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Abstract. Object recognition and localization methods in RoboCup work

on color segmented camera images. Unfortunately, color labeling can be

applied to object recognition tasks only in very restricted environments,

where di�erent kinds of objects have di�erent colors. To overcome these

limitations we propose an algorithm named the Contracting Curve Den-

sity (CCD) algorithm for �tting parametric curves to image data. The

method neither assumes object speci�c color distributions, nor speci�c

edge pro�les, nor does it need threshold parameters. Hence, no training

phase is needed. In order to separate adjacent regions we use local crite-

ria which are based on local image statistics. We apply the method to the

problem of localizing the ball and show that the CCD algorithm reliably

localizes the ball even in the presence of heavily changing illumination,

strong clutter, specularity, partial occlusion, and texture.

1 Introduction

Currently in all three real robot soccer leagues (small-size, middle-size, and Sony
four-legged league) the task of visual perception is considerably simpli�ed by two
restrictions: 1.) all objects on the pitch have a distinct color, 2.) the illumination
is constant and roughly homogeneous. Due to this restrictions classes of objects
(e.g. robots, ball, lines, color markers, goals) can roughly be identi�ed by their
color. To the best of our knowledge, all robot soccer teams using cameras apply a
color labeling step to the sensed image data, e.g. [29, 32, 15, 17, 6, 3]. In this label-
ing or classi�cation step the color value of a pixel is mapped to one of the distinct
colors. Labeling provides the advantage of a fast and substantial reduction of
the image data while maintaining the major part of the relevant information.
However even in the restricted RoboCup scenario for all color spaces the color
histograms, i.e. probability density functions (pdf), of di�erent object classes do
overlap. Furthermore the pdf of an object class varies spatially. This causes an
uncertainty in the labeling process. Obviously in a less restricted environment
the uncertainty would be much higher.

To avoid this diÆculty we use raw image data (in RGB space). Our method
re�nes iteratively a vague interpretation of the scene by alternating two steps1:

1 An initial vague interpretation may be obtained for example by a Monte Carlo

method or by prediction over time.



Fig. 1. The CCD algorithm is able to localize the ball in natural environments (red:

initial ball contour, blue: estimated ball contour).

1.) based on a vague interpretation (e.g. the ball has the 3-D position X) local
pdfs are learned from the image data. These pdfs describe the local color dis-
tributions of di�erent objects. 2.) in the second step the local pdfs are used in
order to re�ne the interpretation of the scene. The method naturally takes the
uncertainty into account caused by the overlapping pdfs. Model knowledge such
as the shape of the ball is used in order to reduce the uncertainty. Pixels are not
interpreted independently but based on the context and the model knowledge.

The CCD algorithm �ts parametric curve models, also known as active con-
tours, deformable models, or snakes [5, 18] into the image. Problems such as
the self-localization / pose estimation problem can be addressed by curve �t-
ting [12]. Here the position of the ball with respect to the observing robot is
estimated. With our labeling-based approach [12] we experienced substantial in-
accuracies under some circumstances, especially if temporal derivatives, e.g. the
ball speed, are computed. The CCD algorithm achieves a substantially higher
accuracy. Even more important, we think that this work could be an important
contribution towards the goal of playing robot soccer in natural environments,
see Fig. 1.

The reminder of this paper is organized as follows: in section 2 the contour
of the ball is modeled as a function of the ball position. In section 3 an overview
of the Contracting Curve Density (CCD) algorithm is given. Sections 4 describe
the two main steps of the CCD algorithm. Section 5 contains an experimental
evaluation. In section 6 the body of related work is brie
y summarized and �nally
section 7 concludes the paper.
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Fig. 2. Projection of the ball into the image plane: the projection of the ball's center

point does not yield the center of the ball contour

2 Modeling the Ball Contour

In this section the contour of the ball is described (modeled) as a function of the
ball position. In this modeling process knowledge of the ball (the object of inter-
est) and the imaging device is incorporated. Here the ball is modeled as a sphere
with known radius. We use a camera with known internal and external camera
parameters. The method proposed here is developed for our non-omnidirectional
vision system. However, the method can easily be adapted to omnidirectional
vision systems which are quite popular in robotic soccer, e.g. [14, 24, 25].

We denote the center point of the ball in the coordinate system of the ob-
serving robot by Mr. We distinguish two cases: 1.) in the �rst case the ball is
assumed to lay on the 
oor. Hence the center point Mr = (x; y; r)T of the ball
has two degrees of freedom, namely x and y. The z-coordinate is given by the
radius r of the ball. 2.) in the second case we assume that the ball may 
y, i.e.
not lay on the 
oor, which sometimes happens in robotic soccer. In this case the
ball position has three unknown coordinates:Mr = (x; y; z)T . While the second
case is more general, it requires an optimization for more parameters and tends
to be less precise, if the ball is on the 
oor. By � we denote the unknown pa-
rameters of the ball position Mr (for the �rst case � = (x; y)T , for the second
case � = (x; y; z)T ).

In the following the relation between � and the pixel coordinates of the
ball contour is derived. First the center point of the ball is expressed in camera
coordinates Mc by

Mc = R � (Mr � t) (1)

where R and t specify the orientation and location of the camera with respect
to the robot coordinate system. The set of tangent lines to the sphere (the ball)
passing through the optical center of the camera de�ne a cone, see Fig. 2. As



known, the intersection of the cone with the image plane yields an ellipse [28].
Note the intersection is a circle only if the center point of the sphere lies on the
optical axis of the camera. In all other cases the projection of the center point
is not the center point of the ball contour, see Fig. 2. The set of contour points
can be described in undistorted image coordinates u by

u(s) =mi + cos(s) � a1 + sin(s) � a2 (2)

where m is the center, a1 and a2 are the two axis of the ellipse in undistorted
image coordinates. The angle s 2 [��; :::; �[ speci�es a particular point on the
ellipse. Our lens causes substantial radial distortions. According to Lenz et al.
[19] the distorted coordinates d can be approximated by

d = (dx; dy)
T = 2u=(1 +

p
1� 4�juj2) (3)

where � is the distortion parameter of the lens. The corresponding pixel coordi-
nates c can be obtained by

c = (dx=Sx + Cx; dy=Sy + Cy)
T (4)

where Sx and Sy de�ne the pixel size and Cx and Cy specify the center point of
the camera.

3 Overview of the Contracting Curve Density (CCD)

Algorithm

The CCD algorithm �ts parametric curve models to image data [11]. The al-
gorithm can roughly be characterized as an extension of the EM algorithm [10]
using additional knowledge. The additional knowledge consists of: (i) a curve
model, which describes the set of possible boundaries between adjacent regions,
and (ii) a model of the image generation process. The CCD algorithm, depicted
in Fig. 3, performs an iteration of two steps, which roughly correspond to the two
steps of the EM algorithm: 1. Local statistics of image data are learned

from the vicinity of the curve. These statistics locally characterize the two sides of
the edge curve. 2. From these statistics, the estimation of the model param-

eters is re�ned by optimizing the separation of the two sides. This re�nement
in turn leads in the next iteration step to an improved statistical characterization
of the two sides. During the process, the uncertainty of the model parameters
decreases and the probability density of the curve in the image contracts to a
single edge estimate. We therefore call the algorithm Contracting Curve Density
(CCD) algorithm.

Input: The input of the CCD algorithm consists of the image data I� and the
curve model. The image data are local features, e.g. RGB values, given for each
pixel of the image. The curve model consists of two parts: 1.) a di�erentiable
curve function c describing the model edge curve in the image as a function of the
model parameters �, 2.) a Gaussian a priori distribution p(�) = p(� jm�

�
;��

�
)



Contracting Curve Density (CCD) algorithm

Input: image data I�, di�erentiable curve function c, mean m�

�
and covariance ��

�

Output: estimate m� of model parameters and associated covariance ��

Initialization: mean m� =m�

�
, covariance �� = c1 ��

�

�

repeat

1. learn local statistics of image data from the vicinity of the curve

(a) compute pixels v in vicinity V of the image curve from c, m� and ��
8v 2 V compute vague assignment av(m�;��) to the sides of the curve

(b) 8v 2 V compute local statistics Sv of image data I�V
2. re�ne estimation of model parameters

(a) update mean m� by performing one iteration step of MAP estimation:

m� = argmin
m�

�
2
(m�) with

�
2
(m�) = �2 ln[p(IV = I

�

V j aV(m�;��);SV ) � p(m� j m
�

�
;�

�

�
)]

(b) updated covariance �� from Hessian of �2(m�)

until changes of m� and �� are small enough

Post-processing: estimate covariance �� from Hessian of �2(m�)

return mean m� and covariance ��

Fig. 3. The CCD algorithm iteratively re�nes a Gaussian a priori density p(�) =

p(� j m�

�
;��

�
) of model parameters to a Gaussian approximation p(� j m�;��) of

the posterior density p(� j I�).

of the model parameters �, de�ned by the mean m
�

�
and the covariance ��

�
.

(The superscript � indicates input data.)
Output: The output of the algorithm consists of the estimate m� of the

model parameters � and the covariance �� describing the uncertainty of the
estimate. The estimate m� and the covariance �� de�ne a Gaussian approxi-
mation p(� j m�;��) of the posterior density p(� j I�).

Initialization:The estimatem� of the model parameters and the associated
covariance �� are initialized using the mean m

�

�
and covariance ��

�
of the a

priori distribution. The factor c1 (e.g. c1 = 9) increases the initial uncertainty
and thereby enlarges the capture range of the CCD algorithm.

4 Steps of the CCD Algorithm

The two basic steps of the CCD algorithm, depicted in Fig. 3, are brie
y sum-
marized in this section. A more detailed description is given in [11].

4.1 Learn Local Statistics (Step 1)

The Gaussian distribution of model parameters p(� jm�;��) and the model
curve function c de�ne a probability distribution of the edge curve in the image.
This curve distribution vaguely assigns each pixel in the vicinity of the surmised
curve to one side of the curve. In step 1a the set V of pixels v in the vicinity
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Fig. 4. a.) The initial error is iteratively reduced. b.) During the process also the

uncertainty of the curve is reduced and the vague side assignments av become certain.

of the surmised curve is determined and for the pixels v 2 V the vague side
assignments av(m�;��) are computed. The components of the assignments av
specify to which extent pixel v is expected to belong to the corresponding side.
Fig. 4 row b.) depicts for pixels v 2 V the assignments to the ball region. White
pixels indicate a quite certain assignment to the ball region.

In step 1b local statistics Sv, i.e. �rst and second order moments, of the
image feature vectors I�v are learned from pixels which are assigned to one side
with high certainty. This is done for each of the two sides separated by the
curve. In order to obtain the statistics locally adapted windows (weights) are
used. The windows are chosen such that the local statistics Sv can be computed
recursively. The resulting time complexity of computing Sv for all pixels v 2 V

is O(jVj), where jVj is the number of pixels in the vicinity V . Note that the time
complexity is independent of the window size along the curve.

4.2 Re�ne the Estimation of Model Parameters (Step 2)

In the second step, the estimation of the model parameters is re�ned based on
a MAP optimization. Step 2a updates the estimate m� such that the vague
assignments av(m�;��) of the pixels v 2 V �t best to the local statistics Sv. The
feature vectors I�v of pixels v 2 V are modeled as Gaussian random variables. The
mean vectors and covariances are estimated from the local statistics Sv obtained
from the corresponding side of pixel v. The feature vectors of edge pixels are
modeled as weighted linear combinations of both sides of the edge. In step 2a,
only one iteration step of the resulting MAP optimization is performed. Since the
vague assignments av(m�;��) explicitly take the uncertainty (the covariance
��) of the estimate into account the capture range is enlarged according to
the local uncertainty in the image. This leads to an individually adapted scale
selection for each pixel and thereby to a big area of convergence, see [11]. In step



Fig. 5. The white non-RoboCup ball is precisely segmented in front of a white-grey

background. This is hardly possible with color labeling. (red: initialization, black: es-

timated ball contour)

2b, the covariance �� of the estimate m� is updated based on the Hessian of
the resulting �2 objective function.

5 Experiments

In our experiments we apply the proposed method to several scenes. Fig. 5 shows
a mainly white non-RoboCup ball in front of a white and grey, partially textured
background. Despite the lack of color the method precisely segments the ball.

Fig. 6 shows several images where the ball is just partially in the image. But
this is enough in order to estimate the ball position. For close up views such
as the �rst three images in Fig. 6 the average error is just a few millimeters,
depending on the accuracy of the camera calibration.

In the next experiment we varied the background of the ball and the illu-
mination, see Fig. 7. For the �ve investigated images the standard deviation of
the ball estimates is 0.43 cm which is 0.62% of the estimated distance. Unfortu-
nately, we do not have a suÆciently precise ground truth to compare our results
with.

In order to evaluate the performance for a partially occluded ball, we took two
images with the same ball position, one with partial occlusion and one without
occlusion, see Fig. 8. The ball estimates of the two images di�er by 2.0 cm, which
is just 2.5% of the ball distance. However, the number of necessary iterations is
about 3 times higher in the partially occluded case. The CCD algorithm not only
yields an estimate of the ball position, but also a covariance matrix describing
the expected uncertainty of the estimate. For the partially occluded ball the
expected uncertainty is about three times higher than for the not occluded case.
This allows a reasonable data fusion with other sensors data. For a partially
occluded ball the area of convergence is signi�cantly reduced, compare Fig. 9
with Fig. 1.



Fig. 6. Re�nement of the ball position: initial ball contour (red) and estimated ball

contour (black) after 7 iterations. The ball is just partially in the image. Furthermore,

the ball has strong specularity and black elements. Nevertheless, the CCD algorithm

reliably estimates the ball position.



Fig. 7. The strong variations of background and illumination cause just small variations

of the ball estimates. For these �ve images the standard deviation of the ball estimates

is 0.43 cm which is 0.62% of the estimated distance.



Fig. 8. The same ball position with and without occlusion: the estimates of the ball

position di�er by 2.0 cm which is just 2.5% of the estimated ball distance.

The next example shows that the CCD algorithm can also be successfully
applied to objects of a non-spherical shapes. In Fig. 10 the 3-D pose of a cylin-
drical mug is estimated by �tting the cylinder contour to the image data. Such
a cylindrical model could also be used for the corner posts. Examples for radi-
ally distorted straight edges are given in [11]. Straight edges could be used for
polyhedral models (e.g. goals).

Finally the accuracy of the CCD algorithm is investigated. Semi-synthetic
images with a known ground truth are constructed as follows: from two images
one combined image is obtained by taking for one side of the curve the content
of image one and for the other side of the curve the content of image two. For
pixels on the curve the pixel data are interpolated. In Fig. 11 a circle is �tted
to two semi-synthetic images. In both cases the errors for all three quantities
(x-coordinate, y-coordinate, radius) are less than 5% of a pixel. In both cases
the initial error is reduced by more than 99.8%.

The CCD algorithm as used in this paper is designed to achieve high accuracy.
The method is not optimized for speed. Hence, the runtime per image is several



magni�cation:

convergence to the right ball position convergence to a wrong ball position

Fig. 9. Due to the partial occlusion of the ball and the very heterogeneous non-ball

region, the area of convergence is strongly reduced. (red: initial ball contour, blue:

estimated ball contour).

Fig. 10. An example of a cylindrical mug: the cylinder contour �tted to the image data

matches the mug's contour. The estimated parameters of the contour are the �ve pose

parameters of the cylinder. (red: initial contour, black: estimated contour)



errors in pixels (x-coordinate, y-coordinate, radius)

23.0, 10.0, -5.0 -.025, .028, -.033 35.0, 20.0, -5.5 -.040, -.013, -.044

initialization estimated contour initialization estimated contour

Fig. 11. Despite the inhomogeneity of the foreground and the background in both cases

the �nal error is less than 5% of a pixel for all three coordinates.

seconds or even minutes, depending on the resolution and the initial uncertainty.
In order to apply the CCD algorithm to real-time object tracking we propose a
fast version of the CCD algorithm [13]. This version does not use all pixels in
the vicinity of the curve. Instead it uses just a few carefully selected pixels. This
method works within frame rate for simple objects such as a ball.

6 Related Work

In this section we �rst characterize image segmentation methods applied outside
RoboCup. Afterwards we discuss brie
y related work applied in RoboCup. The
body of work on image segmentation methods (developed outside RoboCup) can
be roughly classi�ed into three categories: (i) edge-based segmentation, (ii)
region-based segmentation, and (iii) methods integrating edge-based

and region-based segmentation.
(i) Edge-based segmentation (which is also referred as boundary-based

segmentation) relies on discontinuities of image data. Methods for di�erent edge-
pro�les, i.e. types of discontinuities, exist (e.g. step-edge [2, 26, 7], roof-edge [2,
26], others [2, 26]). The problem of edge-based segmentation is that in prac-
tice usually the edge-pro�le is not known. Furthermore, the pro�le often varies
heavily along the edge caused by e.g. shading and texture. Due to these diÆcul-
ties usually a simple step-edge is assumed and the edge detection is performed
based on a maximum image gradient. However, methods maximizing the image
gradient have diÆculties to separate regions with internal structure or texture.

(ii) Region-based segmentation methods such as [34, 9] rely on the ho-
mogeneity of spatially localized features (e.g. RGB values). The underlying ho-
mogeneity assumption is that the features of all pixels within one region are
statistically independently distributed according to the same probability density
function. Contrary to edge-based methods region-based methods do not require
an edge-pro�le. Furthermore, they are able to exploit higher statistical moments
of the distributions. Hence, regions which have the same mean feature but dif-
ferent covariances (e.g. caused by texture) can be separated. However often the



underlying assumption of a spatially constant probability density function per
region does not hold.

(iii) Integrating methods: especially in recent years methods have been
published which aim to overcome the individual shortcomings of edge-based
and region-based segmentation by integrating both segmentation principles [30,
27, 8, 16]. These methods seek a tradeo� between an edge-based criterion, e.g.
the magnitude of the image gradient, and a region-based criterion evaluating
the homogeneity of the regions. However, it is questionable whether a tradeo�
between the two criteria yields reasonable results when both the homogeneity
assumption and the assumption regarding the edge pro�le do not hold. Due to
these diÆculties we use local criteria in order to separate adjacent regions. These
separation criteria are iteratively obtained from local image statistics.

Model-based methods optimize the �t between the model and the image data.
Global optimizationmethods like dynamic programming [1] and Monte Carlo
optimization (particle �lters, condensation algorithm [5]) are very successfully
used (e.g., for tracking). However, dynamic programming requires a discretiza-
tion of the search space2, which leads to a limited accuracy, and particle �lters
show a very slow convergence especially if the sensor noise is low [31].

Local optimization methods may achieve a fast, i.e. quadratic, conver-
gence. Approaches aiming to increase the area of convergence such as [21, 33]
are edge-based. For methods maximizing the gradient, the area of convergence
depends on the window size used to compute the spatial derivatives. Scale-space
theory provides means for automatic scale selection [20]. However, blurring the
image data eliminates useful high frequency information. The CCD algorithm
does not blur the image data but the curve model. This yields a local and fast
optimization with an enlarged area of convergence. Furthermore, high frequency
information of the image data is not lost. Several segmentation methods integrate
di�erent image cues such as texture and color or brightness [4, 22, 23, 30].

To the best of our knowledge all RoboCup teams use color labeling [29, 32,
15, 17, 6, 3] which belongs to the category of region-based methods. Used color
spaces are for example YUV [32, 17, 6, 3] and ĤSY [15]. The boundaries between
the classes are usually de�ned as rectangles, boxes, or `pizza-slices'. Simon et
al. [29] propose spatially adapted thresholds. In order to infer the ball position
from the labeled image data Jonker et al. [17] use a circular Hough Transform.
This method is reported to be robust against partial occlusions. Weigel et al.
[32] perform a blob analysis and an inverse projection. Contrary to methods
based on color labeling, our method does not need known object speci�c color
distributions. Furthermore, knowledge on the ball contour is explicitly modeled
and exploited.

2 Often the contour is approximated by pixel coordinates, i.e. integers. Hence subpixel

positions cannot be obtained.



7 Conclusion

We have proposed a novel method, called CCD algorithm, for �tting parametric
curve models to image data and we applied this method to the problem of
localizing the ball. The CCD algorithm does not depend on prior knowledge
of object speci�c color distributions or properly adjusted threshold parameters.
Instead the method starts with a vague object model that can be used to infer
the expected object contour. The CCD algorithm alternately performs two steps:
local statistics of RGB values are computed describing the two sides of the
expected contour. Based on these statistics the model parameters are re�ned in
a MAP step by optimizing the separation of the adjacent regions.

We have shown that the method achieves high robustness and accuracy even
in the presence of heavy changes in illumination, strong texture, clutter, and
specularity. Knowledge of the object of interest and the imaging sensor is ex-
plicitly modeled and exploited. This allows a straightforward adaption to other
imaging devices and other problems. Since the CCD algorithm provides a con-
�dence region for the estimates and a likelihood, a fusion with other sources of
uncertain information (e.g. multiple observer) can easily be accomplished.

While other methods applied in RoboCup use color information in order
to identify objects, in this paper we use shape information. However, vague
knowledge on object speci�c (local or global) color distributions can easily be
exploited and subsequently updated by the CCD algorithm. When applied to
tracking this could gain additional robustness and accuracy.

Acknowledgments: the authors would like to thank Wiebke Bracht for care-
fully proof-reading this paper.
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