Invariant metrics of positive scalar curvature on S^1 -manifolds

Michael Wiemeler

Universität Augsburg

michael.wiemeler@math.uni-augsburg.de

Geometry and Topology, Princeton, March 2015

Outline

- Introduction
- 2 The case where M^{S^1} has codimension two
- 3 The case where codim $M^{S^1} \ge 4$

Outline

- Introduction

Scalar curvature

- Let (M, g) be a Riemannian manifold.
- The scalar curvature of M is a function $scal: M \to \mathbb{R}$
- For small r > 0 and $x \in M$ we have :

$$vol(B_r(x)) = vol_{euclid}(B_r(0))(1 - \frac{scal(x)}{6(n+2)}r^2 + O(r^4))$$

Scalar curvature

- Let (M, g) be a Riemannian manifold.
- The scalar curvature of M is a function $scal: M \to \mathbb{R}$
- For small r > 0 and $x \in M$ we have :

$$vol(B_r(x)) = vol_{euclid}(B_r(0))(1 - \frac{scal(x)}{6(n+2)}r^2 + O(r^4))$$

Scalar curvature

- Let (M, g) be a Riemannian manifold.
- The scalar curvature of M is a function $scal: M \to \mathbb{R}$
- For small r > 0 and $x \in M$ we have :

$$vol(B_r(x)) = vol_{euclid}(B_r(0))(1 - \frac{scal(x)}{6(n+2)}r^2 + O(r^4))$$

Geometric meaning of scalar curvatur A basic question Known results

A basic question

Question

Assume that a compact connected Lie group G acts effectively on a closed connected manifold M.

Does there exist an G-invariant metric of positive scalar curvature on M?

$$G = \{1\}$$

Theorem (Gromov-Lawson 1980)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M does not admit a spin-structure.

Then M admits a metric of positive scalar curvature.

Summary

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- ind D = A(M) is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- ind D = A(M) is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).

psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator *D* on *M* is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- ind $D = \widehat{A}(M)$ is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).

Geometric meaning of scalar curvature A basic question Known results

$$G = \{1\}$$

Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, dim $M \ge 5$ and M admits a spin structure.

Summary

Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.

Proof.

- If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)
- Wadmits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.
- Find all bordism classes which can be represented by such manifolds.

Proof.

- If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)
- Hence, M admits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.
- Find all bordism classes which can be represented by such manifolds.

Proof.

- If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)
- Hence, M admits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.
- § Find all bordism classes which can be represented by such manifolds.

Non-abelian groups

Theorem (Lawson-Yau 1974)

If G is non-abelian, then there is always a G-invariant metric of positive scalar curvature on M.

• Therefore in the following we assume that G = T is a torus or $G = S^1$

Non-abelian groups

Theorem (Lawson-Yau 1974)

If G is non-abelian, then there is always a G-invariant metric of positive scalar curvature on M.

• Therefore in the following we assume that G = T is a torus or $G = S^1$

Abelian groups

Theorem (Bérard Bergery 1983)

Assume that a torus T acts freely on M.

Then M admits an invariant metric of positive scalar curvature if and only if M/T admits a metric of positive scalar curvature.

Examples

- \exists manifolds which admit a non-trivial S^1 -action but no metric of positive scalar curvature:
 - Exotic spheres with $\alpha(\Sigma) \neq 0$ (Bredon, Schultz, Joseph 1967-1981)
- \exists S^1 -manifolds which admit metrics of positive scalar curvature but no invariant such metric:
 - simply connected S¹-bundles over K3-surfaces (Bérard Bergery).

Examples

- ∃ manifolds which admit a non-trivial S¹-action but no metric of positive scalar curvature:
 - Exotic spheres with $\alpha(\Sigma) \neq 0$ (Bredon, Schultz, Joseph 1967-1981)
- ∃ S¹-manifolds which admit metrics of positive scalar curvature but no invariant such metric:
 - simply connected S¹-bundles over K3-surfaces (Bérard Bergery).

Outline

- 1 Introduction
- 2 The case where M^{S^1} has codimension two
- 3 The case where codim $M^{S^1} \ge 4$

First main theorem

Theorem (2013)

Let M be a connected $(G \times S^1)$ -manifold such that codim $M^{S^1} = 2$.

Then M admits a $(G \times S^1)$ -invariant metric of positive scalar curvature.

Corollary

Every torus manifold admits an invariant metric of positive scalar curvature.

First main theorem

Theorem (2013)

Let M be a connected $(G \times S^1)$ -manifold such that codim $M^{S^1} = 2$.

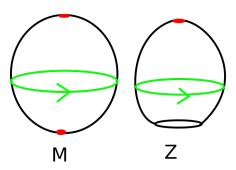
Then M admits a $(G \times S^1)$ -invariant metric of positive scalar curvature.

Corollary

Every torus manifold admits an invariant metric of positive scalar curvature.

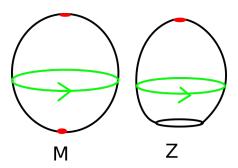
The proof of the Theorem

- Let Z = M N(F, M), where $F \subset M^{S^1}$ component with codim F = 2.
- \exists a $(G \times S^1)$ -handle decomposition of Z without handles of codimension zero



The proof of the Theorem

- Let Z = M N(F, M), where $F \subset M^{S^1}$ component with codim F = 2.
- \exists a $(G \times S^1)$ -handle decomposition of Z without handles of codimension zero



- $Z \times D^2$ is $(G \times S^1 \times S^1)$ -manifold.
- \exists a ($G \times S^1 \times S^1$)-handle decomposition of $Z \times D^2$ without handles of codimension < 3.
- $\partial(Z \times D^2) = SN(F, M) \times D^2 \cup Z \times S^1$ admits invariant metric of positive scalar curvature
- diag($S^1 \times S^1$) acts freely on $\partial (Z \times D^2)$ with orbit space M.

- $Z \times D^2$ is $(G \times S^1 \times S^1)$ -manifold.
- \exists a ($G \times S^1 \times S^1$)-handle decomposition of $Z \times D^2$ without handles of codimension < 3.
- $\partial(Z \times D^2) = SN(F, M) \times D^2 \cup Z \times S^1$ admits invariant metric of positive scalar curvature
- diag($S^1 \times S^1$) acts freely on $\partial (Z \times D^2)$ with orbit space M.

- $Z \times D^2$ is $(G \times S^1 \times S^1)$ -manifold.
- \exists a $(G \times S^1 \times S^1)$ -handle decomposition of $Z \times D^2$ without handles of codimension < 3.
- $\partial(Z \times D^2) = SN(F, M) \times D^2 \cup Z \times S^1$ admits invariant metric of positive scalar curvature
- diag($S^1 \times S^1$) acts freely on $\partial (Z \times D^2)$ with orbit space M.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1 -action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1 -action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

Mathematik

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1 -action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If M
 is spin, assume that the lifted S
 -action on M
 is of odd
 type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

A related result of M. Bendersky

Theorem (Bendersky, Ochanine, Ono 1990-1992)

Let M be a spin manifold with effective S¹-action of odd type, then the Ochanine-genus of M vanishes.

 Bendersky's paper was in final form almost exactly 25 years ago on April 2nd, 1990.

A related result of M. Bendersky

Theorem (Bendersky, Ochanine, Ono 1990-1992)

Let M be a spin manifold with effective S¹-action of odd type, then the Ochanine-genus of M vanishes.

 Bendersky's paper was in final form almost exactly 25 years ago on April 2nd, 1990.

Proof of Corollary 2

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1 -manifold N with codim $N^{S^1} = 2$.

Proof of Corollary 2

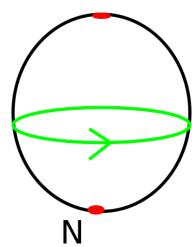
Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1 -manifold N with codim $N^{S^1} = 2$.

The first theorem Some corollaries





Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1 -action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1 -manifold N with codim $N^{S^1} = 2$.
- If M is spin and S^1 -action on M of odd type, then N is spin.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1 -action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.
- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.
- So by surgery on S^2 we can recover M.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If M is spin, assume that the lifted S¹-action on M is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.
- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.
- So by surgery on S^2 we can recover M.

Corollary

Let M be an effective S^1 -manifold dim $M \ge 5$.

- Assume that the principal orbits in M are null-homotopic.
- If M is spin, assume that the lifted S¹-action on M is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.
- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.
- So by surgery on S^2 we can recover M.

Corollary

Let M be a manifold with dim $M \ge 5$, $\chi(M) \ne 0$ and non-spin universal covering.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1 -actions.
 - rnis works in all dimens

Corollary

Let M be a manifold with dim $M \ge 5$, $\chi(M) \ne 0$ and non-spin universal covering.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1 -actions.
 - Michael Wiemeler

Corollary

Let M be a manifold with dim $M \ge 5$, $\chi(M) \ne 0$ and non-spin universal covering.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \le 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S¹-actions.

Corollary

Let M be a manifold with dim $M \ge 5$, $\chi(M) \ne 0$ and non-spin universal covering.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \le 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1 -actions.
 - This works in all diffient

Corollary

Let M be a manifold with dim $M \ge 5$, $\chi(M) \ne 0$ and non-spin universal covering.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \le 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1 -actions.
- This works in all dimensions.

Outline

- Introduction
- 2 The case where M^{S^1} has codimension two
- 3 The case where codim $M^{S^1} \ge 4$

The case where codim $M^{S^1} \ge 4$

In this part assume that $\pi_1(M_{max}) = 0$, codim $M^{S^1} \ge 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1 -equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1 -equivariant complex vector bundles

$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}.$$

This condition is always satisfied if no isotropy group of a point in *M* has even order.

The case where codim $M^{S^1} \ge 4$

In this part assume that $\pi_1(M_{max}) = 0$, codim $M^{S^1} \ge 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1 -equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1 -equivariant complex vector bundles

$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}.$$

This condition is always satisfied if no isotropy group of a point in *M* has even order.

The case where codim $M^{S^1} \ge 4$

In this part assume that $\pi_1(M_{max}) = 0$, codim $M^{S^1} \ge 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1 -equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1 -equivariant complex vector bundles

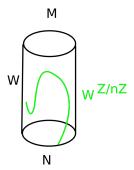
$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}$$
.

This condition is always satisfied if no isotropy group of a point in *M* has even order.

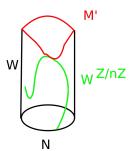
Some notations

- Let $\Omega^{C,SO,S^1}_{\geq 4,n}$ the bordism group of oriented n-manifolds as above
- Let $\Omega^{C,Spin,S^1}_{\geq 4,n}$ the bordism group of n-Spin-manifolds as above

- We want to prove a bordism principle for these actions.
- Here singular strata of codimension two in the bordisms cause some problems.



• This has been dealt with essentially by Hanke (2008).



normally symmetric metrics

A invariant metric *g* is called *normally symmetric in* codimension two if

- For each component $F \subset M^H$ with codim F = 2,
 - ∃ a invariant neighborhood U of F in M
 - and an S¹-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S1-action and
 - leaves g invariant.
- If codim $M_{(\mathbb{Z}_2)} > 2$, then any metric g can be deformed to a normally symmetric metric.

normally symmetric metrics

A invariant metric g is called *normally symmetric in codimension two* if

- For each component $F \subset M^H$ with codim F = 2,
 - \exists a invariant neighborhood U of F in M
 - and an S1-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S¹-action and
 - leaves g invariant.
- If $\operatorname{codim} M_{(\mathbb{Z}_2)} > 2$, then any metric g can be deformed to a normally symmetric metric.

normally symmetric metrics

A invariant metric *g* is called *normally symmetric in* codimension two if

- For each component $F \subset M^H$ with codim F = 2,
 - \exists a invariant neighborhood U of F in M
 - and an S1-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S¹-action and
 - leaves g invariant.
- If codim $M_{(\mathbb{Z}_2)} > 2$, then any metric g can be deformed to a normally symmetric metric.

The bordism principle

Theorem

If dim $M \geq 6$ and M_{max} is not spin, then M admits a normally symmetric metric of positive scalar curvature if and only if its class in $\Omega^{C,SO,S^1}_{>4.n}$ can be represented by a

manifold which admits such a metric.

The bordism principle

Theorem

If dim $M \ge 6$ and M_{max} is not spin,

then M admits a normally symmetric metric of positive scalar curvature

if and only if its class in $\Omega^{C,SO,S^1}_{\geq 4,n}$ can be represented by a manifold which admits such a metric.

Theorem

If dim $M \ge 6$ and M is spin,

then M admits a normally symmetric metric of positive scalar curvature

if and only if its class in $\Omega^{C,Spin,S^1}_{\geq 4,n}$ can be represented by a manifold which admits such a metric.

Existence results

Theorem (2015)

If dim M > 6 and

- M_{max} is not spin, or
- M is spin and the S¹-action of odd type,

then there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^{ℓ} copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case ℓ can be taken to be 1.
- If the action is semi-free, ℓ can be taken to be 1.

Existence results

Theorem (2015)

If dim $M \ge 6$ and

- M_{max} is not spin, or
- M is spin and the S¹-action of odd type,

then there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^{ℓ} copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case ℓ can be taken to be 1.
- If the action is semi-free, ℓ can be taken to be 1.

Existence results

Theorem (2015)

If dim M > 6 and

- M_{max} is not spin, or
- M is spin and the S¹-action of odd type,

then there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case ℓ can be taken to be 1.
- If the action is semi-free, ℓ can be taken to be 1.

Existence results II

Theorem (2015)

If dim $M \geq 6$, M is spin and the S^1 -action of even type, then $\widehat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- $\widehat{A}_{S^1}(M/S^1)$ is a $\mathbb{Z}[\frac{1}{2}]$ -valued equivariant bordism invariant of M
- For free actions it is the \widehat{A} -genus of the orbit space.
- For semi-free actions it was defined by Lott (2000).

Existence results II

Theorem (2015)

If dim $M \geq 6$, M is spin and the S^1 -action of even type, then $\widehat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- $\widehat{A}_{S^1}(M/S^1)$ is a $\mathbb{Z}[\frac{1}{2}]$ -valued equivariant bordism invariant of M.
- For free actions it is the \widehat{A} -genus of the orbit space.
- For semi-free actions it was defined by Lott (2000).

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $A_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $A_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $\widehat{A}_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $\widehat{A}_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $\widehat{A}_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Corollary (Atiyah-Hirzebruch 1970)

- We may assume that dim M = 4k.
- Since $\widehat{A}_{S^1}(M/S^1) \neq 0$ implies dim M = 4k + 1, $2^{\ell}M$ is equivariantly spin-bordant to an S^1 -manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^{\ell}\widehat{A}(M) = \widehat{A}(N) = 0 \Rightarrow \widehat{A}(M) = 0$

Summary

For simply connected S^1 -manifolds M with dim $M \ge 6$ the following holds:

- If $\operatorname{codim} M^{S^1} = 2$, then there is always a invariant psc-metric on M.
- If $\operatorname{codim} M^{S^1} \geq 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\widehat{A}(M/S^1)$.

Summary

For simply connected S^1 -manifolds M with dim $M \ge 6$ the following holds:

- If $codim M^{S^1} = 2$, then there is always a invariant psc-metric on M.
- If $\operatorname{codim} M^{S^1} \geq 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\widehat{A}(M/S^1)$.

Summary

For simply connected S^1 -manifolds M with dim $M \ge 6$ the following holds:

- If codim $M^{S^1} = 2$, then there is always a invariant psc-metric on M.
- If codim $M^{S^1} \ge 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\widehat{A}(M/S^1)$.

