents of certain types of ACLMessage such as REQUEST. Communicative acts (i.e. ACL
messages) are themselves agent actions.
Primitives i.e. expressions that indicate atomic entities such as strings and integers.
Aggregates i.e. expressions indicating entities that are groups of other entities e.g.
(sequence (Person :name John) (Person :name Bill))

Identifying Referential Expressions (IRE) i.e. expressions that identify the entity (or entities) for
which a given predicate is true e.g.
(all ?x (Works-for ?x (Company :name TILAB))

identifying “all the elements x for which the predicate (Works-for x (Company :name TILAB))
is true, i.e. all the persons that works for the company TILAB).
These expressions are typically used in queries (e.g. as the content of a QUERY_REF) message)
and requires variables.
Variables i.e. expressions (typically used in queries) that indicate a generic element not known a-
priori.

A fully expressive content language should be able to represent and distinguish between all the
above types of element. An ontology for a given domain is a set of schemas defining the structure
of the predicates, agent actions and concepts (basically their names and their slots) that are
pertinent to that domain.

The final Content Reference Model (depicted in Figure 2) includes two more types of element that
are introduced considering that only predicates, agent actions, IREs and lists of elements of these
three types2 (ContentElementList) are meaningful content of at least one ACL message. They all
inherit from the ContentElement super-type.

Element

AgentAction

IRE VariableConcept AggregatePrimitive

Can be used as the
content of an ACL
message

Indicated entities
(abstract or concrete)

An ontology deals with these
types of element

Predicate Term

ContentElementList

ContentElement

Can be true
or false

Figure 2The Content Reference Model

4 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT. BASIC FEATURES

This section describes the basic features of the new JADE content language and ontology support
included in the jade.content package. These features are typically sufficient in a lot of
normal cases and, for users already familiar with JADE, they exactly correspond to those provided
by the previous JADE support. The jade.content package however provides a number of
advanced features, such as the possibility of creating queries, that are important for complex
applications and that were not available in the old support. These advanced features are covered in
5.

2 E.g. The content of a PROPOSE message is an agent action + a predicate indicating the conditions that will become true if the
agent action is performed.

Exploiting the JADE content language and ontology support included in the jade.content
package to make agents talk and reason about “things and facts” related to a given domain goes
through the following steps.
1) Defining an ontology including the schemas for the types of predicate, agent action and

concept that are pertinent to the addressed domain. This is discussed in 4.2.
2) Developing proper Java classes for all types of predicate, agent action and concept in the

ontology. This is discussed in 4.3.
3) Selecting a suitable content language among those directly supported by JADE. This is

discussed in 4.4. JADE can be easily extended to support new user-defined content languages
(see 5.8), but in the great majority of the cases the user does not need to define his own content
language.

4) Registering the defined ontology and the selected content language to the agent. This is
discussed in 4.5.

5) Creating and handling content expression as Java objects that are instances of the classes
developed in step 2 and let JADE translate these Java objects to/from strings or sequences of
bytes that fit the content slot of ACLMessages. This is discussed in 4.6.

The above steps are illustrated by means of a simple example described in 4.1.

4.1 The Music Shop example

This example considers a Seller agent managing a simple electronic music shop where two types
of item (i.e. CDs and musical books) are available for sale. Each item has a serial number. Each
CD has a name and a number of tracks each one has a title and a duration. Each musical book has a
title. The Seller agent owns a number of items and can sell them to other Buyer agents.
In the example a Buyer agent will ask the Seller agent if he owns a given CD and, if this is the
case, he will request him to sell that CD.

4.2 Defining an Ontology

An ontology in JADE is an instance of the jade.content.onto.Ontology class to which the
schemas defining the structure of the types of predicates, agent actions and concepts relevant to the
addressed domain have been added. These schemas are instances of the PredicateSchema,
AgentActionSchema and ConceptSchema classes included in the jade.content.schema package.
These classes have methods by means of which it is possible to declare the slots that defines the
structure of each type of predicate, agent action and concept.
As an ontology is basically a collection of schemas that typically does not evolve during an agent
lifetime, it is a good practice to declare the ontology as a singleton object and to define an ad-hoc
class (that extends jade.content.onto.Ontology) with a static method to access this singleton
object. This allows sharing the same ontology object (and all the included schemas) among
different agents in the same JVM.
In the music shop example we will deal with four concepts (Item, CD, Track and Book), one
predicate (Owns) and one agent action (Sell). Besides them we will have to deal with the concept
of AID. The latter however does not need to be defined as each ontology in JADE normally
extends a basic ontology (represented as a singleton object of the
jade.content.onto.BasicOntology class) that includes the schemas for
• the primitive types (STRING, INTEGER, FLOAT…)
• the aggregate type

• some generic (i.e. not belonging to any specific domain) predicates, agent actions and concepts
among which the AID concept identifying an agent.

In order to declare that the ontology o1 extends the ontology o2 (i.e. all predicates, agent actions
and concepts included in o2 are also included in o1) it is sufficient to pass o2 as a parameter
when o1 is constructed.
Taking into account all the above issues, the ontology for the music shop domain can be defined as

package musicShopOntology;

import jade.content.onto.*;
import jade.content.schema.*;

public class MusicShopOntology extends Ontology {
// The name identifying this ontology
public static final String ONTOLOGY_NAME = "Music-shop-ontology";

// VOCABULARY
public static final String ITEM = "Item";
public static final String ITEM_SERIAL = "serial-number";

public static final String CD = "CD";
public static final String CD_NAME = "name";
public static final String CD_TRACKS = "tracks";

public static final String TRACK = "Track";
public static final String TRACK_TITLE = "title";
public static final String TRACK_DURATION = "duration";

public static final String BOOK = "Book";
public static final String BOOK_TITLE = "title";

public static final String OWNS = "Owns";
public static final String OWNS_OWNER = "owner";
public static final String OWNS_ITEM = "item";

public static final String SELL = "Sell";
public static final String SELL_BUYER = "buyer";
public static final String SELL_ITEM = "item";

// The singleton instance of this ontology
private static Ontology theInstance = new MusicShopOntology();

// This is the method to access the singleton music shop ontology object
public static Ontology getInstance() {

return theInstance;
}

// Private constructor
private MusicShopOntology() {

// The music shop ontology extends the basic ontology
super(ONTOLOGY_NAME, BasicOntology.getInstance())

try {
add(new ConceptSchema(ITEM), Item.class);
add(new ConceptSchema(CD), CD.class);

add(new ConceptSchema(TRACK), Track.class);
add(new ConceptSchema(BOOK), Book.class);
add(new PredicateSchema(OWNS), Owns.class);
add(new AgentActionSchema(SELL), Sell.class);

// Structure of the schema for the Item concept
ConceptSchema cs = (ConceptSchema) getSchema(ITEM);
cs.add(ITEM_SERIAL, (PrimitiveSchema) getSchema(BasicOntology.INTEGER),

ObjectSchema.OPTIONAL); // The serial-number slot is optional and
// allowed values are integers.

// Structure of the schema for the CD concept
cs = (ConceptSchema) getSchema(CD);
cs.addSuperSchema((ConceptSchema) getSchema(ITEM));
cs.add(CD_NAME, (PrimitiveSchema) getSchema(BasicOntology.STRING));
cs.add(CD_TRACKS, (ConceptSchema) getSchema(TRACK), 1,

ObjectSchema.UNLIMITED); // The tracks slot has cardinality > 1

// Structure of the schema for the Track concept
cs = (ConceptSchema) getSchema(TRACK);
cs.add(TRACK_TITLE, (PrimitiveSchema) getSchema(BasicOntology.STRING));
cs.add(TRACK_DURATION, (PrimitiveSchema)

getSchema(BasicOntology.INTEGER), ObjectSchema.OPTIONAL);

// Structure of the schema for the Book concept
cs = (ConceptSchema) getSchema(BOOK);
cs.addSuperSchema((ConceptSchema) getSchema(ITEM));
cs.add(BOOK_TITLE, (PrimitiveSchema) getSchema(BasicOntology.STRING));

// Structure of the schema for the Owns predicate
PredicateSchema ps = (PredicateSchema) getSchema(OWNS);
ps.add(OWNS_OWNER, (ConceptSchema) getSchema(BasicOntology.AID));
ps.add(OWNS_ITEM, (ConceptSchema) getSchema(ITEM));

// Structure of the schema for the Sell agent action
AgentActionSchema as = (AgentActionSchema) getSchema(SELL);
as.add(SELL_ITEM, (ConceptSchema) getSchema(ITEM));
as.add(SELL_BUYER, (ConceptSchema) getSchema(BasicOntology.AID));

}
catch (OntologyException oe) {

oe.printStackTrace();
}

}
}

All the XXXSchema classes are included in the jade.content.schema package.
From the above code we can see that
• Each schema added to the ontology is associated to a Java class e.g. the schema for the CD

concept is associated to the CD.java class. While using the defined ontology, expressions
indicating CDs will be instances of the CD class. These Java classes must have a proper
structure as described in 4.3.

• Each slot in a schema has a name and a type, i.e. values for that slot must comply with a given
schema.

• A slot can be declared as OPTIONAL meaning that its value can be null. Otherwise a slot is
considered MANDATORY. If a null value for a MANDATORY slot is encountered in the validation of
a content expression, an OntologyException is thrown.

• A slot can have a cardinality > 1, i.e. values for that slot are aggregates of elements of a given
type. For example the tracks slot in the schema for the CD concept can contain 1 or more
elements of type Track.

• A schema can have a number of super-schemas. This allows defining specialization/extension
relationships among concepts. For example the schema of CD has the schema of Item as a
super-type meaning that CD is a type of Item and therefore that each CD instance is also an
Item instance.

4.3 Developing ontological Java classes

As mentioned in 4.2 each schema included in an ontology is associated with a Java class (or
interface). Clearly the structure of these classes must be coherent with the associated schemas.
More in details they must obey the following rules.
1) Implementing a proper interface i.e.

− If the schema is a ConceptSchema the class must implement (directly or indirectly) the
Concept interface.

− If the schema is a PredicateSchema the class must implement (directly or indirectly) the
Predicate interface.

− If the schema is a AgentActionSchema the class must implement (directly or indirectly)
the AgentAction interface.

The above interfaces are part of a hierarchy that follows the content reference model presented in 3
and that is included in the jade.content package
2) Having the proper inheritance relations i.e.
If S1 is a super-schema of S2 then the class C2 associated to schema S2 must extend the class C1
associated to schema S1.
3) Having the proper member fields and accessor methods i.e.

− For each slot in schema S1 with name nnn and type (i.e. whose schema is) S2 the class C1
associated to schema S1 must have two accessor methods with the following signature
public void setNnn(C2 c);
public C2 getNnn();

where C2 is the class associated to schema S2. In particular if S2 is a schema defined in the
BasicOntology then
! if S2 is the schema for STRING # C2 is java.lang.String
! if S2 is the schema for INTEGER # C2 is int, long, java.lang.Integer or

java.lang.Long3
! if S2 is the schema for BOOLEAN # C2 is boolean or java.lang.Boolean
! if S2 is the schema for FLOAT # C2 is float, double, java.lang.Float or

java.lang.Double
! if S2 is the schema for DATE # C2 is java.util.Date
! if S2 is the schema for BYTE_SEQUENCE # C2 is byte[]
! if S2 is the schema for AID # C2 is jade.core.AID

3 The user can choose among these options according to his preferences

− For each slot in schema S1 with name nnn, type S2 and cardinality > 1 the class C1
associated to schema S1 must have two accessor methods with the following signature
public void setNnn(jade.util.leap.List l);
public jade.util.leap.List getNnn();

To exemplify the above rules the classes associated to the CD concept and to the Owns predicate
in the music shop example are reported below.

// Class associated to the CD schema
package musicShopOntology;

import jade.util.leap.List;

public class CD extends Item { // Note that the Item class (omitted here)
// implements Concept

private String name;
private List tracks;

public String getName() {
return name;

}
public void setName(String n) {

name = n;
}
public List getTracks() {

return tracks;
}
public void setTracks(List l) {

tracks = l;
}

}

// Class associated to the Owns schema
package musicShopOntology;

import jade.content.Predicate;
import jade.core.AID;

public class Owns implements Predicate
private AID owner;
private Item item;

public AID getOwner() {
return owner;

}
public void setOwner(AID id) {

owner = id;
}
public Item getItem() {

return item;
}
public void setItem(Item i) {

item = i;
}

}

4.4 Selecting a content language

The jade.content package directly includes codecs for two content languages (the SL language
and the LEAP language) both supporting the content reference model described in 3. A codec for a
content language L is a Java object able to manage (see 5.8 for details) content expressions written
in the L language. In the great majority of the cases a developer can just adopt one of these two
content languages and use the related codec without any additional effort. This section gives some
hints that can help in choosing which one. If a developer wants his agents to “speak” a different
content language he can define a proper codec for it as described in 5.8.
The SL language is a human-readable string-encoded (i.e. a content expression in SL is a string)
content language and is probably (together with KIF) the mostly diffused content language in the
scientific community dealing with intelligent agents. All examples of content expression in this
documentation are expressed in SL. In general we suggest to adopt this language especially for
agent based applications that are (or can become) open (i.e. where agents from different developer
and running on different platforms must communicate). SL includes a number of useful operators
such as logical operators (AND, OR, NOT) and modal operators (BELIEF, INTENTION,

UNCERTAINTY). Refer to 5.4.1 for a description of how to use them. Moreover the property of being
human-readable can be very helpful when debugging and testing an application.
The LEAP language is a non-human-readable byte-encoded (i.e. a content expression in LEAP is
a sequence of byte) content language that has been defined ad hoc for JADE within the LEAP
project. It is therefore clear that only JADE agents will be able to “speak” the LEAP language.
There are some cases however in which the LEAP language is preferable with respect to SL.
• The LEAPCodec class is lighter than the SLCodec class. When there are strong memory

limitations the LEAP language is preferable.
• Unlike the LEAP language, the SL language does not support sequences of bytes.
Finally the developer should take into account that the SL language deals with agent actions
particularly. All agent actions in SL must be inserted into the ACTION construct (included in the
BasicOntology and implemented by the jade.content.onto.basic.Action class)
that associates the agent action to the AID of the agent that is intended to perform the action.
Therefore the expression
(Sell

(Book :title “The Lord of the rings”)
(agent-identifier :name Peter)

)

cannot be used directly as the content of e.g. a REQUEST message even if it corresponds to an
agent action in the Content Reference Model. In fact the SL grammar does not allow it as a first-
level expression. The following expression must be used instead
(ACTION

(agent-identifier :name John)
(Sell

(Book :title “The Lord of the rings”)
(agent-identifier :name Peter)

)
)

Where John is the agent that is requested to sell the specified book to agent Peter.

4.5 Registering content languages and ontologies to an agent

Before an agent can actually use the defined ontology and the selected content language, they must
be registered to the content manager of the agent. This operation is typically (but not necessarily)

performed during agent setup (i.e. in the setup() method of the Agent class). The following code
shows this registration in the case of the Seller agent (the Buyer agent looks like the same)
assuming the SL Language is selected.

public class SellerAgent extends Agent {

private Codec codec = new SLCodec();
private Ontology ontology = MusicShopOntology.getInstance();
….
protected void setup() {

….
getContentManager().registerLanguage(codec);
getContentManager().registerOntology(ontology)
….

}
….

}

From now on the content manager will associate the registered Codec and Ontology objects to the
strings returned by their respective getName() methods.
Note that, while it is generally a good practice having a singleton Ontology object, this is not the
case for Codec objects as synchronization problems can arise during parsing operations.

4.6 Creating and manipulating content expressions as Java objects

Having defined an ontology (and the classes associated to the types of predicate, agent action and
concept it includes), selected a proper language and registered them to the agent’s content
manager, creating and manipulating content expressions as Java objects is straightforward. The
code4 below shows how the Buyer agent asks the Seller agent if he owns “Synchronicity”5.
….
// Prepare the Query-IF message
ACLMessage msg = new ACLMessage(ACLMessage.QUERY_IF);
msg.addReceiver(sellerAID) // sellerAID is the AID of the Seller agent
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName());

// Prepare the content. Optional fields are not set
CD cd = new CD();
cd.setName(“Synchronicity”);
List tracks = new ArrayList();
Track t = new Track();
t.setTitle(“Every breath you take”);
tracks.add(t);
t = new Track();
t.setTitle(“King of pain”);
tracks.add(t);
cd.setTracks(tracks);

Owns owns = new Owns();
owns.setOwner(sellerAID);
owns.setItem(cd);

4 This code is likely to be inserted into a proper behaviour implementing a FIPA-Query protocol, but this is out of the scope of this
documentation

5 A very well known CD by The Police

try {
// Let JADE convert from Java objects to string
getContentManager().fillContent(msg, owns);
send(msg);

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (OntologyException oe) {

oe.printStackTrace();
}
….

In the fillContent() method the Buyer agent’s content manager gets the proper Ontology and
Codec objects (on the basis of the values of the :ontology and :language slots of the
ACLMessage msg) and let them perform the necessary conversion and check operations.
Similarly the Seller agent, receiving the message from the Buyer agent, can handle it as below.
….
// Receive the message
MessageTemplate mt = MessageTemplate.and(

MessageTemplate.MatchLanguage(codec.getName()),
MessageTemplate.MatchOntology(ontology.getName()));

ACLMessage msg = blockingReceive(mt);

try {
ContentElement ce = null;
if (msg.getPerformative() == ACLMessage.QUERY_IF) {

// Let JADE convert from String to Java objects
ce = getContentManager().extractContent(msg);
if (ce instanceof Owns) {

Owns owns = (Owns) ce;
Item it = owns.getItem();
// Check if I have this item and answer accordingly
….

}
….

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (OntologyException oe) {

oe.printStackTrace();
}

}
….

5 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT. ADVANCED
FEATURES

5.1 Combining ontologies

The support for content languages and ontologies included in the jade.content package
provides an easy way to combine ontologies thus facilitating code re-usage.

In particular it is possible to define that a new ontology extends one or more (previously defined)
ontologies by simply specifying the extended ontologies as parameters in the constructor used to
create the new ontology.
For instance in the music shop example we included for simplicity all predicates, agent actions and
concepts in the MusicShopOntology, but as a matter of facts the concept Item, the predicate
Owns and the agent action Sell are not strictly related to the music shop domain. They could be
included in another more generic ontology called for instance ECommerceOntology and the
MusicShopOntology could be defined as extending the ECommerceOntology by adding the CD,
Book and Track concepts.
Assuming we moved the above mentioned ontological elements in the ECommerceOntology, the
MusicShopOntology would be modified as below

package musicShopOntology;

import jade.content.onto.*;
import jade.content.schema.*;
import eCommerceOntology.*;

public class MusicShopOntology extends Ontology {
// The name identifying this ontology
public static final String ONTOLOGY_NAME = "Music-shop-ontology";

// VOCABULARY
public static final String CD = "CD";
public static final String CD_NAME = "name";
public static final String CD_TRACKS = "tracks";

public static final String TRACK = "Track";
public static final String TRACK_TITLE = "title";
public static final String TRACK_DURATION = "duration";

public static final String BOOK = "Book";
public static final String BOOK_TITLE = "title";

// The singleton instance of this ontology
private static Ontology theInstance = new MusicShopOntology();

// This is the method to access the singleton music shop ontology object
public static Ontology getInstance() {

return theInstance;
}

// Private constructor
private MusicShopOntology() {

// The music shop ontology extends the e-commerce ontology
super(ONTOLOGY_NAME, ECommerceOntology.getInstance())

try {
add(new ConceptSchema(CD), CD.class);
add(new ConceptSchema(TRACK), Track.class);
add(new ConceptSchema(BOOK), Book.class);

// Structure of the schema for the CD concept

cs = (ConceptSchema) getSchema(CD);
cs.addSuperSchema((ConceptSchema) getSchema(EcommerceOntology.ITEM));
cs.add(CD_NAME, (PrimitiveSchema) getSchema(BasicOntology.STRING));
cs.add(CD_TRACKS, (ConceptSchema) getSchema(TRACK), 1,

ObjectSchema.UNLIMITED); // The tracks slot has cardinality > 1
….

It is possible to extend more than one existing ontology by specifying an array of Ontology
instead of just one Ontology object. See the javadoc for more details.

5.1.1 The Vocabulary interface pattern

In the above example of course we must take into account that the ITEM constant is defined in
ECommerceOntology. In cases in which we are dealing with large ontologies that are obtained
extending several previously defined ontologies, keeping track of which ontology a given symbol
is actually defined in can be quite annoying. To face this problem we suggest the simple design
pattern represented in Figure 3.

ExtendedVocabulary
<<Interface>>

Base1Vocabulary
<<Interface>>

Base1Ontology

ExtendedOntology

Base2OntologyBase2Vocabulary
<<Interface>>

Figure 3The Vocabulary-interface pattern

Where all the constants are defined in the Vocabulary interfaces. By organizing things this way each
constant can be accessed as if it were defined in the ExtendedOntology even if it was actually defined in
one of the base ontologies.

5.2 Working with abstract descriptors

If using Java objects to represent a content expression (as described in 4) is very convenient for
managing the information included in that content expression, there are however some cases where
this can create problems.
• Assuming an ontology includes 1000 elements, we need to deal with 1000 classes. Even if

these classes can be automatically generated (as described in 6), there can be situations in
which dealing with 1000 classes is in any case a problem (for instance if the agent has to be
deployed on a small device with memory limitations).

• If multiple inheritance relationships have to be defined between concepts in an ontology (this
feature is supported by simply calling several times the addSuperSchema() method), the

Java classes representing these concepts must be interfaces as Java does not support multiple
inheritance.

• In order to create queries it is necessary to specify variables such as in
QUERY_REF (All ?x (Owns (agent-identifier :name Seller) ?x)

Such a content expression can’t be translated into a Java object as an object representing a
variable cannot be assigned where an Item is required.

For these reasons JADE provides another (less convenient, but more general) way of representing
content expressions: each element can be represented as an abstract descriptor that includes
• a type-name indicating the actual type of the element
• a number of named slots holding the attributes of the element
This is to say that e.g. the concept (Person :name Giovanni :age 33) can be also represented
as an instance of the AbsConcept class (an abstract descriptor representing a concept) where the
type-name is set to “Person”, the slot named “name” is set to “Giovanni”6 and the slot named
“age” is set to 33.
At the end of the day there is an abstract descriptor class for each type of element in the content
reference model presented in 3 (AbsPredicate, AbsAgentAction, AbsConcept …..) and all
predicates are represented as instances of AbsPredicate, all agent actions are represented as
instances of AbsAgentAction and so on.
All abstract descriptor classes are included in the jade.content.abs package.
Note that primitive values are represented as abstract descriptors too, i.e. as instances of the
AbsPrimitive class.
As an example, when using abstract descriptors, the code presented in 4.6 to ask the Seller agent if
he owns a given CD, would look like (refer to the javadoc for details about the methods provided
by the abstract descriptor classes):

// Prepare the Query-IF message
ACLMessage msg = new ACLMessage(ACLMessage.QUERY_IF);
msg.addReceiver(sellerAID) // sellerAID is the AID of the Seller agent
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName());

// Prepare the content. Optional fields are not set
AbsConcept absCd = new AbsConcept(MusicShopOntology.CD);
absCd.set(MusicShopOntology.CD_NAME, “Synchronicity”);

AbsAggregate absTracks = new AbsAggregate (BasicOntology.SEQUENCE);
AbsConcept absT = new AbsConcept (MusicShopOntology.TRACK);
absT.set(MusicShopOntology.TRACK_TITLE, “Every breath you take”);
absTracks.add(absT);

absT = new AbsConcept (MusicShopOntology.TRACK);
absT.set(MusicShopOntology.TRACK_TITLE, “King of pain”);
absTracks.add(absT);

absCd.set(MusicShopOntology.CD_TRACKS, absTracks);

try {

6 More in details it is set to an AbsPrimitive (an abstract descriptor representing a primitive value) representing the string
“Giovanni”

// Use the basic ontology to get an abstract descriptor of the Seller AID
AbsConcept absSeller = ontology.fromObject(sellerAID);

AbsPredicate absOwns = new AbsPredicate(MusicShopOntology.OWNS);
absOwns.set(MusicShopOntology.OWNS_OWNER, absSeller);
absOwns.set(MusicShopOntology.OWNS_ITEM, absCd);
// Let JADE convert from Abstract descriptor to string
getContentManager().fillContent(msg, owns);
send(msg);

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (OntologyException oe) {

oe.printStackTrace();
}
….

It should be noted that
• We use the ontology to get an abstract descriptor of the seller AID. This is explained in 5.3.
• In this case we are using an overloaded version of the fillContent() method that takes an

AbsContentElement (instead of a ContentElement) as parameter.
• In general the developer can work with both user defined java classes and abstract descriptors

depending on the situation. For example java objects can be used normally (as they are more
convenient) and abstract descriptors can be used only when dealing with queries (that can’t be
represented as java objects).

• The Ontology class provides an overloaded version of the add() method that allows adding a
schema to the ontology without specifying any Java class associated to this schema. Clearly if
the user adds a schema using this method he will never be able to work with Java objects when
dealing with content expressions that refer to that schema.

5.3 The conversion pipeline

Even if the user only works with Java objects, JADE uses the abstract descriptor classes when
translating content expressions. More in details when the fillContent()/extractContent()
methods of the ContentManager class are called
• The Codec object (associated to the language indicated in the :language slot of the message

whose content has to be translated) converts a string (or a sequence of byte) into/from an
AbsContentElement.

• The AbsContentElement is validated against its schema.
• The Ontology object (associated to the ontology indicated in the :ontology slot of the

message whose content has to be translated) converts the AbsContentElement into/from a
Java object of a class implementing the ContentElement interface.

Figure 4 graphically represents this conversion pipeline.

Parser

Encoder

Parser

Encoder

Content
Language

Codec
Ontology

String/byte[]
AbsContentElement ContentElement

content of the ACL
Message

Agent internal
representation

ContentManager

Validation

Figure 4The conversion pipeline

The toObject() and fromObject() methods of the Ontology class are used to perform the
translation between abstract descriptors and java objects.

5.4 Content language operators

In general a content language, besides defining a proper syntax for content expressions, defines a
number of operators such as the logical connectors AND and OR. Each operator in a content
language, like elements in an ontology, can be defined by means of a schema that specifies the
structure of all the expressions based on that operator. This schema will be a PredicateSchema, an
AgentActionSchema and so on according to the semantics of the operator. For instance the AND
operator will be defined by a PredicateSchema (since an expression based on the AND operator is
a logical expression that can be true or false) whose type-name is “AND” and that has two slots:
• left whose values must be Predicate objects
• right whose values must be Predicate objects
The operators in a content language therefore form an ontology that can be defined in JADE
exactly as user defined ontologies described in 4.2. This ontology can be accessed through the
getInnerOntology() method of the Codec class. It should be noticed however that:
• Unlike user defined ontologies whose elements are in general domain specific, the ontology of

the operators of a content language in general only includes domain independent element.
• While user defined ontologies only include schemas of predicates, concepts and agent actions,

the ontology of the operators of a content language can also include schemas of other types in
the content reference model. For example the sequence operator of the SL language if defined
by an AggreateSchema.

5.4.1 Using the SL operators

The SL language supports a rich set of useful operators ranging from logical operators (AND, OR,

NOT) to modal operators (B, I, U, PG) and action operators (ACTION, ;, |). As mentioned in 5.4,
these operators are defined by proper schemas. Since there are quite a lot of operators in SL,
however, we decided not to provide a Java class for each of them. In particular only the operators
that are supported by the SL0 language (agent-identifier, set, sequence, action, done,

result, =) have a class associated to them. Their schemas and the related Java classes are defined
directly in the BasicOntology as these operators are necessary to create expressions that are
referenced in the definition of the semantics of ACL.
In order to handle expressions that make use of the other operators it is necessary to use the
abstract descriptors as described in 5.2. All operator names are available as constants defined in the
jade.content.lang.sl.SLVocabulary interface.
As an example let’s go back to the music shop case and let’s assume that the seller agent does not
own “Synchronicity”. In order to inform the buyer agent about that, the seller can use the NOT
operator. The code to do that will look like that highlighted in bold.

….
// Receive the message
MessageTemplate mt = MessageTemplate.and(

MessageTemplate.MatchLanguage(codec.getName()),
MessageTemplate.MatchOntology(ontology.getName()));

ACLMessage msg = blockingReceive(mt);

try {
ContentElement ce = null;
if (msg.getPerformative() == ACLMessage.QUERY_IF) {

// Let JADE convert from String to Java objects
ce = getContentManager().extractContent(msg);
if (ce instanceof Owns) {

Owns owns = (Owns) ce;
Item it = owns.getItem();
if (I don’t own the item it) {

AbsPredicate not = new AbsPredicate(SLVocabulary.NOT);
not.set(SLVocabulary.NOT_WHAT, ontology.fromObject(owns));
ACLMessage reply = msg.createReply();
reply.setPerformative(ACLMessage.INFORM);
getContentManager().fillContent(reply, not);
send(reply);

}
….

}
….

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (OntologyException oe) {

oe.printStackTrace();
}

}

5.5 Creating queries

As already mentioned, working with abstract descriptors is necessary when manipulating queries.
In particular two abstract descriptors classes are used when dealing with queries:
• AbsIRE - an abstract descriptor representing an Identifying Referential Expression (IRE)
• AbsVariable - an abstract descriptor representing a Variable
An IRE always includes a variable and a predicate and therefore the AbsIRE class has proper
methods to access the AbsVariable and the AbsPredicate representing the included variable and
predicate.
In order to exemplify the usage of AbsIRE and AbsVariable to create queries let’s add now to the
ECommerceOntology the predicate Costs that relates an Item with an integer representing the
price of that item. We also assume to have organized things according to the Vocabulary-interface
pattern described in 5.1.1. The definition of this new predicate looks like:
EcommerceVocabulary file

…..
public static final String COSTS = "Costs";
public static final String COSTS_ITEM = "item";
public static final String COSTS_PRICE = "price";
….

ECommerceOntology file
….
// Private constructor
private ECommerceOntology() {

// The e-commerce ontology extends the basic ontology
super(ONTOLOGY_NAME, BasicOntology.getInstance())

try {
add(new ConceptSchema(ITEM), Item.class);
add(new PredicateSchema(OWNS), Owns.class);
add(new PredicateSchema(COSTS), Costs.class);
add(new AgentActionSchema(SELL), Sell.class);
……
// Structure of the schema for the Costs predicate
PredicateSchema ps = (PredicateSchema) getSchema(COSTS);
ps.add(COSTS_ITEM, (ConceptSchema) getSchema(ITEM));
ps.add(COSTS_PRICE, (PrimitiveSchema) getSchema(BasicOntology.INTEGER));
……

Then we modify the Buyer agent so that it asks the Seller agent for the price of the CD he is
interested in before trying to buy it. The code to create the query will look like:

// Prepare the Query-REF message
ACLMessage msg = new ACLMessage(ACLMessage.QUERY_REF);
msg.addReceiver(sellerAID) // sellerAID is the AID of the Seller agent
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName());

// Prepare the content.
try {

AbsConcept absCd = ontology.fromObject(cd);
AbsVariable x = new AbsVariable(“x”, BasicOntology.INTEGER);

AbsPredicate absCosts = new AbsPredicate(MusicShopOntology.COSTS);

absCosts.set(MusicShopOntology.COSTS_ITEM, absCd);
absCosts.set(MusicShopOntology.COSTS_PRICE, x);

AbsIRE absIota = new AbsIRE(SLVocabulary.IOTA);
absIota.setVariable(x);
absIota.setProposition(absCosts);

// Let JADE convert from Abstract descriptor to string
getContentManager().fillContent(msg, absIota);
send(msg);

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (OntologyException oe) {

oe.printStackTrace();
}
….
With reference to the above code it should be noticed that
cd is the CD object we used in 4.6 to ask the Seller agent if he owns “Synchronicity”. Instead of
creating an empty AbsConcept and filling its slots from scratch (as shown in 5.2) we use the
ontology to translate from Java object to abstract descriptor by means of the fromObject()
method.
Each variable has a name (“x” in this case) and a type indicated as a String; in this case the type
is BasicOntology.INTEGER as the variable is used to replace the price (an integer value) of
“Synchronicity”.
Thanks to the Vocabulary-interface pattern we don’t care that the costs predicate is defined in the
ECommerceOntology, but we just deal with the MusicShopOntology.
The “iota” operator (indicated by the SLVocabulary.IOTA constant) is an operator of the SL
language that allows creating IREs indicating “the unique X such that a given predicate
(containing the variable X) is true”.

5.6 Adding semantic constraints: Facets

The content languages and ontologies support included in the jade.content package gives the
user the possibility of setting additional constraints (called facets) to the predicates, agent actions
and concepts he defines in an ontology. As an example we would like to check that the price of
an Item is always a positive integer and we don’t want to explicitly perform this check each time
we deal with the Costs predicate. In order to delegate this check to JADE it is sufficient to add to
the price slot of the schema of the Costs predicate a facet that checks that the value of this slot is
greater than 0. This facet will be forced each time a content expression including the Costs
predicate is translated by the ContentManager. From the implementation point of view a facet is
an instance of a class implementing the Facet interface included in the jade.content.schema
package.
The code to add this facet in the ECommerceOntology is

……
// Structure of the schema for the Costs predicate
PredicateSchema ps = (PredicateSchema) getSchema(COSTS);
ps.add(COSTS_ITEM, (ConceptSchema) getSchema(ITEM));
ps.add(COSTS_PRICE, (PrimitiveSchema) getSchema(BasicOntology.INTEGER));
ps.addFacet(COSTS_PRICE, new PositiveIntegerFacet());

……

Where the PositiveIntegerFacet class can be defined as

public class PositiveIntegerFacet implements Facet {

void validate(AbsObject abs, Ontology onto) throws OntologyException {
try {

AbsPrimitive p = (AbsPrimitive) abs;
if (p.getInteger() <= 0) {

throws new OntologyException(“Integer value <= 0”);
}

}
catch (Exception e) {

throws new OntologyException(“Not an Integer value”, e);
}

}
}

5.7 Disabling semantic checks to improve performances

As described in 5.3, when translating a content expression form a string/byte sequence
representation to a Java object representation (and vice-versa), JADE validates the content
expression against its schema. If this validation succeeds the content is semantically correct with
respect to the ontology it refers to and the agent does not need to perform any explicit check. It’s
clear however that the validation process takes its time. In order to speed up the performances the
user can disable the validation process by means of the setValidationMode() of the
ContentManager class.
This can be a useful trick when developing “closed” applications (i.e. applications where all agents
are JADE agents and all of them use the JADE content languages and ontologies support). Unless
there are design/implementation bugs in facts, in these cases content expressions exchanged in
agent communication are likely consistent. On the other hand it is strongly suggested to keep the
validation process enabled when dealing with “open” applications in which different agents can
have completely different ways of internally representing content expressions.

5.8 User-defined content languages

As mentioned in 4.4, the jade.content package directly includes codecs for two content
languages (the SL language and the LEAP language) both supporting the content reference model
described in 3. In the great majority of the cases a developer can just adopt one of these two
content languages and use the related codec without any additional effort. There are cases however
in which the user is forced to create agents “speaking” a different content language and therefore
he has to develop an ad-hoc codec for that language.
From the implementation point of view a content language codec in JADE is an instance of a class
extending the jade.content.lang.Codec abstract class and, in particular, implementing the two
methods decode() and encode() to respectively
• parse the content in an ACL message and convert it into an AbsContentElement object.
• encode the content from an AbsContentElement object into the content language syntax and

encoding.
More in details, as a content expression inside an ACLMessage can be represented as a String or
as a sequence of byte (i.e. as a byte[]), the Codec class is further specialized into StringCodec
and ByteArrayCodec. These two classes differ in the signatures of the abstract methods decode()

and encode(): In the former they translate a String into/from an AbsContentElement, while in
the latter they translate a byte[] into/from an AbsContentElement.
As an example the SLCodec (included in the jade.content.lang.sl package) extends
StringCodec, while the LEAPCodec (included in the jade.content.lang.leap package) extends
ByteArrayCodec.

5.9 Introspectors

In order to decouple the definition of an ontology (i.e. the definitions of the schemas in the
ontology) form the implementation of the classes representing the predicates, agent actions and
concepts included in the ontology, the Ontology class does not deal directly with the translation
from abstract descriptors to java objects. On the other hand it delegates that task to an internal
object that implements the Introspector interface included in the jade.content.onto package.
The Introspector interface includes three methods:
externalize() to translate a Java object into an abstract descriptor
internalize() to translate an abstract descriptor into a Java object
checkClass() to check that a Java class associated to a schema has a structure (i.e. accessor
methods) consistent with that schema and therefore that successive calls to the externalize()
and internalize() methods will succeed.
When defining an ontology it is possible to specify the Introspector object that the ontology will
use by passing it as a parameter in the constructor of the ontology. The jade.content package
comes with a default Introspector (called ReflectiveIntrospector as it uses Java Reflection
to perform the translations) that is used unless the user explicitly specify a different one and that
requires the ontological Java classes to have the structure described in 4.3. By using a different
Introspector it is therefore possible to use Java classes that does not meet the structure described
in 4.3 to represent the predicates, agent actions and concepts included in an ontology.

6 USING PROTÉGÉ TO CREATE JADE ONTOLOGIES

Especially when dealing with large ontologies, developing the ontology definition class (i.e. the
schemas) and the Java classes representing the predicates, agent actions and concepts included in
the ontology “by hand” as described in 4.2 and 4.3 can be really time consuming. Thanks to a
proper plug-in (called beangenerator) implemented by C.J. van Aart from Department of Social
Science Informatics (SWI) University of Amsterdam, it is possible to define the ontology using
Protégé and then let the beangenerator automatically create the ontology definition class and the
predicates, agent actions and concepts classes.
This process is very convenient as it allows working with an ad-hoc graphical tool (as Protégé is)
instead of writing Java code in the ontology definition process.
The beangenerator can be freely downloaded from
http://www.swi.psy.uva.nl/usr/aart/beangenerator together with detailed instructions about how to
plug it into Protégé and how to use it to convert a Protégé ontology into a JADE ontology.

7 MIGRATING FROM THE OLD SUPPORT TO THE NEW ONE

This section briefly describes how to modify code already written for the “old” support for content
languages and ontologies provided by JADE so that it can be used with the new one.
There are four differences that must be considered.

http://www.swi.psy.uva.nl/usr/aart/
http://www.swi.psy.uva.nl/
http://www.swi.psy.uva.nl/
http://www.uva.nl/
http://protege.stanford.edu/index.shtml
http://www.swi.psy.uva.nl/usr/aart/beangenerator

1) The format of the ontology definition class is different. This is certainly the main effort that is
required in this process as it basically requires re-writing the ontology definition class from scratch
as described in 4.2. It should be noticed however that this modification is completely self-
contained i.e. it does not require any modification to the application code that uses the ontology.

2) The structure of the Java classes representing the predicates, agent actions and concepts
included in the ontology are different. In the old support in facts, given a slot named nnn of type T
with cardinality > 1 the associated Java class should have two accessor methods with the signature
public void addNnn(T t);
public Iterator getAllNnn();

On the other hand in the new support the two accessor methods should be
public void setNnn(List l);
public List getNnn();

In order not to force the user to change all these accessor methods (note that this modification
would also require changing the application code that uses the ontology) a proper Introspector
(see 5.9 for details) is provided that allows using classes with the “old” structure within the “new”
support. This Introspector is called BCReflectiveIntrospector (Backward-Compatible
Reflective Introspector) and is included in the jade.content.onto package.
At the end of the day the user only need to specify that the ontology must use a
BCReflectiveIntrospector instead of the default ReflectiveIntrospector.

3) All Java classes representing predicates, agent actions and concepts in the ontology must be
modified to implement Predicate, AgentAction and Concept respectively.

4) When registering the Codec and the Ontology and when filling/extracting ACLMessages
content the methods of the ContentManager must be used instead of the respective methods of
the Agent class.

