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Abstract

The use of agents and multiagent systems is widespread in computer
science nowadays. Thus the need for methods to specify agents in a clear
and simple manner arises.

In this paper we propose an approach to specifying agents with the
help of UML statecharts. Agents are specified on different levels of ab-
straction. In addition a method for specifying multiagent plans with ex-
plicit cooperation is shown.

As an example domain we chose robotic soccer, which lays the basis
of the annual RoboCup competitions. Robotic soccer is an ideal testbed
for research in the fields of robotics and multiagent systems. In the
RoboCup Simulation League the research focus is laid on agents and
multiagent systems, and we will demonstrate our approach by using ex-
amples from this domain.

Keywords: Multiagent Systems, Unified Modeling Language (UML),
Specification, RoboCup, Robotic Soccer

1 Introduction

The use of agent technologies and multiagent systems has gained entrance
into almost all branches of computer science. With the propagation of this
technology the need for standards and design techniques has arisen.

∗This research is supported by the grant Fu 263/8-1 from the German research foundation
DFG.
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In order to gain wide acceptance an agent specification and design proce-
dure must fulfill several constraints. It has to be as precise as possible to avoid
ambiguities in the design of an agent. Nevertheless, the formalism has to be
easy to understand and use. In addition to that it would be desirable, if the
application of formal methods is supported by the specification mechanism.
This calls for a formal semantics of the specification formalism.

In this paper we present an approach to agent design that is based on
UML statecharts [8]. With this approach it is possible to specify not only
behaviors for single agents on different levels of abstraction, but multiagent
plans as well.

The use of UML statecharts for this purpose meets the requirements
stated above. Statecharts are a means for describing the behavior of a sys-
tem in response to external events. Their graphical notation is intuitive and
easy to understand. In addition to that the use of UML as a specification and
modeling language is already widely accepted. Although the specification of
UML statecharts [8] does not provide a formal semantics, work on this has al-
ready been done, mostly with the aim of verifying properties of UML models,
e.g. in [4, 12].

Last but not least, the transformation of the agent specification into run-
ning code is very straightforward. As the limited space in this paper does
not allow for a discussion of implementation issues, the interested reader is
referred to [5].

The choice of soccer as an example domain comes quite naturally. As
soccer is a team sport, it provides a test bed for multiagent systems. The high
dynamics of the game make fast reasoning and quick reactions necessary.
The RoboCup initiative, finally, provides a simulation environment and the
annual benchmarks at the RoboCup competitions.

1.1 Overview of the Paper

The paper is organized as follows. Section 2 provides a short introduction
to the RoboCup initiative. The Simulation League, which we chose as exam-
ple domain, is presented and the simulator used in this league – the soccer
server – is described in more detail to show the environment the agents act
in (Section 2.1).

In Section 3 we shortly summarize the UML statechart formalism with
the focus laid on those parts of the formalism that will be employed for the
specification of agents.

Section 4 introduces our approach to agent specification with UML. The
specification is described on different levels of abstraction. Special attention
is laid on the specification of multiagent plans (Section 4.3).

Section 5 finally concludes the paper with some experimental results
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(Section 5.1), an overview over related work (Section 5.2) and some final re-
marks (Section 5.3).

2 RoboCup

RoboCup is an ongoing initiative to bring together researchers from the fields
of artificial intelligence, robotics and multiagent systems. The domain that
was chosen as a testbed and for motivation is soccer. In several leagues real
and simulated robots play each other at annual competitions. In addition to
the competitions RoboCup includes demonstrations, technical sessions and
teaching.

2.1 Simulation League

In the RoboCup Simulation League the research focus is laid on topics re-
lated to agents and multiagent systems. Two teams – each consisting of 11
autonomous agents – connect to a simulator, the so called soccer server[7],
which simulates a soccer match.

The soccer server uses a discrete time model. Every 100 ms time is ad-
vanced by one simulation step (or simstep for short). In each step the client
can execute actions by sending the corresponding commands to the server.
There are two classes of commands. The major commands are used to ac-
celerate, turn or move the client and to kick the ball. Only one of those com-
mands may be sent in each cycle. In addition there are several minor com-
mands, which are, for example, responsible for controlling the vision sensors
or communication. Several minor commands may be sent to the server in
one simulation step.

Simulated sensor data is sent to a client at intervals that depend on the
current settings of the sensors (view range, quality). So sensing and acting is
asynchronous in this setting. Communication between agents is only possi-
ble via the soccer server. An agent may send a message up to a fixed length to
the server, which is broadcast to all agents within a certain distance. Thus the
available communication channels are insecure and suffer from a low band-
width.

The discrete time model and the fact that commands are executed by the
soccer server at the end of a simulation step suggest the execution cycle that
is shown in Figure 1 for an agent control program.

At the beginning of a simulation step the agent updates its world model,
either by integrating new sensor information into its current belief of the
world, or by estimating the effects of its last action if no new sensor data is
available. Based on the updated world model the agent then selects a major
action to execute and perhaps one or more of the minor actions. At the end
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Update
Worldmodel

begin
simulation step

end
simulation step

Execute
Action

Select 
Action

Figure 1: Execution cycle of the agent control program.

of the cycle the selected actions are sent to the soccer server for execution.
In the next simstep the whole execution cycle of the agent control program
starts anew. In Figure 1 this cycle is shown. The dashed boxes indicate the be-
ginning and end of a simulation cycle and are not a part of the agent control
program itself.

3 UML Statecharts

The behavior of a system—like a program, or an agent— can be described as
a sequence of states the system is in. Depending on external events the sys-
tem changes from one state to another. Such a change may be accompanied
by the execution of an action.

In the Unified Modeling Language (UML) [8] state machines are used to
model behavioral aspects of systems. State machines are normally described
in a graphical notation like state transition diagrams or, as is the case with
UML, statecharts.

Statecharts are an extension of classical state transition diagrams (STD’s).
Statecharts, like STD’s, are basically directed graphs, where different kinds
of nodes represent states and pseudostates and edges stand for transitions.
Labels on the edges describe properties of the transitions. In contrast to clas-
sical STD’s statecharts possess depth, i.e. states in a statechart can contain
other states or even whole state machines. So a statechart is a hierarchical
STD.

In the following we will briefly summarize those parts of the UML state-
chart formalism that are employed for the design of agents.
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States and Transitions

In UML a state is considered a period in the life of a system/agent during
which a certain condition holds or an activity is performed. An agent may for
example remain in a state while it waits for some external event to occur. In
a statechart a state is represented as a box with rounded corners.

The state a system is in can be changed in reaction to external events.
Such a change of state is called a transition. A transition string is used to
specify the behavior of a transition. A transition string is a tuple T = (e, c, a) ∈
(E × C × A), where E is the set of (external) events, C is the set of boolean
expressions over a domain and A is the set of possible actions that can be
taken. A transition then can be defined as a tuple t = (s1, T , s2), where s1, s2

denote arbitrary states and T is a transition string of the form (e, c, a). The
(informal) semantics of t is “if the system is in state s1 and event e occurs and
the condition c holds, then the system executes action a and changes to state
s2”. In a statechart diagram a transition is shown as a directed edge from s1 to
s2, which is labeled with T in the form e[c]/a.

21s s22

s11 s12

composite state

e[todo]

e2[c]/a

e[ok]

Figure 2: A statechart.

More about States

In the UML statechart formalism different types of states exist. As a statechart
is hierarchical in nature, the UML distinguishes between three major classes
of states two of which are shown in Figure 2.

Simple states are atomic in the sense that they do not possess any internal
structure. Nevertheless it is possible to assign some kind of behavior to a
simple state by defining internal transitions.

Composite states are states that can be further decomposed. They con-
tain internal submachines which describe the activity associated with the
composite state.
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21s s22

s11 s12

concurrent state

e1[c]/a1

e2

e3/a2

Figure 3: A concurrent state with two regions.

Concurrent states are special types of composite states. A concurrent
state contains two or more composite substates, which are called regions. If
an agent is in a concurrent state, it is in all regions simultaneously. Thus con-
current states are used to model concurrent activities in a system or an agent.
An example is shown in Figure 3.

Apart from those states a variety of other types of states for different pur-
poses exist, although many of them are just syntactic sugar which help to
keep statecharts readable.

Synchronization

Sometimes it is necessary to synchronize the concurrent activities in a state-
chart. In a typical producer-consumer scenario, for example, goods are pro-
duced by an agent and consumed by another. But the latter can only con-
sume something that has been produced beforehand, so the need for syn-
chronization is obvious in this scenario. The statechart in Figure 4 shows a
scenario in which parts of type B are produced by one agent and used by
another agent to assemble components ABC.

The synchronization in the concurrent state is handled by a synch state,
which is shown as a circle residing on the dashed line separating different
regions. The transition leaving a synch state may only be enabled if the tran-
sition entering the synch state has fired at least once. A synch state is labeled
either by a positive integer giving an upper bound of the number of times the
incoming and outgoing transitions have fired or with an asterisk, if there is
no such upper bound. In our example the upper bound is 6, so only six parts
of type B may be produced, before one has to be consumed.

Pseudostates may be seen as transient simple states, i.e. a system cannot
remain in a pseudostate – it is left without delay. In other respects a pseu-
dostate behaves just like a simple state.
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include
part B

include
part C

assemble
part A

produce
part B

6

produce−consume

produce B

consume B

Figure 4: A producer-consumer scenario modeled by a statechart.

History States

One special type of pseudostate is the history state, which is drawn as a circle
labeled with “H*”. With the help of such a state a composite state can be
made to remember its last active substate.

The purpose of a history state is to model some kind of subroutine calls or
interrupt. If a statechart, that has previously been interrupted by a transition
from its enclosing composite state, is re-entered through a history state, not
its initial state becomes active but the state that has been active just before
the statechart has been left the last time. In the context of agent design this
corresponds nicely to the continuation of a previously interrupted behavior
by the agent.

Last but not least, a statechart may contain two special (pseudo-)states,
namely an initial and a final state. The initial state points to a designated
start state of a state machine. Any state machine is entered at its initial state
unless it is entered by a transition explicitly leading to another state of the
machine. When a composite state is entered, the initial states of all directly
contained state machines are entered, as well. The final state of a state ma-
chine is entered, if the activity modeled by this machine is finished. In this
case as special event, a so called completion event.

4 Designing Agents with UML

The behaviors of an agent can be seen as a sequence of states the agent is
in. Each state may correspond to an activity the agent executes or indicate
that the agent is idly waiting for something to happen in its environment.
Furthermore the behaviors of an agent can be specified on different levels of
abstraction. This makes it possible, for example, to design an agent in a top-
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down manner by first specifying its tasks and behaviors on a very abstract
level and then refining the abstract behaviors more and more.

One important feature of multiagent systems is the (explicit) cooperation
of several agents to achieve a common goal or solve a problem. The agents
play different roles in a shared (or multiagent) plan, i.e. they execute behav-
iors that solve parts of the problem or support other agents. Thus a role in a
multiagent plan can once again be modeled as a sequence of states an agent
passes through, partially in response to (external) events.

But there is an important difference between the design of a behavior of
a single agent and the role of an agent in a multiagent plan. When different
agents work together to achieve a goal, their behaviors are not completely
independent of each other, although most of the time they can be executed
concurrently. But at several points of the multiagent plan synchronization
of the individual behaviors of the agents is necessary, because sometimes
agents have to work together on a subtask, or one agent has to wait for an-
other agent to finish a subtask.

We propose a layered approach to designing agents for the RoboCup Sim-
ulation League. For the specification and implementation of an agent three
levels are distinguished, each of which is more global than the layer below.

• On the highest level – the mode level – global patterns of behavior are
specified. They can be thought of as the most abstract desires an agent
has, e.g. attacking or handling standard situations like corner kicks.
These abstract desires correspond to different states an agent can be
in. We will refer to them as modes.

• For each mode an agent has a repertoire of skeleton plans that it can
use as long as it does not change its mode. The specification of these
plans or scripts and their assignment to the global states constitute the
second level of the agent design. On this level explicit specification of
cooperation and multi agent behaviors can be realized.

• On the third and lowest level of the hierarchy the simple and complex
actions the agents can execute are described. These actions, the skills
of an agent, are used in the scripts.

So each level expands a higher level. The result of the design process is a
layered specification of an agent. This is shown by Figure 5.

Throughout the rest of the section we will describe, how UML statecharts
are employed in the specification of agents with the above approach. Sec-
tion 4.1 explains the high level specification of an agent, while the subse-
quent sections deal with the design of single agent behaviors (Section 4.2)
and multiagent plans (Section 4.3). The skill level will only be addressed very
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mode 
level

script
level

skill
level

script11
script1n script21 script2k

mode2mode1

skills skills skills skills

Figure 5: Layered Architecture of an Agent.

briefly in Section 4.4, because this level does not raise any additional inter-
esting topics in the design of an agent. The last part of this section deals with
some additional uses of UML statecharts for agent specification (Section 4.5).

4.1 Mode Level

In robotic soccer an agent frequently switches its behaviors on a very abstract
level. For example, an agent may either be defending or attacking, depending
on which team is controlling the ball. All changes of such global behaviors
happen in response to one or more external events. If a state is associated
with each of the agents and the events and conditions that lead to a change
from one state to another are determined, the agent can already be modeled
by a statechart, called modechart on this very abstract level.

Consider a very simple soccer playing agent with only three such behav-
iors. Whenever the agent’s team controls the ball or is assigned a free kick,
kick in, etc. the agent is attacking. If the opponent team gains control of the
ball, the agent switches to a defensive behavior.

Before each half of the game, as well as after a goal, there is a period in
which the teams line up, usually by positioning the players at their initial po-
sitions. This is a recurring situation with a fixed activity which can be mod-
eled by a mode, too.

Figure 6 shows the resulting modechart. As the soccer teams line up on
the field before the game is started, the setup state was chosen as the initial
state. When the game is over, the agent enters its final state and ceases its
activities.
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attack defend

setup

team got ball

team lost ball

line upline up

game over game over

kick off

simple player

Figure 6: Modechart for a simple player.

4.2 Script Level

Up to now only very abstract desires of an agent have been specified with the
help of modecharts. But nothing has been said about how to achieve those
abstract desires.

Each agent is equipped with a repertoire of scripts, which are short local
skeleton plans for handling particular situations. In each mode an agent can
access a subset of all scripts, depending on the situations that can arise in
the particular mode. If the agent is in the defend mode, it makes no sense for
him to try a script that calls for ball possession, as the agent enters the defend
mode only if the other team controls the ball. If no script is applicable, the
agent has to fall back to a (possibly purely reactive) default behavior.

One of the main problems of a past approach [13] to specifying such
scripts lay in the rigidity of the plans. Once a script was selected for execu-
tion, it was hard to interrupt or abort it. UML statecharts, however, are very
well suited for this kind of specifications.

For an agent, the execution of a script means executing a sequence of ac-
tivities, some of which depend on the outcome of previous activities. As they
can be associated with simple states in UML statecharts, the whole script can
easily be represented by a composite state, more precisely by the statechart
included in the composite state. Such a script state is entered at a designated
state representing the beginning of the activity and can be left at a variety
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of points according to the outcome of the script. Interruption of a script in
response to changes in the world can easily be modeled by transitions origi-
nating from the edge of the composite state.

Consider the example of a passing script shown in Figure 7. The agent se-
lects a teammate to kick the ball to, gets the coordinates to the teammate and
finally kicks the ball to those coordinates. If the agent cannot find a teammate
to pass to or loses the ball, the script is aborted.

The agent can lose the ball during either activity modeled by a substate,
so the transition handling this event originates from the state representing
the whole script. But only the choose partner activity may fail because the
agent cannot find a partner, so the corresponding transition starts from the
substate modeling this activity.

/(x,y) := pos(P)

partner P
choose kick to (x,y)

lost ball
no partner

pass ball

Figure 7: A script for passing.

4.3 Multiagent Plans

Up to now we have shown how to model scripts or behaviors of a single agent
with the help of UML statecharts. But what about multiagent plans? As we
stated above, in a multiagent plan or script several agents act simultaneously
in order to achieve a common goal. At certain points their activities have
to be synchronized. Those two additional requirements – concurrency and
synchronization – can easily be modeled with the help of concurrent states. A
multiagent script is specified as a concurrent state with a region for each role
(or class of roles) that has to be played by an agent. If the activities carried out
by different agents have to be synchronized, this is modeled with the help of
a synch state.

An example may help to clarify this. Consider the situation in Figure 8,
where an agent A controlling the ball wants to get past an opponent O by
playing a double pass. The agent passes the ball to a teammate B and runs
past the opponent. The teammate B dribbles a little with the ball and passes
it back to A as soon as possible.

To handle this situation the agents can be equipped with a multiagent
script with two roles that correspond to the behaviors of the agents A and
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run

kick

B

A

O

Figure 8: Double passing scenario.

B. The concurrent state modeling this script is shown by Figure 9. The
simple states in the script correspond to the activities of the agents, which
were printed in italics in our description above. Synchronization is neces-
sary twice in this script, namely for passing the ball. As an object (the ball)
is passed between the agents and both agents can only continue their role
at the respective positions if they are in possession of the ball, the need for
synchronization is evident.

Finally, a timeout for the execution is modeled by the transition labeled
after(15), which means that the execution of the script is terminated after
15 simulation steps. In this case the script has failed. More transitions for
modeling interruptions of the double pass, e.g. by loss of the ball, can easily
be added to the edge of the double passing state.

So far we have modeled the script as a whole. But some aspects have still
been omitted. First of all, we only specified where synchronization has to
take place, but we did not clarify how the activities are synchronized. As
the different roles are played by different agents and their internal states are
usually not known to teammates, means have to be provided that enable an
agent to determine whether its partner has already reached a synchroniza-
tion point or not.

In addition to that, an agent can only play one of the roles in a script at
a time. Therefore the specification that the agent control program will be
based on should model not only the script on the whole, but also the individ-
ual roles.

So we add a second step to the specification of a multiagent script, in
which the behaviors corresponding to each role are derived from the script
state to yield an agent state. This is done basically by “cutting along the
dashed lines”. As each role in the script is modeled by a region in the con-
current state, it is easy to see, that the specification of an agent’s behavior
must be based upon the corresponding region. This process is quite straight-
forward, since most of the time the agents’ behaviors are quite independent
of each other.

The only spots that require special attention are the synch states. As we
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pass ready

run dribble

*

ready pass

*

after(15)

double passing

passed
opponent

partner
passed
opponent

Figure 9: A multiagent script for double passing.

said before, a synch state only models the need for synchronization but says
nothing about how this synchronization is realized. Unfortunately there is no
unique way of handling synchronization in the derivation of an agent state,
so the designer has to decide this issue as the case arises. The required syn-
chronization may, for example, be indicated by the change of a guard condi-
tion or the occurrence of an event. It may, however, be necessary for one of
the agents to explicitly generate an event, for example by communicating its
internal state.

Transitions modeling interruptions or errors are just taken from the script
state. If such a transition starts on the edge of the composite state, it has to
be copied to the edges of all agent states representing a role in the script.
Finally, some events and guards have to be chosen, which enable the agent
to notice that a situation has arisen in which the execution of a certain script
is appropriate, and to determine its role in the script.

Let us now continue our example from above. The double passing script
consists of two roles, so two agent states have to be generated, which are
shown in Figure 10. In this example synchronization is needed, because the
ball has to be transported (kicked) from one player to another. The recipient
can only continue the execution of its behavior when it controls the ball, i.e.
the ball can be kicked by the agent.

As this is an observable event and does not involve the knowledge of
internal states of the teammate, synchronization can easily be handled by
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putting a guard on the respective transition edges, which prevents the tran-
sition from firing unless the ball has become kickable for the recipient of the
pass. Last but not least, the transition modeling the timeout of the script has
been copied to the edges of both agent states, indicating that both agents ter-
minate the double pass after 15 cycles as a failure. The determination of the
roles the agents play in the script is handled by the possession of the ball.

ready

dribble

pass

passed opponent
partner

ball
kickable

pass

run

ready

passed
opponent

ball
kickable

double pass − role 1 double pass − role 2

after(15) after(15)

Figure 10: The derived agent states for double passing.

4.4 Skill Level

As we said before, the soccer server provides two different kinds of actions,
namely major and minor actions. These actions are used by the agent to
interact with its environment. In each simulation cycle at most one of the
major actions (dash, turn, kick, catch and move) can be executed. In addition
a number of minor actions can be sent to the soccer server in the same step.
The latter include e.g. turn neck, say and change view.

With the use of the server commands alone, the ability of an agent to in-
teract with its environment is very limited. Therefore there are procedures
or functions that provide more sophisticated abilities for an agent at the bot-
tom level of almost all RoboCup teams. Those abilities, which sometimes
rely heavily on a precise knowledge of the way the world is modeled by the
soccer server, are called skills. Their quality is very important for the success
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of a team. Normally skills cannot be transferred from players of one team to
members of another, because the skills of an agent are usually very closely
entwined with its world model.

Let us clarify this with the help of an example. In real soccer a player is
said to be dribbling if he runs and takes the ball with him with a series of
controlled kicks.

In the RoboCup scenario dribbling is modeled as a sequence of kicks and
dashes as well. The dribbling skill of an agent is responsible for generating
the sequence of dash, turn and kick commands needed to keep the ball un-
der control while running to a particular position. Figure 11 shows a state-
chart describing a simplified dribbling skill. The transition labeled “lost ball”
leads to an error handling routine.

dashkick

way(X,Y)
calculate

[else]
[ball kickable]

still going

when(at(X,Y))

dribble to (X,Y)

lost ball

Figure 11: Simple dribbling skill.

But from the viewpoint of agent modeling the skill level adds nothing new,
as the techniques used for modeling skills are pretty much the same as for
modeling single agent behaviors.

Like scripts, skills are modeled as sequences of states, that usually corre-
spond to (sub-)activities executed by the agent. If an activity is finished or
as a response to an external event, the agent may change its state or leave
the statechart corresponding to the whole activity. There are, however, no
analogues to multiagent scripts, as skills are abilities of one agent only.
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4.5 Additional Uses of Statecharts

In this section we show two more uses for UML statecharts in an agent spec-
ification.

Some events in the world have such a high priority, that the agent has to
react to the occurrence of such an event immediately, regardless of what it is
currently doing. In the soccer domain such events could for example occur,
if the agent does not know its position on the field or loses track of the ball.
Both events are so important, that the agent has to react by interrupting its
current behavior to localize itself or search for the ball. After this has been
done, the interrupted behavior may be continued if it is still appropriate.

In UML such a scenario is modeled with the help of a history state. The
statechart modeling the primary behavior of an agent, i.e. the modes and
scripts, is left in response to a high priority event. The (composite) state cor-
responding the activity triggered by the event is entered. When it is com-
pleted, the primary statechart is re-entered via a history state, so the inter-
rupted behavior is automatically resumed.

Sometimes an agent has to perform a simple recurring or continuous task
in parallel to its main activities. Those activities are independent from the
main processes modeled by the modechart, yet they are executed in parallel.
Therefore it is appropriate to model such additional concurrent activities in
a concurrent state in the agent specification. Such a state contains several
regions. One of them contains the modechart describing the agent’s main
activities. The other model subordinate, yet concurrent tasks of the agent.

In the RoboCup scenario such a subordinate activity could be the an-
nouncement of the agent’s world model. Every agent announces a part of
its world model at certain intervals in order to enhance its teammates’ belief
about the world. By this a primitive form of sensor fusion is established.

Figure 12 gives a schematic presentation of the specification of an agent
with UML statecharts. The primary behavior of the agent is specified in the
region called mode chart. Additional behaviors may be specified in the re-
gions that are combined in the regions entitled concurrent activities. Inter-
ruptions are modeled with the help of a history state.

5 Conclusion

This section closes the paper with some concluding remarks. We will give
some experimental results and present an overview of related work. Finally a
summary and outlook are presented.
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H*

concurrent activities

agent

mode chart

high priority event e
react

to
event e

Figure 12: Schematic specification of an agent.

5.1 Experimental Results

We implemented two different teams for the RoboCup simulation league
with this approach. The implementation of the UTOPiA team [5] strictly fol-
lowed the specification of modes and scripts with UML statecharts. The ac-
tual implementation was done in SWI Prolog [14] together with the RoboLog
API [10].

The RoboLog Koblenz 2001 team [6], which participated in the RoboCup
2001 World Cup in Seattle, is based upon the UTOPiA team, but a state ma-
chine has explicitly been built into the team, so that no transformations from
the specification to the implementation of the scripts are necessary.

Both teams proved to be competitive to teams that finished in the upper
third in the RoboCup world championships 2000 and 2001.

5.2 Related Work

Designing Multiagent Systems with UML

Bergenti and Poggi [3]state that agent oriented software engineering adds an-
other level of abstraction to the process of modeling a software system. This
level, the agent level, treats agents as atomic units and models multiagent
systems as interactions between agents. They present four agent oriented
diagrams that are used to describe various aspects of a multiagent system
on the agent level. All diagrams use standard UML notation. Ontology dia-
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grams are special forms of class diagrams that represent classes of entities in
an ontology and the relations among them, as well as support the inter-agent
communication. Architecture diagrams employ class diagrams to model het-
erogeneous multiagent systems in terms of different agent classes and the re-
lations among them. UML’s Deployment diagrams can be employed to model
the instantiation of a class of multiagent systems specified by an architecture
diagram. Protocol diagrams – based on collaboration diagrams – and role di-
agrams – special classes – are closely connected. Protocol diagrams are used
to model the permitted interactions between agents. A role diagram models
the different roles that can be played by agents in such an interaction.

With this approach only aspects of the interactions among agents can be
modeled. The agents themselves are treated as atomic entities. In contrast to
this, our approach allows for the modeling of interactions between agents as
well as describing the behavior of a single agent, i.e. the internals of an agent.
In addition to that only one formalism is used for both tasks.

Agent UML (AUML)

In [11] a number of extensions to UML for modeling multiagent systems or
interactions between agents are proposed under the name of AUML (Agent
UML). A layered approach to specifying interaction protocols for agents is
presented. On each of the three levels UML or an extension thereof can be
employed.

At the top level a pattern for an agent interaction protocol is specified as a
whole with sequence diagrams. For a particular situation such a pattern can
then be instantiated with the concrete agents that participate and the roles
they play. The second level models the interactions among agents in greater
detail. To this end a variety of UML diagrams can be employed. Still mainly
(extended) sequence diagrams – or collaboration diagram for readability – are
used to describe the agent interaction protocol in more detail. Activity dia-
grams and statecharts are also used on this level to emphasize certain aspects
of the specification. On the third and lowest level intra-agent processes im-
plementing an interaction protocol are specified with extensions of activity
diagrams and statecharts. Further extensions to UML, e.g. the inclusion of
role markers, are meant to improve the readability the diagrams that model
interactions between several agents.

[2] continues this approach with the introduction of protocol diagrams
into AUML, which extend the semantics of agent messages and improve
inter-agent protocols.

In contrast to the proposed Agent UML, our approach needs only one for-
malism to describe both the inter-agent and intra-agent behaviors in a mul-
tiagent system. In addition no extensions to the existing formalisms of UML
have to be made.
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UML and Utility Functions

In [9] the approach presented in this work is combined with the use of utility
functions. The usual transition triggers, i.e. events and guards, are replaced
with preference functions which return the preference of the agent for exe-
cuting an action given its current belief and the expected utility of the action.
By this a more flexible decision procedure should be realized.

5.3 Summary and Outlook

In this paper we presented an approach to the specification of agents and
multiagent systems with the help of UML statecharts. With this approach it
is possible to specify both intra- and inter-agent aspects with just one for-
malism. The publicity of UML in software engineering helps in understand-
ing such a specification and supports the acceptance of the approach. We
have demonstrated the feasibility of the procedure with examples from the
domain of robotic soccer and added some experimental results.

Future work includes investigating if the presented methods can be ap-
plied to other applications as well. First steps in this direction have already
been taken [1].

In addition to that the design process has to be put on a rigidly formal ba-
sis. This will enable us to apply formal methods to the agent design. Reason-
ing about interesting properties of the specification and verification thereof
will be possible.
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